
Instruction Set Architecture

A few words on the subject

Grigory Rechistov

Intel�MIPT lab, MDSP project

October 2010

1



ISA

The part of the computer architecture related to programming.

I Instructions

I Registers

I Addressing of memory

I Native data types

Question: why caches are not included in ISA? They are not visible
to programmer.

2



ISA

The part of the computer architecture related to programming.

I Instructions

I Registers

I Addressing of memory

I Native data types

Question: why caches are not included in ISA?

They are not visible
to programmer.

2



ISA

The part of the computer architecture related to programming.

I Instructions

I Registers

I Addressing of memory

I Native data types

Question: why caches are not included in ISA? They are not visible
to programmer.

2



A single instruction

[pre�xes] <opcode> [operand1], [operand2], [operand3]

I Total length of an instruction may be constant or variable depending

I Pre�x changes behaviour of the following operation (e.g. locked,
replayed, with di�erent length of operands)

I An operand de�nes what data is used and where it comes from
(register, memory, constant, etc).

I Amount of operands may be even more.

I Sometimes an operand can be also placed in opcode value.

I Sometimes opcodes can be inside operand values. . .

3



A single instruction

[pre�xes] <opcode> [operand1], [operand2], [operand3]

I Total length of an instruction may be constant or variable depending

I Pre�x changes behaviour of the following operation (e.g. locked,
replayed, with di�erent length of operands)

I An operand de�nes what data is used and where it comes from
(register, memory, constant, etc).

I Amount of operands may be even more.

I Sometimes an operand can be also placed in opcode value.

I Sometimes opcodes can be inside operand values. . .

3



Operations

Common types:

1. Set a register to constant value or value of other register.

2. Loads (memory �register ) & stores (register �memory)

3. Read and write data from hardware devices (IO)

4. Arithmetic and Logic:

4.1 +� =�. . .
4.2 And, Or, Xor, Not
4.3 Compare two values (result ��ags register)

5. Control �ow

5.1 branch to another location (PC �new value)
5.2 conditionally branch (if (condition) then PC �new value)
5.3 save current location and jump to new location (Procedure

call)

4



Registers

I Program counter aka PC � the immanent part of von Neumann
machines.

I Data registers: accumulators, counters.

I Address registers.

I General purpose registers (GPR): both data and address.

I Status register (�ags).

I Stack pointer.

Also can include

I Segment registers.

I Coprocessor device registers e.g. FPU.

I Other types: control, debug, constant, model speci�c, vector
registers, . . .

5



Amount of registers on misc. architectures

Architecture Integer registers Double FP registers

x86 8 8
x86-64 16 16
Itanium 128 128
UltraSPARC 32 32
POWER 32 32
Alpha 32 32
65021 3 0
AVR microcontroller 32 0
ARM 16 16
MMIX 256 N/A

1I need your clothes, boots and your motorcycle. Kill all humans! (Except
Fry)

6



Memory addressing modes

E�ective memory address = f (mode; registers; constants)

There are a vast amount of modes found in di�erent architectures,
just to name some common:

I absolute

I register indirect

I PC relative

I base register + o�set

I SIB: addr = base + scale � index + o�set

7



Data types

I Integer values, signed and unsigned.

I Memory adresses (mind segment:o�set scheme in early x86)

I Boolean types: �ag register, predicate registers (64 in Itanium)

I Floating point types: 64(80) bit in x87, 2� 64 or 4� 32 bit in
SSE

I Binary coded decimal (BCD): one byte codes 100 numbers
from 0x00 to 0x99.

I Tags for memory protection. Elbrus, IBM AS/400.

Questions:

1. What is a byte? The minimal addressable amount of data.

2. What is a machine word? The maximum amount of data a
CPU can chew at a time.

8



Data types

I Integer values, signed and unsigned.

I Memory adresses (mind segment:o�set scheme in early x86)

I Boolean types: �ag register, predicate registers (64 in Itanium)

I Floating point types: 64(80) bit in x87, 2� 64 or 4� 32 bit in
SSE

I Binary coded decimal (BCD): one byte codes 100 numbers
from 0x00 to 0x99.

I Tags for memory protection. Elbrus, IBM AS/400.

Questions:

1. What is a byte?

The minimal addressable amount of data.

2. What is a machine word? The maximum amount of data a
CPU can chew at a time.

8



Data types

I Integer values, signed and unsigned.

I Memory adresses (mind segment:o�set scheme in early x86)

I Boolean types: �ag register, predicate registers (64 in Itanium)

I Floating point types: 64(80) bit in x87, 2� 64 or 4� 32 bit in
SSE

I Binary coded decimal (BCD): one byte codes 100 numbers
from 0x00 to 0x99.

I Tags for memory protection. Elbrus, IBM AS/400.

Questions:

1. What is a byte? The minimal addressable amount of data.

2. What is a machine word? The maximum amount of data a
CPU can chew at a time.

8



Data types

I Integer values, signed and unsigned.

I Memory adresses (mind segment:o�set scheme in early x86)

I Boolean types: �ag register, predicate registers (64 in Itanium)

I Floating point types: 64(80) bit in x87, 2� 64 or 4� 32 bit in
SSE

I Binary coded decimal (BCD): one byte codes 100 numbers
from 0x00 to 0x99.

I Tags for memory protection. Elbrus, IBM AS/400.

Questions:

1. What is a byte? The minimal addressable amount of data.

2. What is a machine word?

The maximum amount of data a
CPU can chew at a time.

8



Data types

I Integer values, signed and unsigned.

I Memory adresses (mind segment:o�set scheme in early x86)

I Boolean types: �ag register, predicate registers (64 in Itanium)

I Floating point types: 64(80) bit in x87, 2� 64 or 4� 32 bit in
SSE

I Binary coded decimal (BCD): one byte codes 100 numbers
from 0x00 to 0x99.

I Tags for memory protection. Elbrus, IBM AS/400.

Questions:

1. What is a byte? The minimal addressable amount of data.

2. What is a machine word? The maximum amount of data a
CPU can chew at a time.

8



One more time on RICS and CISC

I CISC: more close to high-level languages, compact code,
variable instruction length.

I RISC: �xed length, simplier decoder, easier to pipeline, overall
faster.

Question: what architecture is IA-32? CISC, alas.

9



One more time on RICS and CISC

I CISC: more close to high-level languages, compact code,
variable instruction length.

I RISC: �xed length, simplier decoder, easier to pipeline, overall
faster.

Question: what architecture is IA-32?

CISC, alas.

9



One more time on RICS and CISC

I CISC: more close to high-level languages, compact code,
variable instruction length.

I RISC: �xed length, simplier decoder, easier to pipeline, overall
faster.

Question: what architecture is IA-32? CISC, alas.

9



Number of operands: 3

More common for CISC:

IMUL EAX, DWORD [EBX + ECX*4 + OFFSET], 5

BLENDPD XMM1, XMM2, 255

10



Number of operands: 2

Commonly the �rst operand is both the destination and source1,
the second is source2:

ADD EAX, EBX

MOV [EBX], EBP

Widely used in ISAs.

11



Number of operands: 1

So called accumulator machines: early computers and small
microcontrollers. Most instructions specify a single explicit right
operand. Implicit accumulator is used as both destination and left
operand.
Also, can be used with stack machines for loading/storing values
from/to stack and memory:

PUSH A

POP RAX

12



Number of operands: Zero

0 ? WTF?
So called stack machines.
All arithmetic operations take place using the top one or two
positions on the stack.
Esoteric stu�.

13



Number of operands: Zero

0 ? WTF?

So called stack machines.
All arithmetic operations take place using the top one or two
positions on the stack.
Esoteric stu�.

13



Number of operands: Zero

0 ? WTF?
So called stack machines.
All arithmetic operations take place using the top one or two
positions on the stack.
Esoteric stu�.

13



A note on microarchitecture

Microarchitecture 6= ISA

I IBM TIMI (Technology-Independent Machine Interface): IBM
AS/400 (48 bit CISC)� POWER (RISC 64 bit)

I Transmeta: x86-compatible ISA on VLIW �arch.

I Think about Intel vs AMD internal CPU designs.

14



Instruction set extensions

Are made when somebody decides it's better to have some new
instructions.

1. 80286 � 16 bit;

2. 80386 � 32 bit;

3. coprocessor 8087;

4. MMX, SSEx, AVX extensions for SIMD operations;

5. AMD part: 3DNow! and AMD64 aka EMT-64 aka x86_64.

6. Virtualization support.

Retain backward compatibility! Remember the lessons of Itanium.

15



Instruction set extensions

Are made when somebody decides it's better to have some new
instructions.

1. 80286 � 16 bit;

2. 80386 � 32 bit;

3. coprocessor 8087;

4. MMX, SSEx, AVX extensions for SIMD operations;

5. AMD part: 3DNow! and AMD64 aka EMT-64 aka x86_64.

6. Virtualization support.

Retain backward compatibility! Remember the lessons of Itanium.

15



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



Some examples of ISAs

I Alpha

I ARM

I IA-64 (Itanium)

I IA-32, including EMT64 aka AMD64

I Loongson

I MIPS

I Motorola 68k

I PowerPC

I SPARC

ISAs commonly implemented in software with hardware incarnations

I Java virtual machine (ARM Jazelle)

I FORTH

I MMIX from The Art of Computer Programming

16



More to read

Wikipedia
http://en.wikipedia.org/wiki/Instruction_set

The Art of Assembly Language, chapter 5.
http:

//webster.cs.ucr.edu/AoA/Windows/HTML/ISA.html

17

http://en.wikipedia.org/wiki/Instruction_set
http://webster.cs.ucr.edu/AoA/Windows/HTML/ISA.html
http://webster.cs.ucr.edu/AoA/Windows/HTML/ISA.html


18


	Introduction
	Conclusions
	Bibliography

