

Introduction to Microprocessors

Yuri Baida

yuri.baida@gmail.com yuriy.v.baida@intel.com

October 2, 2010

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

Agenda

- Background and History
 - What is a microprocessor?
 - What is the history of the development of the microprocessor?
 - How does transistor scaling affect processor design?
- PC Components
 - What are the major PC components and their functions?
 - What is memory hierarchy and how has it changed?
- Processor Architecture
 - What are processor architecture and microarchitecture?
 - How does microarchitecture affect performance?
 - How is performance measured?

Background and History

What is a Microprocessor?

- Microprocessor is a computer Central Processing Unit (CPU) on a single chip.
- It contains millions of transistors connected by wires

-

~

Core i7 in package Picture: Ebbesen

Core i7 die Picture: Intel

Electrical Numerical Integrator and Calculator

- Designed for the U.S. Army's Ballistic Research Laboratory
- Built out of
 - 17,468 vacuum tubes
 - 7,200 crystal diodes
 - 1,500 relays
 - 70,000 resistors
 - 10,000 capacitors
- Consumed 150 kW of power
- Took up 72 m²
- Weighted 27 tons
- Suffered a failure on average every 6 hours

Electrical Numerical Integrator and Calculator

Glen Beck and Betty Snyder program the ENIAC in BRL building 328. (Picture: U.S. Army)

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

The First Transistor was Created in 1947

- Used germanium
- Created by a team lead by William Shockley at Bell Labs
- Shockley later shared the Noble prize in physics
- Shockley semiconductors was founded in Palo Alto in 1955
- In 1957 Bob Noyce, Gordon Moore, and 6 others ("Traitorous Eight") leave to found Fairchild semiconductor

The First Integrated Circuit was Created in 1959

- Proposed independently by Bob Noyce at Fairchild and Jack Kilby at Texas Instruments
- In 1968 Noyce and Moore leave Fairchild to found Intel
- Contained a single transistor and supporting components

The first working integrated circuit (1.6 × 11.1 mm) Picture: TI

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

Intel Created the First Commercial Microprocessor

- Introduced the 4004 in 1971, contained 2,300 transistors
- Had roughly the same processing power as ENIAC

Intel founders (circa 1978) Picture: Intel

IBM Introduced its Original PC in 1981

- Used the Intel 8088 processor containing 29,000 transistors
- Used operating system (MS-DOS) designed by Microsoft

Intel 8088 Picture: Intel

IBM PC Picture: Intel

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

Microprocessor Evolution

- 4004 transistors were 10 µm across
- Pentium 4 transistors are 0.13 µm across
- Human hair is about 100 µm across
- Smaller transistors allow
 - More transistors per chip
 - More processing per clock cycle
 - Faster clock rates
 - Smaller/cheaper chips

Microprocessor Evolution

Picture: Intel

Moore's Law

 "The number of transistors incorporated in a chip will approximately double every 24 months." (1965)

Picture: Intel

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

Computer Components

PC Components

- Microprocessor performs all computations
- Cache fast memory which holds current data and program
- Main memory larger DRAM memory contains more data
- Chipset controls communication between components
- Motherboard circuit board which holds all the above components
- Peripheral cards controls added computer accessories

Memory Hierarchy

Processor-Memory Performance Gap

Source: David Patterson, UC Berkeley

MDSP Project | Intel Lab Moscow Institute of Physics and Technology

Memory Hierarchy Evolution

386

No on-die cache. Level 1 cache on motherboard

486

Level 1 cache on-die. Level 2 cache on motherboard

Pentium

Separate Instruction and Data Caches

Memory Hierarchy Evolution

Microprocessor Architecture

What is Architecture?

- Computer architecture is defined by the instructions a processor can execute
- Programs written for one processor can run on any other processor of the same architecture
- Current architectures include:
 - IA32 (x86)
 - IA64
 - ARM
 - PowerPC
 - SPARC

What are Instructions?

- Instructions are the most basic actions the processor can take:
 - ADD AX, BX Add value AX to BX and store in AX
 - CMP AX, 5 Compare value in AX to 5
 - JE 16 Jump ahead 16 bytes if comparison was equal
- High level programming languages (C, C++, Java) allow many processor instructions to be written simply:

- if (A + B = 5) then... — Jump if sum of A and B is 5

 Every program must be converted to the processor instructions of the computer it will be run on

What is Microarchitecture?

- Microarchitecture is the steps a processor takes to execute a particular set of instructions
- Processors of the same architecture have the same instructions but may carry them out in different ways
- Microarchitecture Features:
 - Cache memory
 - Pipelining
 - Out-of-Order Execution
 - Superscalar Issue

Simplified Microprocessor

Fetch Unit gets the next instruction from the cache.

Decode Unit determines type of instruction.

Instruction and data sent to Execution Unit.

Write Unit stores result.

Sequential Processing (386)

Cycle	1	2	3	4	5	6	7	8	9
Instr ₁	Fetch	Decode	Execute	Write					
Instr ₂					Fetch	Decode	Execute	Write	
Instr ₃									Fetch

Sequential processing works on one instruction at a time

Pipelined Processing (486)

Cycle	1	2	3	4	5	6	7	8	9
Instr ₁	Fetch	Decode	Execute	Write					
Instr ₂		Fetch	Decode	Execute	Write				
Instr ₃			Fetch	Decode	Execute	Write			
Instr ₄				Fetch	Decode	Execute	Write		
Instr ₅					Fetch	Decode	Execute	Write	
Instr ₆						Fetch	Decode	Execute	Write

- Latency elapsed time from start to completion of a particular task
- Throughput how many tasks can be completed per unit of time
- Pipelining only improves throughput
 - Each job still takes 4 cycles to complete
- Real life analogy: Henry Ford's automobile assembly line

In-Order Pipeline (486)

Cycle	1	2	3	4	5	6	7	8	9
Instr ₁	Fetch	Decode	Execute		Write				
Instr ₂		Fetch	Decode	Wait		Execute	Write		
Instr ₃			Fetch	Decode	Wait		Execute	Write	
Instr ₄				Fetch	Decode	Wa	Wait		Write
Instr ₅					Fetch	Decode	W	ait	Execute
Instr ₆						Fetch	Decode Wa		əit

 In-Order execution requires instructions to be executed in the original program order

Out-of-Order Execution (Pentium II)

Cycle	1	2	3	4	5	6	7	8	9
Instr ₁	Fetch	Decode		Execute		Write			
Instr ₂		Fetch	Decode	Wait		Execute	Write		
Instr ₃			Fetch	Decode	Execute	Write			
Instr ₄				Fetch	Decode	Wait	Execute	Write	
Instr ₅					Fetch	Decode	Execute	Write	
Instr ₆						Fetch	Decode	Execute	Write

- Program Order vs Dataflow Order
- Dataflow: data-driven scheduling of events
 - The start of an event should be enabled by the availability of its required input (data dependency)
- Real life analogy: taking tests work on the questions you know first

Superscalar Issue (Pentium)

Cycle	1	2	3	4	5	6	7	8	9
Instr ₁	Fetch	Decode		Execute		Write			
Instr ₂	Fetch	Decode		Wait		Execute	Write		
Instr ₃		Fetch	Decode	Execute	Write				
Instr ₄		Fetch	Decode		Wait		Execute	Write	
Instr ₅			Fetch	Decode	Execute	Write			
Instr ₆			Fetch	Decode	Execute	Write			
Instr ₇				Fetch	Decode	Execute	Write		
Instr ₈				Fetch	Decode	Execute	Write		

 Superscalar issue allows multiple instructions to be issued at the same time

Microarchitecture and Performance

- Performance is measured by how long a processor takes to run a program
- Time is reduced by increasing Instructions Per Cycle (IPC) and clock rate
- Microarchitecture affects IPC and clock rate:
 - More pipe stages
 - Less work in each cycle means better clock rate
 - More dependencies means worse IPC
 - Superscalar Issue and Out-of-Order Execution
 - Parallel work means better IPC
 - More complexity can mean worse clock rate

Measuring Processor Performance

- Clock Rate
 - Simplest but not especially accurate
- Instructions Per Cycle (IPC)
 - Not meaningful without clock rate
 - Varies from program to program
- SPEC Performance
 - Standard Performance Evaluation Corporation
 - Tests PCs using benchmark suite of programs
 - SPECint: Integer intensive programs
 - SPECfp: Floating point intensive programs
- TPC Performance
 - Transaction Performance Council
 - Tests servers and workstations

Acknowledgements

- These slides contain material developed and copyright by:
 - Grant McFarland (Intel)
 - Mark Louis (Intel)
 - Arvind (MIT)
 - Joel Emer (Intel/MIT)

