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Agenda 

• Review 

– Instruction set architecture 

– Basic tools for computer architects  

• Amdahl's law 

• Pipelining 

– Ideal pipeline 

– Cost-performance trade-off 

– Dependencies 

– Hazards, interlocks & stalls 

– Forwarding 

– Limits of simple pipeline 
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Instruction Set Architecture 
 

•  ISA is the hardware/software interface 

– Defines set of programmer visible state 

– Defines instruction format (bit encoding) and instruction semantics 

– Examples: MIPS, x86, IBM 360, JVM 

•  Many possible implementations of one ISA 

– 360 implementations: model 30 (c. 1964), z10 (c. 2008) 

– x86 implementations: 8086, 286, 386, 486, Pentium, Pentium Pro, 

Pentium 4, Core 2, Core i7, AMD Athlon, Transmeta Crusoe 

– MIPS implementations: R2000, R4000, R10000, R18K, … 

– JVM: HotSpot, PicoJava, ARM Jazelle, ... 
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Basic Tools for Computer Architects 
 

• Amdahl's law 

• Pipelining 

• Out-of-order execution 

• Critical path 

• Speculation 

• Locality 

• Important metrics 

– Performance 

– Power/energy 

– Cost 

– Complexity 
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Amdahl's Law 
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Amdahl’s Law: Definition

• Speedup = Timewithout enhancement / Timewith enhancement 

• Suppose an enhancement speeds up a fraction f  

of a task by a factor of S 

 

 

 

 

 

 

 

 

• We should concentrate efforts on improving frequently occurring 
events or frequently used mechanisms

1 ‒ f f 

1 ‒ f f / S 
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Amdahl’s Law: Example

• New processor 10 times faster 

• Input-output is a bottleneck 

– 60% of time we wait 

 

• Let’s calculate 

 

 

 

 

• Its human nature to be attracted by 10× faster 

– Keeping in perspective its just 1.6× faster 

 



Moscow Institute of Physics and Technology 9 

MDSP Project | Intel Lab 

 

 

 

 

 

Pipelining 
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A Generic 4-stage Processor Pipeline 

 

Instruction 

Fetch Unit gets  
the next instruction from the cache. 

Decode Unit determines  
type of instruction. 

Write Unit stores result. 

Instruction and data sent to 
Execution Unit. 

Fetch Decode Execute Write 

Fetch 

L2 Cache 

Floating  

Point  

Unit 

Multimedia 

Unit 

Integer Unit 

Decode 

Write 

Instruction Fetch Decode Read Execute Memory Write 
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Pipeline: Steady State 

 
Cycle 1 2 3 4 5 6 7 8 9 

Instr1 Fetch Decode Read Execute Memory Write 

Instr2 Fetch Decode Read Execute Memory Write 

Instr3 Fetch Decode Read Execute Memory Write 

Instr4 Fetch Decode Read Execute Memory Write 

Instr5 Fetch Decode Read Execute Memory 

Instr6 Fetch Decode Read Execute 

• Latency — elapsed time from start to completion of a particular task 

• Throughput — how many tasks can be completed per unit of time 

• Pipelining only improves throughput 

– Each job still takes 4 cycles to complete 

• Real life analogy: Henry Ford’s automobile assembly line 



Moscow Institute of Physics and Technology 12 

MDSP Project | Intel Lab 

Pipelining Illustrated 

L 

L 

L 

n Gate Delay 

n/2 Gate Delay 

n/3 Gate  
Delay 

L n/2 Gate Delay 

L 
n/3 Gate  

Delay 
L 

n/3 Gate  
Delay 

TP ~ 1/n 

TP ~ 2/n 

TP ~ 3/n 
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Pipelining Performance Model 

• Starting from an unpipelined 
version with propagation delay T 

and TP = 1/T 

 

 

 

 

where 

• S — delay through latch and 

overhead 

T 

T/k 

S 

T/k 

S 

Unpipelined k-stage 
pipelined 

… 



Moscow Institute of Physics and Technology 14 

MDSP Project | Intel Lab 

Hardware Cost Model 

• Starting from an unpipelined 
version with hardware cost G 

 

 

where 

• L — cost of adding each latch G 

G/k 

L 

G/k 

L 

Unpipelined k-stage 
pipelined 

… 
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Cost/Performance Trade-off 
[Peter M. Kogge, 1981] 
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Pipelining Idealism 
 

• Uniform suboperations 

– The operation to be pipelined can be evenly partitioned  

into uniformlatency suboperations 

• Repetition of identical operations 

– The same operations are to be performed repeatedly  

on a large number of different inputs 

• Repetition of independent operations 

– All the repetitions of the same operation are mutually independent 

– Good example: automobile assembly line 
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Pipelining Reality 

• Uniform suboperations... NOT! ⇒ Balance pipeline stages 

– Stage quantization to yield balanced stages 

– Minimize internal fragmentation (some waiting stages) 

• Identical operations... NOT! ⇒ Unify instruction types 

– Coalescing instruction types into one “multi-function” pipe 

– Minimize external fragmentation (some idling stages) 

• Independent operations... NOT! ⇒ Resolve dependencies 

– Inter-instruction dependency detection and resolution 

– Minimize performance lose 
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Hazards, Interlocks, and Stalls 

• Pipeline hazards 

– Potential violations of program dependences 

– Must ensure program dependences are not violated 

• Hazard resolution 

– Static Method: performed at compiled time in software 

– Dynamic Method: performed at run time using hardware 

– Stall 

– Flush 

– Forward 

• Pipeline interlock 

– Hardware mechanisms for dynamic hazard resolution 

– Must detect and enforce dependences at run time 
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Dependencies & Pipeline Hazards 
 

• Data dependence (register or memory) 

– True dependence (RAW) 

– Instruction must wait for all required input operands 

– Anti-dependence (WAR) 

– Later write must not clobber a still-pending earlier read 

– Output dependence (WAW) 

– Earlier write must not clobber an already-finished later write 

• Control dependence 

– A “data dependency” on the instruction pointer 

– Conditional branches cause uncertainty to instruction sequencing 

• Resource conflicts 

– Two instructions need the same device  
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Example: Quick Sort for MIPS 
 

# for (;(j<high)&&(array[j]<array[low]);++j); 

# $10 = j; $9 = high; $6 = array; $8 = low 
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Example: Quick Sort for MIPS 
 

# for (;(j<high)&&(array[j]<array[low]);++j); 

# $10 = j; $9 = high; $6 = array; $8 = low 

 

              bge $10, $9, L2 

              mul $15, $10, 4 

              addu $24, $6, $15 

              lw  $25, 0($24) 

              mul $13, $8, 4 

              addu $14, $6, $13 

              lw  $15, 0($14) 

              bge $25, $15, L2 

L1: 

              addu $10, $10,  1 

              …  

L2: 

              addu $11, $11,  -1 
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Pipeline: Data Hazards 

 
Cycle 1 2 3 4 5 6 7 8 9 

Instr1 Fetch Decode Read Execute Memory Write 

Instr2 Fetch Decode Read Execute Memory Write 

Instr3 Fetch Decode Read Execute Memory Write 

Instr4 Fetch Decode Read Execute Memory Write 

Instr5 Fetch Decode Read Execute Memory 

Instr6 Fetch Decode Read Execute 

• Instr2: _ → rk 

• Instr3: rk → _ 

 

• How long should we stall for? 
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Pipeline: Stall on Data Hazard 

 
Cycle 1 2 3 4 5 6 7 8 9 

Instr1 Fetch Decode Read Execute Memory Write 

Instr2 Fetch Decode Read Execute Memory Write 

Instr3 Fetch Decode Stalled Read Execute 

Instr4 Fetch Stalled Decode Read 

Instr5 Stalled Fetch Decode 

Instr6 

• Instr2: _ → rk 

• Bubble 

• Bubble 

• Bubble 

• Instr3: rk → _ 

• Make the younger instruction wait until the 
hazard has passed: 
– Stop all up-stream stages 

– Drain all down-stream stages 
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Pipeline: Forwarding 

Cycle 1 2 3 4 5 6 7 8 9 

Instr1 Fetch Decode Read Execute Memory Write 

Instr2 Fetch Decode Read Execute Memory Write 

Instr3 Fetch Decode Read Execute Memory Write 

Instr4 Fetch Decode Read Execute Memory Write 

Instr5 Fetch Decode Read Execute Memory 

Instr6 Fetch Decode Read Execute 
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Limitations of Simple Pipelined Processors  
(aka Scalar Processors) 

• Upper bound on scalar pipeline throughput 

– Limited by IPC = 1 

• Inefficiencies of very deep pipelines 

– Clocking overheads 

– Longer hazards and stalls 

• Performance lost due to in-order pipeline 

– Unnecessary stalls 

• Inefficient unification Into single pipeline 

– Long latency for each instruction 

– Hazards and associated stalls 
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Limitations of Deeper Pipelines 

T 

T/k 

S 

T/k 

S 

Unpipelined k-stage 
pipelined 

… (Code size) (Cycle) (CPI) 

? 

Eventually  
limited by S 
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Put it All Together: Limits to Deeper Pipelines 

Source: Ed Grochowski, 1997 
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