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Agenda 

• Review 

– Tomasulo algorithm vs. Scoreboard 

– Effectiveness of Tomasulo algorithm 

• Advanced superscalars 

– Explicit register renaming 

– Precise exceptions 

– Speculative execution 

– Speculative loads/stores 
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Review 
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Tomasulo Algorithm vs. Scoreboard 
 

• Instruction status 

 

 

 

 

 

 

• Why take longer on scoreboard/6600? 

– Structural hazards 

– Lack of forwarding  

 
 

Instr D S1 S2 

LD F6 34+ R2 

LD F2 45+ R3 

MULTD F0 F2 F4 

SUBD F8 F6 F2 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Issue Write Result 

1 4 

2 5 

3 16 

4 8 

5 57 

6 11 

Issue Write Result 

1 4 

5 8 

6 20 

7 12 

8 62 

13 22 
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Effectiveness of Tomasulo Algorithm 

• Register renaming 

– Eliminate WAR and WAW dependences without stalling 

– Implicit: space in register file may or may not be used by results! 

• Dynamic scheduling 

– Track & resolve true-data dependences (RAW) 

– Scheduling hardware 

– Instruction window, reservation stations, common data bus 

• Was first implemented in 1969 in IBM 360/91 

– Did not show up in the subsequent models until mid-nineties 

– Why? 

– 1. Effective on a very small class of programs 

– 2. Did not address the memory latency problem  

– 3. Made exceptions imprecise 
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Explicit Register Renaming 
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Explicit Register Renaming 
 

• Tomasulo provides implicit register renaming 

– User registers renamed to reservation station tags 

• Explicit register renaming 

– Use physical register file larger than specified by ISA 

– Keep a translation table 

– When register is written, replace table entry with new register 

– Physical register becomes free when not being used by any instructions 

– Pipeline can be exactly like “standard” pipeline 

• Advantages 

– Removes all WAR and WAW hazards 

– Allows data to be fetched from a single register file 

– Like Tomasulo, good for allowing full out-of-order retirement 

– Makes speculative execution and precise exceptions easier 
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Register Renaming Implementation 
 

• Renaming buffer organization (how are registers stored) 

– Unified register file  

– Registers change role architecture to renamed 

– MIPS R10K, Alpha 21264 

– Split register file (ARF + RRF) 

– Holds new values until they are committed to ARF 

– Extra data transfer 

– PA 8500, PPC 620 

– Renaming in ROB 

– Pentium III 

• Register mapping (how do I find the register I am looking for) 

– Allocation, de-allocation, tracking 

• Number of renaming registers, read/write ports? 
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Summary 

• Reservations stations 

– Renaming to larger set of registers + buffering source operands 

– Prevents registers as bottleneck 

– Avoids WAR and WAW hazards of scoreboard 

– Allows loop unrolling in HW 

• Explicit register renaming 

– All registers concentrated in single register file 

– Can utilize bypass network that looks more like 5-stage pipeline 

– Introduces a register-allocation problem 

– Need to handle branch misprediction and precise exceptions differently  

– Ultimately makes things simpler 
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Precise Exceptions 
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Classification of Exceptions 

• Traps 

– Relevant to the current process 

– Faults, arithmetic traps, and synchronous traps 

– Invoke software on behalf of the currently executing process 

• Interrupts 

– Caused by asynchronous, outside events 

– I/O devices requiring service (keyboard, disk, network) 

– Clock interrupts (real time scheduling) 

• Machine checks 

– Caused by serious hardware failure 

– Not always restartable 

– Indicate bad things (non-recoverable ECC error, power outage) 
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Why are Precise Exceptions Desirable? 

• Exception is precise if there is a single instruction for which: 

– All instructions before have committed their state 

– No following instructions have modified any state 

– Including the interrupting instruction 

• Many types of interrupts/exceptions need to be restartable 

– Easier to figure out what actually happened 

– TLB fault: need to fix translation, then restart load/store 

– IEEE gradual underflow, illegal operation, etc. 

– Restartability doesn’t require preciseness 

– However, preciseness makes it a lot easier to restart 

• Simplify the task of operating system a lot 

– Less state needs to be saved away if unloading process 

– Quick to restart (making for fast interrupts) 
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How to Make Exceptions Precise 

• Both scoreboard and Tomasulo algorithm have 

– In-order issue 

– Out-of-order execution 

– Out-of-order completion 

• Need way to resynchronize execution with instruction stream 

– Easiest way is with in-order completion (reorder buffer) 

– Other techniques 

– Future file 

– History buffer 
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Reorder Buffer 

• Idea 

– Allow instructions to execute out-of-order 

– Reorder them to complete in-order 

• On issue 

– Reserve slot at tail of ROB 

– Record destination register, instruction pointer 

• When execution is done 

– Deposit result in ROB slot 

– Mark exception state 

• Write back 

– Get head of ROB, check exception, handle 

– Write register value, or commit the store 
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Dynamic Scheduling in Modern Superscalar 
(Explicit register renaming + Reservation stations + ROB) 

 
 
 

 

 

 

 

 

 

 

 
 

Branch Integer Integer Floating point 

Register file Rename RF Dispatch 

Complete 

Load / Store 

Dispatch 
buffer 

Reservation 
stations 

Reorder buffer 
(Completion buffer) 

Register write back 

Allocate reorder buffer entries 
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Steps in Dynamic Scheduling (1) 

• Fetch instruction (in-order, speculative) 

– I-Cache access 

– Predictions 

– Insert in a fetch buffer 

• Dispatch (in-order, speculative) 

– Read operands from Register File (ARF) and/or Rename Register File 

– RRF may return a ready value or a tag for a physical location 

– Allocate new RRF entry (rename destination register) for destination 

– Allocate reorder buffer (ROB) entry 

– Advance instruction to appropriate entry in the scheduling hardware 

– Typical name for centralized: issue queue or instruction window 

– Typical name for distributed: reservation stations 
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Steps in Dynamic Scheduling (2) 

• Issue & execute (out-of-order, speculative) 

– Scheduler entry monitors result bus for rename register tag(s) 

– Find out if source operand becomes ready 

– When all operands ready, issue instruction into Functional Unit (FU) 

and deallocate scheduler entry (wake-up & select) 

– Subject to structural hazards & priorities 

– When execution finishes, broadcast result to waiting scheduler entries 

and RRF entry 

• Retire/commit (in-order, non-speculative) 

– When ready to commit result into “in-order” state (head of the ROB) 

– Update architectural register from RRF entry, deallocate RRF entry,  

– If it is a store instruction, advance it to Store Buffer 

– Deallocate ROB entry 

– Update predictors based on instruction result 
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Speculative Execution 
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Prediction is Essential for Good Performance 

• We already discussed predicting branches 

• However, architects are now predicting everything 

– Data dependencies 

– Actual data 

– Results of groups of instructions 

• Why does prediction work? 

– Underlying algorithm has regularities 

– Data that is being operated on has regularities 

– Instruction sequence has redundancies 

– Artifacts of way that humans/compilers think about problems 
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Speculative Execution Recipe 

Maintain both old and new values on 
updates to architectural state 

Proceed ahead despite 
unresolved dependencies 

In event of mis-speculation 
dispose of all new values, 

restore old values and  
re-execute from point 
before mis-speculation 

After sure that there was  
no mis-speculation  

and there will be no more 
uses of the old values  
then discard old values 
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We can Use Two Value Management Strategies 

• Greedy update 

– Update value in place 

– Maintain a log of old values to use for recovery 

– History file 

– Future file 

• Lazy update 

– Buffer new value leaving old value in place 

– Old value can be used after new value is generated 

– Simplified recovery 

– Replace old value only at commit time 

– Reorder buffer 
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Reorder Buffer + Speculation 

• Idea 

– Issue branch into ROB, mark with prediction 

– Branch must resolve before leaving ROB 

– Fetch and issue predicted instructions speculatively 

– Resolve correct 

– Commit following instructions  

– Resolve incorrect 

– Mark following instructions in ROB as invalid 

– Let them clear 

• Forwarding? 

– Forward uncommitted results to later uncommitted instructions 

– Match source registers against all destination registers in ROB 

– Forward last (once available) 
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Speculative Loads/Stores 
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Memory Dependencies are Harder to Handle 

• So far, we used register numbers to determine dependencies 

• What about load/stores? 
– Memory address are much wider than register names 

– Memory dependencies are not static 

– Memory instructions take longer to execute than other instructions 

• Terminology 

– Memory aliasing: two memory references the same memory location 

– Memory disambiguation: determining whether two memory references 

will alias or not 

• Steps in load/store processing 

– Generate address (not fully encoded by instruction) 

– Translate address (virtual ⇒ physical) 

– Execute access (actual load/store) 
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Problem 

• Stores should not permanently change the architectural 

memory state until it is committed 

– Just like register updates 

• Data update policy: greedy or lazy? 

– Lazy: keep queue of stores, in program order 

– Watch for position of new loads relative to existing stores 

– Typically, this is a different buffer than ROB! 

– Store buffer 

– Could be ROB (has right properties), but too expensive 

• Handling of store-to-load data hazards 

– Stall? 

– Bypass? 

– Speculate? 
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Load/Stores Cannot Follow Register Dataflow 

 

 

 

 

 

 

 

 

 

 

 

 

Branch Integer Integer Floating point 

Register file Rename RF Dispatch 

Complete 

Load / Store 

Dispatch 
buffer 

Reservation 
stations 

Reorder buffer 
(Completion buffer) 

Register write back 

Allocate reorder buffer entries 

Retire 

Store 
buffer 

Data cache 

Memory update 

Memory access / 
Address generation 

Allocate store buffer entries 
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Total Ordering of Loads/Stores 
(The Simple Solution) 

• Keep all loads and stores totally in order 

– Allocate store buffer entry at dispatch (in-order) 

– When register value available, issue & calculate address (“finished”) 

– When all previous instructions retire, store considered “completed” 

– Store buffer split into “finished” and “completed” part though pointers 

– Completed stores go to memory in order 

• Loads and stores can execute out-of-order to other 

instructions while obeying register data-dependence 

– Loads remember the store buffer entry of the last store before them 

– A load can issues when both 

– Address register value is available 

– All older stores are considered “completed” 
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Total Ordering of Loads/Stores 
(The Simple Solution) 

 

 

 

 

 

 

 

 

 

 

• Performance implications of this model? 

– Consider a simple vector add example: for (i=…) a[i]=b[i]+c[i]; 
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Dynamic Reordering of Load/Stores 
(The Better Solution) 

 
• We cannot execute early or reorder store operations 

– Since they must commit in order 

– Therefore, we cannot have WAW or WAR dependencies 

• Allow out-of-order execution of loads 
– Can execute load before store, if addresses known and not alias (RAW) 

– Each load address compared with all previous uncommitted stores 
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data directly to 
the load 
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Load Bypassing 

 

 

 

 

 

 

 

 

 

 

• Priority to loads over stores 

– +10% to 20% IPC over total ordering 
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Load Forwarding 

 

 

 

 

 

 

 

 

 

 

 

• Which store do we forward from? 
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Out of Order & Speculative Load Issue 
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