
Moscow Institute of Physics and Technology

MDSP Project | Intel Lab

Advanced Superscalars

Yuri Baida

yuri.baida@gmail.com
yuriy.v.baida@intel.com

March 19, 2011

mailto:Yuri.baida@gmail.com
mailto:Yuriy.v.baida@gmail.com

Moscow Institute of Physics and Technology 2

MDSP Project | Intel Lab

Agenda

• Review

– Tomasulo algorithm vs. Scoreboard

– Effectiveness of Tomasulo algorithm

• Advanced superscalars

– Explicit register renaming

– Precise exceptions

– Speculative execution

– Speculative loads/stores

Moscow Institute of Physics and Technology 3

MDSP Project | Intel Lab

Review

Moscow Institute of Physics and Technology 4

MDSP Project | Intel Lab

Tomasulo Algorithm vs. Scoreboard

• Instruction status

• Why take longer on scoreboard/6600?

– Structural hazards

– Lack of forwarding

Instr D S1 S2

LD F6 34+ R2

LD F2 45+ R3

MULTD F0 F2 F4

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Issue Write Result

1 4

2 5

3 16

4 8

5 57

6 11

Issue Write Result

1 4

5 8

6 20

7 12

8 62

13 22

Moscow Institute of Physics and Technology 5

MDSP Project | Intel Lab

Effectiveness of Tomasulo Algorithm

• Register renaming

– Eliminate WAR and WAW dependences without stalling

– Implicit: space in register file may or may not be used by results!

• Dynamic scheduling

– Track & resolve true-data dependences (RAW)

– Scheduling hardware

– Instruction window, reservation stations, common data bus

• Was first implemented in 1969 in IBM 360/91

– Did not show up in the subsequent models until mid-nineties

– Why?

– 1. Effective on a very small class of programs

– 2. Did not address the memory latency problem

– 3. Made exceptions imprecise

Moscow Institute of Physics and Technology 6

MDSP Project | Intel Lab

Explicit Register Renaming

Moscow Institute of Physics and Technology 7

MDSP Project | Intel Lab

Explicit Register Renaming

• Tomasulo provides implicit register renaming

– User registers renamed to reservation station tags

• Explicit register renaming

– Use physical register file larger than specified by ISA

– Keep a translation table

– When register is written, replace table entry with new register

– Physical register becomes free when not being used by any instructions

– Pipeline can be exactly like “standard” pipeline

• Advantages

– Removes all WAR and WAW hazards

– Allows data to be fetched from a single register file

– Like Tomasulo, good for allowing full out-of-order retirement

– Makes speculative execution and precise exceptions easier

Moscow Institute of Physics and Technology 8

MDSP Project | Intel Lab

Register Renaming Implementation

• Renaming buffer organization (how are registers stored)

– Unified register file

– Registers change role architecture to renamed

– MIPS R10K, Alpha 21264

– Split register file (ARF + RRF)

– Holds new values until they are committed to ARF

– Extra data transfer

– PA 8500, PPC 620

– Renaming in ROB

– Pentium III

• Register mapping (how do I find the register I am looking for)

– Allocation, de-allocation, tracking

• Number of renaming registers, read/write ports?

Moscow Institute of Physics and Technology 9

MDSP Project | Intel Lab

Summary

• Reservations stations

– Renaming to larger set of registers + buffering source operands

– Prevents registers as bottleneck

– Avoids WAR and WAW hazards of scoreboard

– Allows loop unrolling in HW

• Explicit register renaming

– All registers concentrated in single register file

– Can utilize bypass network that looks more like 5-stage pipeline

– Introduces a register-allocation problem

– Need to handle branch misprediction and precise exceptions differently

– Ultimately makes things simpler

Moscow Institute of Physics and Technology 10

MDSP Project | Intel Lab

Precise Exceptions

Moscow Institute of Physics and Technology 11

MDSP Project | Intel Lab

Classification of Exceptions

• Traps

– Relevant to the current process

– Faults, arithmetic traps, and synchronous traps

– Invoke software on behalf of the currently executing process

• Interrupts

– Caused by asynchronous, outside events

– I/O devices requiring service (keyboard, disk, network)

– Clock interrupts (real time scheduling)

• Machine checks

– Caused by serious hardware failure

– Not always restartable

– Indicate bad things (non-recoverable ECC error, power outage)

Moscow Institute of Physics and Technology 12

MDSP Project | Intel Lab

Why are Precise Exceptions Desirable?

• Exception is precise if there is a single instruction for which:

– All instructions before have committed their state

– No following instructions have modified any state

– Including the interrupting instruction

• Many types of interrupts/exceptions need to be restartable

– Easier to figure out what actually happened

– TLB fault: need to fix translation, then restart load/store

– IEEE gradual underflow, illegal operation, etc.

– Restartability doesn’t require preciseness

– However, preciseness makes it a lot easier to restart

• Simplify the task of operating system a lot

– Less state needs to be saved away if unloading process

– Quick to restart (making for fast interrupts)

Moscow Institute of Physics and Technology 13

MDSP Project | Intel Lab

How to Make Exceptions Precise

• Both scoreboard and Tomasulo algorithm have

– In-order issue

– Out-of-order execution

– Out-of-order completion

• Need way to resynchronize execution with instruction stream

– Easiest way is with in-order completion (reorder buffer)

– Other techniques

– Future file

– History buffer

Moscow Institute of Physics and Technology 14

MDSP Project | Intel Lab

Reorder Buffer

• Idea

– Allow instructions to execute out-of-order

– Reorder them to complete in-order

• On issue

– Reserve slot at tail of ROB

– Record destination register, instruction pointer

• When execution is done

– Deposit result in ROB slot

– Mark exception state

• Write back

– Get head of ROB, check exception, handle

– Write register value, or commit the store

Moscow Institute of Physics and Technology 15

MDSP Project | Intel Lab

Dynamic Scheduling in Modern Superscalar
(Explicit register renaming + Reservation stations + ROB)

Branch Integer Integer Floating point

Register file Rename RF Dispatch

Complete

Load / Store

Dispatch
buffer

Reservation
stations

Reorder buffer
(Completion buffer)

Register write back

Allocate reorder buffer entries

Moscow Institute of Physics and Technology 16

MDSP Project | Intel Lab

Steps in Dynamic Scheduling (1)

• Fetch instruction (in-order, speculative)

– I-Cache access

– Predictions

– Insert in a fetch buffer

• Dispatch (in-order, speculative)

– Read operands from Register File (ARF) and/or Rename Register File

– RRF may return a ready value or a tag for a physical location

– Allocate new RRF entry (rename destination register) for destination

– Allocate reorder buffer (ROB) entry

– Advance instruction to appropriate entry in the scheduling hardware

– Typical name for centralized: issue queue or instruction window

– Typical name for distributed: reservation stations

Moscow Institute of Physics and Technology 17

MDSP Project | Intel Lab

Steps in Dynamic Scheduling (2)

• Issue & execute (out-of-order, speculative)

– Scheduler entry monitors result bus for rename register tag(s)

– Find out if source operand becomes ready

– When all operands ready, issue instruction into Functional Unit (FU)

and deallocate scheduler entry (wake-up & select)

– Subject to structural hazards & priorities

– When execution finishes, broadcast result to waiting scheduler entries

and RRF entry

• Retire/commit (in-order, non-speculative)

– When ready to commit result into “in-order” state (head of the ROB)

– Update architectural register from RRF entry, deallocate RRF entry,

– If it is a store instruction, advance it to Store Buffer

– Deallocate ROB entry

– Update predictors based on instruction result

Moscow Institute of Physics and Technology 18

MDSP Project | Intel Lab

Speculative Execution

Moscow Institute of Physics and Technology 19

MDSP Project | Intel Lab

Prediction is Essential for Good Performance

• We already discussed predicting branches

• However, architects are now predicting everything

– Data dependencies

– Actual data

– Results of groups of instructions

• Why does prediction work?

– Underlying algorithm has regularities

– Data that is being operated on has regularities

– Instruction sequence has redundancies

– Artifacts of way that humans/compilers think about problems

Moscow Institute of Physics and Technology 20

MDSP Project | Intel Lab

Speculative Execution Recipe

Maintain both old and new values on
updates to architectural state

Proceed ahead despite
unresolved dependencies

In event of mis-speculation
dispose of all new values,

restore old values and
re-execute from point
before mis-speculation

After sure that there was
no mis-speculation

and there will be no more
uses of the old values
then discard old values

Moscow Institute of Physics and Technology 21

MDSP Project | Intel Lab

We can Use Two Value Management Strategies

• Greedy update

– Update value in place

– Maintain a log of old values to use for recovery

– History file

– Future file

• Lazy update

– Buffer new value leaving old value in place

– Old value can be used after new value is generated

– Simplified recovery

– Replace old value only at commit time

– Reorder buffer

Moscow Institute of Physics and Technology 22

MDSP Project | Intel Lab

Reorder Buffer + Speculation

• Idea

– Issue branch into ROB, mark with prediction

– Branch must resolve before leaving ROB

– Fetch and issue predicted instructions speculatively

– Resolve correct

– Commit following instructions

– Resolve incorrect

– Mark following instructions in ROB as invalid

– Let them clear

• Forwarding?

– Forward uncommitted results to later uncommitted instructions

– Match source registers against all destination registers in ROB

– Forward last (once available)

Moscow Institute of Physics and Technology 23

MDSP Project | Intel Lab

Speculative Loads/Stores

Moscow Institute of Physics and Technology 24

MDSP Project | Intel Lab

Memory Dependencies are Harder to Handle

• So far, we used register numbers to determine dependencies

• What about load/stores?
– Memory address are much wider than register names

– Memory dependencies are not static

– Memory instructions take longer to execute than other instructions

• Terminology

– Memory aliasing: two memory references the same memory location

– Memory disambiguation: determining whether two memory references

will alias or not

• Steps in load/store processing

– Generate address (not fully encoded by instruction)

– Translate address (virtual ⇒ physical)

– Execute access (actual load/store)

Moscow Institute of Physics and Technology 25

MDSP Project | Intel Lab

Problem

• Stores should not permanently change the architectural

memory state until it is committed

– Just like register updates

• Data update policy: greedy or lazy?

– Lazy: keep queue of stores, in program order

– Watch for position of new loads relative to existing stores

– Typically, this is a different buffer than ROB!

– Store buffer

– Could be ROB (has right properties), but too expensive

• Handling of store-to-load data hazards

– Stall?

– Bypass?

– Speculate?

Moscow Institute of Physics and Technology 26

MDSP Project | Intel Lab

Load/Stores Cannot Follow Register Dataflow

Branch Integer Integer Floating point

Register file Rename RF Dispatch

Complete

Load / Store

Dispatch
buffer

Reservation
stations

Reorder buffer
(Completion buffer)

Register write back

Allocate reorder buffer entries

Retire

Store
buffer

Data cache

Memory update

Memory access /
Address generation

Allocate store buffer entries

Moscow Institute of Physics and Technology 27

MDSP Project | Intel Lab

Total Ordering of Loads/Stores
(The Simple Solution)

• Keep all loads and stores totally in order

– Allocate store buffer entry at dispatch (in-order)

– When register value available, issue & calculate address (“finished”)

– When all previous instructions retire, store considered “completed”

– Store buffer split into “finished” and “completed” part though pointers

– Completed stores go to memory in order

• Loads and stores can execute out-of-order to other

instructions while obeying register data-dependence

– Loads remember the store buffer entry of the last store before them

– A load can issues when both

– Address register value is available

– All older stores are considered “completed”

Moscow Institute of Physics and Technology 28

MDSP Project | Intel Lab

Total Ordering of Loads/Stores
(The Simple Solution)

• Performance implications of this model?

– Consider a simple vector add example: for (i=…) a[i]=b[i]+c[i];

Store
buffer

Memory update

Finished

Finished

Finished

Completed

Completed

Completed

Data cache

Address generation

Address translation

Address generation

Address translation

Memory access

Store
unit

Reservation
station

Address

Data

Load
unit

Moscow Institute of Physics and Technology 29

MDSP Project | Intel Lab

Dynamic Reordering of Load/Stores
(The Better Solution)

• We cannot execute early or reorder store operations

– Since they must commit in order

– Therefore, we cannot have WAW or WAR dependencies

• Allow out-of-order execution of loads
– Can execute load before store, if addresses known and not alias (RAW)

– Each load address compared with all previous uncommitted stores

Load bypassing

…

Store X

…

Store Y

…

Load Z

…

Load forwarding

…

Store X

…

Store Y

…

Load X

…

Execute load
ahead of the
two stores

Forward the store
data directly to
the load

Moscow Institute of Physics and Technology 30

MDSP Project | Intel Lab

Load Bypassing

• Priority to loads over stores

– +10% to 20% IPC over total ordering

Store
buffer

Memory update
Data cache

Address generation

Address translation

Address generation

Address translation

Memory access

Store
unit

Reservation
station

Address

Data

Load
unit

Data Address

Finished Finished

Finished

Finished

Completed

Completed

Completed

Finished

Finished

Completed

Completed

Completed

If no match, update
destination register

Tag match

Match/no match

Moscow Institute of Physics and Technology 31

MDSP Project | Intel Lab

Load Forwarding

• Which store do we forward from?

Store
buffer

Memory update
Data cache

Address generation

Address translation

Address generation

Address translation

Memory access

Store
unit

Reservation
station

Address

Data

Load
unit

Data Address

Finished

Finished

Finished

Completed

Completed

Completed

Match

If no match, update
destination register

Tag match

Match/no match

If match, forward to
destination register

Moscow Institute of Physics and Technology 32

MDSP Project | Intel Lab

Out of Order & Speculative Load Issue

Store
buffer

Tag match

at store completion

Data cache

Address generation

Address translation

Address generation

Address translation

Memory access

Store
unit

Reservation
station

Address

Data

Load
unit

Data Address

Finished Finished

Finished

Finished

Completed

Completed

Completed

Finished

Finished

Completed

Completed

Completed

Tag match

Match/no match

Data Address

Finished Finished

Finished

Finished

Finished

Finished

Load
buffer

At finish, update
renamed register

If match, flush aliased load
and all trailing instructions

At completion, update
architecture register

Moscow Institute of Physics and Technology 33

MDSP Project | Intel Lab

Acknowledgements

• These slides contain material developed and copyright by:

– Arvind (MIT)

– Joel Emer (Intel/MIT)

– Krste Asanovic (MIT/UC Berkeley)

– Christos Kozyrakis (Stanford University)

