
libelf by Example

Joseph Koshy

January 12, 2010

2

Contents

1 Introduction 7
1.1 Tutorial Overview . 7
1.2 Tutorial Structure . 8

2 Getting Started 11
2.1 Example: Getting started with libelf 11

3 Peering Inside an ELF Object 15
3.1 The Layout of an ELF file . 15
3.2 Example: Reading an ELF executable header 20

4 Examining the Program Header Table 25
4.1 The ELF Program Header Table 25
4.2 Example: Reading a Program Header Table 27

5 Looking at Sections 33
5.1 ELF section handling with libelf 34
5.2 Example: Listing section names 38

6 Creating new ELF objects 43
6.1 Example: Creating an ELF object 43
6.2 The finer points in creating ELF objects 48

7 Processing ar(1) archives 51
7.1 Archive structure . 51
7.2 Example: Stepping through an ar(1) archive 52

8 Conclusion 57
8.1 Further Reading . 57

3

4 CONTENTS

Preface

This tutorial introduces the libelf library being developed at the ElfToolChain
project on SourceForge.Net. It shows how this library can be used to create tools
that can manipulate ELF objects for native and non-native architectures.

The ELF(3)/GELF(3) APIs are discussed, as is handling of ar(1) archives.
The ELF format is discussed to the extent needed to understand the use of the
ELF(3) library.

Knowledge of the C programming language is a pre-requisite.

Legal Notice

Copyright c© 2006–2009 Joseph Koshy. All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Disclaimer

THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

5

http://elftoolchain.sourceforge.net/
http://sourceforge.net/

6 CONTENTS

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this document, and the author and contributors were aware of the trademark
claim, the designations have been followed by the “TM” or the “ R©” symbol.

Chapter 1

Introduction

ELF stands for Extensible Linking Format. It is a format for use by compilers,
linkers, loaders and other tools that manipulate object code.

The ELF specification was released to the public in 1990 as an “open stan-
dard” by a group of vendors. As a result of its ready availability it has been
widely adopted by industry and the open-source community. The ELF stan-
dard supports 32- and 64-bit architectures of both big and little-endian kinds,
and supports features like cross-compilation and dynamic shared libraries. ELF
also supports the special compilation needs of the C++ language. Among the
current set of open-source operating systems, FreeBSD switched to using ELF
as its object format in FreeBSD 3.0 (October 1998).

The libelf library provides an API set (ELF(3) and GELF(3)) for appli-
cation writers to read and write ELF objects with. The library eases the task
of writing cross-tools that can run on one machine architecture and manipulate
ELF objects for another.

Rationale for this tutorial

The ELF(3) and GELF(3) API set is large, with over 80 callable functions. So
the task of getting started with the library can appear daunting at first glance.
This tutorial has been written to provide a gentle introduction to the API set.

Target Audience

This tutorial would be of interest to developers wanting to create ELF processing
tools using the libelf library.

1.1 Tutorial Overview

The tutorial covers the following:

• The basics of the ELF format (as much as is needed to understand how
to use the API set); how the ELF format structures the contents of exe-
cutables, relocatables and shared objects.

7

http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.x86.org/ftp/manuals/tools/elf.pdf

8 CHAPTER 1. INTRODUCTION

• How to get started building applications that use the libelf library.

• The basic abstractions offered by the ELF(3) and GELF(3) APIs—how
the ELF library abstracts out the ELF class and endianness of ELF objects
and allows an application to work with native forms of these objects, while
the library translates to and from the desired target representation behind
the scenes.

• How to use the APIs in the library to look inside an ELF object and
examine its executable header, program header table and its component
sections.

• How to create a new ELF object using the ELF library.

• An introduction to the class-independent GELF(3) interfaces, and when
and where to use them instead of the class-dependent functions in the
ELF(3) API set.

• How to process ar archives using the facilities provided by the library.

1.2 Tutorial Structure

One of the goals of this tutorial is to illustrate how to write programs using
libelf. So we will jump into writing code at the earliest opportunity. As we
progress through the examples, we introduce the concepts necessary to under-
stand what is happening “behind the scenes.”

Chapter 2 on page 11 covers the basics involved in getting started with the
ELF(3) library—how to compile and link an application that uses libelf. We
look at the way a working ELF version number is established by an application,
how a handle to ELF objects are obtained, and how error messages from the
ELF library are reported. The functions used in this section include elf begin,
elf end, elf errmsg, elf errno, elf kind and elf version.

Chapter 3 on page 15 shows how an application can look inside an ELF
object and understand its basic structure. Along the way we will examine
the way the ELF objects are laid out. Other key concepts covered are the
notions of “file representation” and “memory representation” of ELF data types.
New APIs covered include elf getident, elf getphdrnum, elf getshdrnum,
elf getshdrstrndx, gelf getehdr and gelf getclass.

Chapter 4 on page 25 describes the ELF program header table and shows
how an application can retrieve this table from an ELF object. This chapter
introduces the gelf getphdr function.

Chapter 5 on page 33 then looks at how data is stored in ELF sections. A pro-
gram that looks at ELF sections is examined. The Elf Scn and Elf Data data
types used by the library are introduced. The functions covered in this chap-
ter include elf getscn, elf getdata, elf nextscn, elf strptr, and gelf -
getshdr.

Chapter 6 on page 43 looks at how we create ELF objects. We cover the
rules in ordering of the individual API calls when creating ELF objects. We look
at the library’s object layout rules and how an application can choose to over-
ride these. The APIs covered include elf fill, elf32 getshdr, elf32 new-

1.2. TUTORIAL STRUCTURE 9

ehdr, elf32 newphdr, elf flagphdr, elf ndxscn, elf newdata, elf newscn,
and elf update.

The libelf library also assists applications that need to read ar archives.
Chapter 7 on page 51 covers how to use the ELF(3) library to handle ar archives.
This chapter covers the use of the elf getarhdr, elf getarsym, elf next and
elf rand functions.

Chapter 8 on page 57 ends the tutorial with suggestions for further reading.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

Let us dive in and get a taste of programming with libelf.

2.1 Example: Getting started with libelf

Our first program (Program 1, listing 2.1) will open a filename presented to it
on its command line and retrieve the file type as recognized by the ELF library.

This example is covers the basics involved in using libelf; how to compile
a program using libelf, how to initialize the library, how to report errors, and
how to wind up.

Listing 2.1: Program 1
#include <err.h>

#include <fcntl.h>

#include <libelf.h>
1

#include <stdio.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

int

main(int argc , char **argv)

{

int fd;

Elf *e;
2

char *k;

Elf_Kind ek;
3

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
4

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

11

12 CHAPTER 2. GETTING STARTED

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)

err(EX_NOINPUT , "open \%s\" failed", argv [1]);

if ((e = elf_begin(fd, ELF_C_READ
5

, NULL)) == NULL)

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

elf_errmsg (-1));
6

ek = elf_kind(e);
7

switch (ek) {

case ELF_K_AR:

k = "ar(1) archive";

break;

case ELF_K_ELF:

k = "elf object";

break;

case ELF_K_NONE:

k = "data";

break;

default:

k = "unrecognized";

}

(void) printf("%s: %s\n", argv[1], k);

(void) elf_end(e);
8

(void) close(fd);

exit(EX_OK);

}

1 The functions and dataypes that make up the ELF(3) API are declared in
the header libelf.h. This file must be included in every application that
desires to use the libelf library.

2 The ELF(3) library uses an opaque type Elf as a handle for the ELF object
being processed.

4 Before the functions in the library can be invoked, an application must
indicate to the library the version of the ELF specification it is expecting
to use. This is done by the call to elf version.

A call to elf version is mandatory before other functions in the ELF
library can be invoked.

There are multiple version numbers that come into play when an applica-
tion is manipulating an ELF object.

• First, there is the version of the ELF specification (v1) that the ap-
plication understands.

2.1. EXAMPLE: GETTING STARTED WITH LIBELF 13

ELF Object
v2

Application
v1

ELF library
v1, v2

v1 v2

Figure 2.1: ELF versions

• Second, we have the ELF version associated with the ELF object
being processed (v2).

• Third, we have the versions recognized by the libelf library: v1 and
v2. The library may know how to translate between versions v1 and
v2.

In figure 2.1 the application expects to work with ELF specification version
(v1). The ELF object file conforms to ELF specification version (v2). The
library understands both version v1 and v2 of ELF semantics and so is
able to mediate between the application and the ELF object.

In practice, the ELF version has not changed since inception, so the cur-
rent version (EV CURRENT) is 1.

5 The elf begin function takes an open file descriptor and converts it an Elf
handle according to the command specified.

The second parameter to elf begin can be one of ‘ELF C READ’ for opening
an ELF object for reading, ‘ELF C WRITE’ for creating a new ELF object,
or ‘ELF C RDWR’ for opening an ELF object for updates. The mode with
which file descriptor fd was opened with must be consistent with the this
parameter.

The third parameter to elf begin is only used when processing ar ar-
chives. We will look at ar archive processing in chapter 7 on page 51.

6 When the ELF library encounters an error, it records an error number in an
internal location. This error number may be retrieved using the elf errno
function.

The elf errmsg function returns a human readable string describing the
error number passed in. As a programming convenience, a value of -1
denotes the current error number.

3 7 The ELF library can operate on ar archives and ELF objects. The
function elf kind returns the kind of object associated with an Elf han-
dle. The return value of the elf kind function is one of the values defined
by the Elf Kind enumeration in libelf.h.

8 When you are done with a handle, it is good practice to release its resources
using the elf end function.

Now it is time to get something running.
Save the listing in listing 2.1 on page 11 to file prog1.c and then compile

and run it as shown in listing 2.2 on the next page.

14 CHAPTER 2. GETTING STARTED

Listing 2.2: Compiling and running prog1

% cc -o prog1 prog1.c -lelf 1

% ./prog1 prog1 2

prog1: elf object

% ./prog1 /usr/lib/libc.a 3

/usr/lib/libc.a: ar(1) archive

1 The -lelf option to the cc comand informs it to link prog1 against the
libelf library.

2 We invoke prog1 on itself, and it recognizes its own executable as ELF
object. All is well.

3 Here we see that prog1 recognizes an ar archive correctly.

Congratulations! You have created your first ELF handling program using
libelf.

In the next chapter we will look deeper into the ELF format and learn how
to pick an ELF object apart into its component pieces.

Chapter 3

Peering Inside an ELF
Object

Next, we will look inside an ELF object. We will look at how an ELF object
is laid out and we will introduce its major parts, namely the ELF executable
header, the ELF program header table and ELF sections. Along the way we
will look at the way libelf handles non-native objects.

3.1 The Layout of an ELF file

As an object format, ELF supports multiple kinds of objects:

• Compilers generate relocatable objects that contain fragments of machine
code along with the “glue” information needed when combining multiple
such objects to form a final executable.

• Executables are programs that are in a form that an operating system can
launch in a process. The process of forming executables from collections
of relocatable objects is called linking .

• Dynamically loadable objects are those that can be loaded by an executable
after it has started executing. Dynamically loadable shared libraries are
examples of such objects.

An ELF object consists of a mandatory header named the ELF executable
header , followed by optional content in the form of ELF program header table
and zero or more ELF sections (see figure 3.1 on the following page).

• The ELF executable header defines the structure of the rest of the file.
This header is always present in a valid ELF file. It describes the class
of the file (whether 32 bit or 64 bit), the type (whether a relocatable,
executable or shared object), and the byte ordering used (little endian or
big endian). It also describes the overall layout of the ELF object. The
ELF header is described below.

• An optional ELF program header table is present in executable objects
and contains information used by at program load time. The program
header table is described in chapter 4 on page 25.

15

16 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

Figure 3.1: The layout of a typical ELF File

EHDR PHDR SECTION DATA SHDR

ELF Executable Header ELF Section Contents

ELF Program Header Table ELF Section Header Table

• The contents of a relocatable ELF object are contained in ELF sections.
These sections are described by entries in an ELF section header table.
This table has one entry per section present in the file. Chapter 5 on
page 33 describes ELF sections and the section header table in further
detail.

Every ELF object is associated with three parameters:

• Its class denotes whether it is a 32 bit ELF object (ELFCLASS32) or a 64
bit (ELFCLASS64) one.

• Its endianness denotes whether it is using little-endian (ELFDATA2LSB) or
big-endian addressing (ELFDATA2MSB).

• Finally, each ELF object is associated with a version number as discussed
in chapter 2 on page 11.

These parameters are stored in the ELF executable header. Let us now take
a closer look at the ELF executable header.

The ELF Executable Header

Table 3.1 on the facing page describes the layout of an ELF executable header
using a “C-like” notation.

1 The first 16 bytes (the e ident array) contain values that determine the
ELF class, version and endianness of the rest of the file. See figure 3.2.

Figure 3.2: The e ident array

0x7F

EI
MAG0

’E’

EI
MAG1

’L’

EI
MAG2

’F’

EI
MAG3

EI
CLASS

EI
DATA

EI
VERSION

EI
OSABI

EI
ABIVERSION

...e ident[]:

offsets:

class: 32 or 64 bit

endianness ELF version

desired ABI

3.1. THE LAYOUT OF AN ELF FILE 17

Table 3.1: The ELF Executable Header
32 bit Executable Header 64 bit Executable Header

typedef struct { typedef struct {

1 unsigned char e_ident[16]; unsigned char e_ident[16];

2 uint16_t e_type; uint16_t e_type;

3 uint16_t e_machine; uint16_t e_machine;
uint32_t e_version; uint32_t e_version;
uint32_t e_entry; uint32_t e_entry;

4 uint32_t e_phoff; uint64_t e_phoff;

5 uint32_t e_shoff; uint64_t e_shoff;
uint32_t e_flags; uint32_t e_flags;
uint16_t e_ehsize; uint16_t e_ehsize;
uint16_t e_phentsize; uint16_t e_phentsize;

6 uint16_t e_phnum; uint16_t e_phnum;

7 uint16_t e_shnum; uint16_t e_shnum;

8 uint16_t e_shstrndx; uint16_t e_shstrndx;
} Elf32_Ehdr; } Elf64_Ehdr;

Figure 3.3: The ELF Executable Header and Object Layout

Ehdr Phdr Shdr

e phoff

e shoff

e ehsize
Nphdr * e phentsize Nshdr * e shentsize

The first 4 bytes of an ELF object are always 0x7F, ‘E’, ‘L’ and ‘F’.
The next three bytes specify the class of the ELF object (ELFCLASS32 or
ELFCLASS64), its data ordering (ELFDATA2LSB or ELFDATA2MSB) and the
ELF version the object conforms to. With this information on hand, the
libelf library can then interpret the rest of the ELF executable header
correctly.

2 The e type member determines the type of the ELF object. For example,
it would contain a ‘1’ (ET REL) in a relocatable or ‘3’ (ET DYN) in a shared
object.

3 The e machine member describes the machine architecture this ELF object
is for. Example values are ‘3’ (EM 386) for the Intel R© i386TM architecture
and ‘20’ (EM PPC) for the 32-bit PowerPCTM architecture.

4 5 The ELF executable header also describes the layout of the rest of the
ELF object (Figure 3.3). The e phoff and e shoff fields contain the file

18 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

offsets where the ELF program header table and ELF section header table
reside. These fields are zero if the file does not have a program header table
or section header table respectively. The sizes of these components are
determined by the e phentsize and e shentsize members respectively
in conjunction with the number of entries in these tables.

The ELF executable header describes its own size (in bytes) in field
e ehsize.

6 7 The e phnum and e shnum fields usually contain the number of ELF
program header table entries and section header table entries. Note that
these fields are only 2 bytes wide, so if an ELF object has a large num-
ber of sections or program header table entries, then a scheme known as
Extended Numbering (section 3.1 on the next page) is used to encode the
actual number of sections or program header table entries. When extended
numbering is in use these fields will contain “magic numbers” instead of
actual counts.

8 If the ELF object contains sections, then we need a way to get at the names
of sections. Section names are stored in a string table. The e shstrndx
stores the section index of this string table (see 3.1 on the facing page)
so that processing tools know which string table to use for retrieving the
names of sections. We will cover ELF string tables in more detail in
section 5.1.1 on page 37.

The fields e entry and e flags are used for executables and are placed in
the executable header for easy access at program load time. We will not look
at them further in this tutorial.

ELF Class- and Endianness- Independent Processing

Now let us look at the way the libelf API set abstracts out ELF class and
endianness for us.

Imagine that you are writing an ELF processing application that is going
to support processing of non-native binaries (say for a machine with a different
native endianness and word size). It should be evident that ELF data structures
would have two distinct representations: an in-memory representation that fol-
lows the rules for the machine architecture that the application running on, and
an in-file representation that corresponds to the target architecture for the ELF
object.

The application would like to manipulate data in its native memory repre-
sentation. This memory representation would conform to the native endianness
of the host’s CPU and would conform to the address alignment and structure
padding requirements set by the host’s machine architecture.

When this data is written into the target object it may need to be formatted
differently. For example, it could be packed differently compared to the “native”
memory representation and may have to be laid out according a different set of
rules for alignment. The endianness of the data in-file could be different from
that of the in-memory representation.

Figure 3.4 on the facing page depicts the relationship between the file and
memory representation of an ELF data structure. As shown in the figure, the

3.1. THE LAYOUT OF AN ELF FILE 19

Figure 3.4: File and Memory Representations

ELF File

Memory Representation

file size

%falign

%malign

memory size

xlatetof() xlatetom()

File Representation

size of an ELF data structure in the file could be different from its size in
memory. The alignment restrictions (%falign and %malign in the figure) could
be different. The byte ordering of the data could be different too.

The ELF(3) and GELF(3) API set can handle the conversion of ELF data
structures to and from their file and memory representations automatically.
For example, when we read in the ELF executable header in program 3.1 on
the next page below, the libelf library will automatically do the necessary
byteswapping and alignment adjustments for us.

For applications that desire finer-grain control over the conversion process,
the elfNN xlatetof and elfNN xlatetom functions are available. These func-
tions will translate data buffers containing ELF data structures between their
memory and file representions.

Extended numbering

The e shnum, e phnum and e shstrndx fields of the ELF executable header are
only 2 bytes long and are not physically capable of representing numbers larger
than 65535. For ELF objects with a large number of sections, we need a different
way of encoding section numbers.

ELF objects with such a large number of sections can arise due to the way
GCC copes with C++ templates. When compiling C++ code which uses
templates, GCC generates many sections with names following the pattern
“.gnu.linkonce.name”. While each compiled ELF relocatable object will now
contain replicated data, the linker is expected to treat such sections specially at
the final link stage, discarding all but one of each section.

When extended numbering is in use:

• The e shnum field of the ELF executable header is always zero and the
true number of sections is stored in the sh size field of the section header
table entry at index 0.

• The true index of the section name string table is stored in field sh link

20 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

field of the zeroth entry of the section header table, while the e shstrndx
field of the executable header set to SHN XINDEX (0xFFFF).

• For extended program header table numbering the scheme is similar, with
the e phnum field of the executable header holding the value PN XNUM
(0xFFFF) and the sh link field of the zeroth section header table holding
the actual number of program header table entries.

An application may use the functions elf getphdrnum, elf getshdrnum and
elf getshdrstrndx to retrieve the correct value of these fields when extended
numbering is in use.

3.2 Example: Reading an ELF executable header

We will now look at a small program that will print out the ELF executable
header in an ELF object. For this example we will introduce the GELF(3) API
set.

The ELF(3) API is defined in terms of ELF class-dependent types (Elf32 -
Ehdr, Elf64 Shdr, etc.) and consequently has many operations that have both
32- and 64- bit variants. So, in order to retrieve an ELF executable header from
a 32 bit ELF object we would need to use the function elf32 getehdr, which
would return a pointer to an Elf32 Ehdr structure. For a 64-bit ELF object,
the function we would need to use would be elf64 getehdr, which would return
a pointer to an Elf64 Ehdr structure. This duplication is awkward when you
want to write applications that can transparently process either class of ELF
objects.

The GELF(3) APIs provide an ELF class independent way of writing ELF
applications. These functions are defined in terms of “generic” types that are
large enough to hold the values of their corresponding 32- and 64- bit ELF types.
Further, the GELF(3) APIs always work on copies of ELF data structures
thus bypassing the problem of 32- and 64- bit ELF data structures having
incompatible memory layouts. You can freely mix calls to GELF(3) and ELF(3)
functions.

The downside of using the GELF(3) APIs is the extra copying and conversion
of data that occurs. This overhead is usually not significant to most applications.

Listing 3.1: Program 2
/*

* Print the ELF Executable Header from an ELF object.

*/

#include <err.h>

#include <fcntl.h>

#include <gelf.h>
1

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

#include <vis.h>

3.2. EXAMPLE: READING AN ELF EXECUTABLE HEADER 21

int

main(int argc , char **argv)

{

int i, fd;

Elf *e;

char *id, bytes [5];

size_t n;

GElf_Ehdr ehdr;
2

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)

err(EX_NOINPUT , "open \"%s\" failed", argv [1]);

if ((e = elf_begin(fd, ELF_C_READ , NULL)) == NULL)

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)

errx(EX_DATAERR , "\"%s\" is not an ELF object.",

argv [1]);

if (gelf_getehdr(e, &ehdr) == NULL)
3

errx(EX_SOFTWARE , "getehdr () failed: %s.",

elf_errmsg (-1));

if ((i = gelf_getclass(e)) == ELFCLASSNONE)
4

errx(EX_SOFTWARE , "getclass () failed: %s.",

elf_errmsg (-1));

(void) printf("%s: %d-bit ELF object\n", argv[1],

i == ELFCLASS32 ? 32 : 64);

if ((id = elf_getident(e, NULL)) == NULL)
5

errx(EX_SOFTWARE , "getident () failed: %s.",

elf_errmsg (-1));

(void) printf("%3s e_ident [0..%1d] %7s", " ",

EI_ABIVERSION , " ");

for (i = 0; i <= EI_ABIVERSION; i++) {

(void) vis(bytes , id[i], VIS_WHITE , 0);

(void) printf(" [’%s’ %X]", bytes , id[i]);

}

22 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

(void) printf("\n");

#define PRINT_FMT " %-20s 0x%jx\n"

#define PRINT_FIELD(N) do { \

(void) printf(PRINT_FMT , #N, (uintmax_t) ehdr.N); \

} while (0)

PRINT_FIELD(e_type);
6

PRINT_FIELD(e_machine);

PRINT_FIELD(e_version);

PRINT_FIELD(e_entry);

PRINT_FIELD(e_phoff);

PRINT_FIELD(e_shoff);

PRINT_FIELD(e_flags);

PRINT_FIELD(e_ehsize);

PRINT_FIELD(e_phentsize);

PRINT_FIELD(e_shentsize);

if (elf_getshdrnum(e, &n) != 0)
7

errx(EX_SOFTWARE , "getshdrnum () failed: %s.",

elf_errmsg (-1));

(void) printf(PRINT_FMT , "(shnum)", (uintmax_t) n);

if (elf_getshdrstrndx(e, &n) != 0)
8

errx(EX_SOFTWARE , "getshdrstrndx () failed: %s.",

elf_errmsg (-1));

(void) printf(PRINT_FMT , "(shstrndx)", (uintmax_t) n);

if (elf_getphdrnum(e, &n) != 0)
9

errx(EX_SOFTWARE , "getphdrnum () failed: %s.",

elf_errmsg (-1));

(void) printf(PRINT_FMT , "(phnum)", (uintmax_t) n);

(void) elf_end(e);

(void) close(fd);

exit(EX_OK);

}

1 Programs using the GELF(3) API set need to include gelf.h.

2 The GELF(3) functions always operate on a local copies of data structures.
The GElf Ehdr type has fields that are large enough to contain values for
a 64 bit ELF executable header.

3 We retrieve the ELF executable header using function gelf getehdr. This
function will translate the ELF executable header in the ELF object being
read to the appropriate in-memory representation for type GElf Ehdr. For
example, if a 32-bit ELF object is being examined, then the values in its
executable header would be appropriately converted (expanded and/or
byteswapped) by this function.

3.2. EXAMPLE: READING AN ELF EXECUTABLE HEADER 23

4 The gelf getclass function retrieves the ELF class of the object being
examined.

5 Here we show the use of the elf getident function to retrieve the contents
of the e ident[] array from the underlying file. These bytes would also
be present in the e ident member of the ehdr structure.

We print the first few bytes of the e ident field of the ELF executable
header.

6 Following the e ident bytes, we print the values of some of the fields of the
ELF executable header structure.

7 8 9 The functions elf getphdrnum, elf getshdrnum and elf get
-shdrstrndx described in section 3.1 on page 19 should be used to retrieve
the count of program header table entries, the number of sections, and
the section name string table index respectively. Using these functions
insulates your application from the quirks of extended numbering.

Save the program in listing 3.1 on page 20 to file prog2.c and then compile
and run it as shown in listing 3.2.

Listing 3.2: Compiling and Running prog2

% cc -o prog2 prog2.c -lelf
1

% ./ prog2 prog2
2

prog2: 64-bit ELF object

e_ident [0..8] [’\^?’ 7F] [’E’ 45] [’L’ 4C] [’F’ 46] \

[’\^B’ 2] [’\^A’ 1] [’\^A’ 1] [’\^I’ 9] [’\^@’ 0]

e_type 0x2

e_machine 0x3e

e_version 0x1

e_entry 0x400a10

e_phoff 0x40

e_shoff 0x16f8

e_flags 0x0

e_ehsize 0x40

e_phentsize 0x38

e_shentsize 0x40

(shnum) 0x18

(shstrndx) 0x15

(phnum) 0x5

1 The process for compiling and linking a GELF(3) using application is the
same as that for ELF(3) programs.

2 We run our program on itself. This listing in this tutorial was generated on
an AMD64TM machine running FreeBSD.

You should now run prog2 on other object files that you have lying around.
Try it on a few non-native ELF object files too.

24 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

Chapter 4

Examining the Program
Header Table

Before a program on disk can be executed by a processor it needs to brought
into main memory. This process is conventionally called “loading”.

When loading an ELF object into memory, the operating system views it
as comprising of “segments”. Each such segment is a contiguous region of data
inside the ELF object that is associated with a particular protection character-
istic (for example, read-only or read-write) and that gets placed at a specific
virtual memory address.

For example, the FreeBSDTM operating system expects executables to have
an “executable” segment containing code, and a “data” segment containing
statically initialized data.The executable segment would be mapped in with
read and execute permissions and could be shared across multiple processes
using the same ELF executable. The data segment would be mapped in with
read and write permissions and would be made private to each process. For
dynamically linked executables, the basic idea of grouping related parts of an
ELF object into contiguous “segments” still holds, though there may be multiple
segments of each type per process.

4.1 The ELF Program Header Table

The ELF program header table describes the segments present in an ELF file.
The location of the program header table is described by the e phoff field of the
ELF executable header (see section 3.1 on page 16). The program header table
is a contiguous array of program header table entries, one entry per segment.

Figure 4.1 on the following page shows graphically how the fields of a pro-
gram header table entry specify the segment’s placement in file and in memory.

The structure of each program header table entry is shown in table 4.1 on
the next page.

25

26 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

Figure 4.1: ELF Segment Placement

Ehdr ELF Segmentn ShdrPhdr

p type

p filesz

p align
p memsz

... etc ...
Segment in Memory

p offset p filesz

p memsz

%p align

p vaddr

Program Header Table Entry

ELF file:

Table 4.1: ELF Program Header Table Entries
32 bit PHDR Table Entry 64 bit PHDR Table Entry

typedef struct { typedef struct {

1 Elf32_Word p_type; Elf64_Word p_type;

2 Elf32_Off p_offset; Elf64_Word p_flags;

3 Elf32_Addr p_vaddr; Elf64_Off p_offset;

4 Elf32_Addr p_paddr; Elf64_Addr p_vaddr;

5 Elf32_Word p_filesz; Elf64_Addr p_paddr;

6 Elf32_Word p_memsz; Elf64_Xword p_filesz;

7 Elf32_Word p_flags; Elf64_Xword p_memsz;

8 Elf32_Word p_align; Elf64_Xword p_align;
} Elf32_Phdr; } Elf64_Phdr;

1 The type of the program header table entry is encoded using this field. It
holds one of the PT * constants defined in the system headers.

Examples include:

• A segment of type PT LOAD is loaded into memory.

• A segment of type PT NOTE contains auxiliary information. For exam-
ple, core filesuse PT NOTE sections to record the name of the process
that dumped core.

• A PT PHDR segment describes the program header table itself.

The ELF specification reserves type values from 0x60000000 (PT LOOS) to
0x6FFFFFFF (PT HIOS) for OS-private information. Values from 0x7000-
0000 (PT LOPROC) to 0x7FFFFFFF (PT HIPROC) are similarly reserved for
processor-specific information.

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 27

2 The p offset field holds the file offset in the ELF object to the start of the
segment being described by this table entry.

3 The virtual address this segment should be loaded at.

4 The physical address this segment should be loaded at. This field does not
apply for userland objects.

5 The number of bytes the segment takes up in the file. This number is zero
for segments that do not have data associated with them in the file.

6 The number of bytes the segment takes up in memory.

7 Additional flags that specify segment properties. For example, flag PF X
specifies that the segment in question should be made executable and flag
PF W denotes that the segment should be writable.

8 The alignment requirements of the segment both in memory and in the file.
This field holds a value that is a power of two.

Note: The careful reader will note that the 32- and 64- bit Elf Phdr struc-
tures are laid out differently in memory. These differences are handled for you
by the functions in the libelf library.

4.2 Example: Reading a Program Header Table

We will now look at a program that will print out the program header table
associated with an ELF object. We will continue to use the GELF(3) API set
for this example. The ELF(3) API set also offers two ELF class-dependent APIs
that retrieve the program header table from an ELF object: elf32 getphdr and
elf64 getphdr, but these require us to know the ELF class of the object being
handled.

Listing 4.1: Program 3
/*

* Print the ELF Program Header Table in an ELF object.

*/

#include <err.h>

#include <fcntl.h>

#include <gelf.h>
1

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

#include <vis.h>

void

28 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

print_ptype(size_t pt)
7

{

char *s;

#define C(V) case PT_##V: s = #V; break

switch (pt) {

C(NULL); C(LOAD); C(DYNAMIC);

C(INTERP); C(NOTE); C(SHLIB);

C(PHDR); C(TLS); C(SUNW_UNWIND);

C(SUNWBSS); C(SUNWSTACK); C(SUNWDTRACE);

C(SUNWCAP);

default:

s = "unknown";

break;

}

(void) printf(" \"%s\"", s);

#undef C

}

int

main(int argc , char **argv)

{

int i, fd;

Elf *e;

char *id, bytes [5];

size_t n;

GElf_Phdr phdr;
2

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)

err(EX_NOINPUT , "open \"%s\" failed", argv [1]);

if ((e = elf_begin(fd, ELF_C_READ , NULL)) == NULL)

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)

errx(EX_DATAERR , "\"%s\" is not an ELF object.",

argv [1]);

if (elf_getphdrnum(e, &n) != 0)
3

errx(EX_DATAERR , "elf_getphdrnum () failed: %s.",

elf_errmsg (-1));

for (i = 0; i < n; i++) {
4

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 29

if (gelf_getphdr(e, i, &phdr) != &phdr)
5

errx(EX_SOFTWARE , "getphdr () failed: %s.",

elf_errmsg (-1));

(void) printf("PHDR %d:\n");

#define PRINT_FMT " %-20s 0x%jx"

#define PRINT_FIELD(N) do { \

(void) printf(PRINT_FMT , #N, (uintmax_t) phdr.N); \

} while (0)

#define NL() do { (void) printf("\n"); } while (0)

PRINT_FIELD(p_type);
6

print_ptype(phdr.p_type); NL();

PRINT_FIELD(p_offset); NL();

PRINT_FIELD(p_vaddr); NL();

PRINT_FIELD(p_paddr); NL();

PRINT_FIELD(p_filesz); NL();

PRINT_FIELD(p_memsz); NL();

PRINT_FIELD(p_flags);

(void) printf(" [");

if (phdr.p_flags & PF_X)

(void) printf(" execute");

if (phdr.p_flags & PF_R)

(void) printf(" read");

if (phdr.p_flags & PF_W)

(void) printf(" write");

printf("]"); NL();

PRINT_FIELD(p_align); NL();

}

(void) elf_end(e);

(void) close(fd);

exit(EX_OK);

}

1 We need to include gelf.h in order to use the GELF(3) APIs.

2 The GElf Phdr type has fields that are large enough to contain the values
in an Elf32 Phdr type and an Elf64 Phdr type.

3 We retrieve the number of program header table entries using the function
elf getphdrnum. Note that the program header table is optional; for
example, an ELF relocatable object will not have a program header table.

4 5 We iterate over all valid indices for the object’s program header table,
retrieving the table entry at each index using the gelf getphdr function.

6 7 We then print out the contents of the entry so retrieved. We use a
helper function print ptype to convert the p type member to a readable
string.

30 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

Save the program in listing 4.1 on page 27 to file prog3.c and then compile
and run it as shown in listing 4.2.

Listing 4.2: Compiling and Running prog3

% cc -o prog3 prog3.c -lelf
1

% ./ prog3 prog3
2

PHDR 0:

p_type 0x6 "PHDR"
3

p_offset 0x34

p_vaddr 0x8048034

p_paddr 0x8048034

p_filesz 0xc0

p_memsz 0xc0

p_flags 0x5 [execute read]

p_align 0x4

PHDR 1:

p_type 0x3 "INTERP"
4

p_offset 0xf4

p_vaddr 0x80480f4

p_paddr 0x80480f4

p_filesz 0x15

p_memsz 0x15

p_flags 0x4 [read]

p_align 0x1

PHDR 2:

p_type 0x1 "LOAD"
5

p_offset 0x0

p_vaddr 0x8048000

p_paddr 0x8048000

p_filesz 0xe67

p_memsz 0xe67

p_flags 0x5 [execute read]

p_align 0x1000

PHDR 3:

p_type 0x1 "LOAD"
6

p_offset 0xe68

p_vaddr 0x8049e68

p_paddr 0x8049e68

p_filesz 0x11c

p_memsz 0x13c

p_flags 0x6 [read write]

p_align 0x1000

PHDR 4:

p_type 0x2 "DYNAMIC"

p_offset 0xe78

p_vaddr 0x8049e78

p_paddr 0x8049e78

p_filesz 0xb8

p_memsz 0xb8

p_flags 0x6 [read write]

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 31

p_align 0x4

PHDR 5:

p_type 0x4 "NOTE"

p_offset 0x10c

p_vaddr 0x804810c

p_paddr 0x804810c

p_filesz 0x18

p_memsz 0x18

p_flags 0x4 [read]

p_align 0x4

1 Compile and link the program in the standard way.

2 We make our program examine its own program header table. This listing
was generated on an i386TM machine running FreeBSDTM.

3 The very first entry in this program header table describes the program
header table itself.

4 An entry of type PT INTERP is used to point the kernel to the “interpreter”
associated with this ELF object. This is usually a runtime loader, such as
/libexec/ld-elf.so.1.

5 6 This object has two loadable segments: one with execute and read
permissions and one with read and write permissions. Both these segments
require page alignment.

You should now run prog3 on other object files.

• Try a relocatable object file created by a cc -c invocation. Does it have
an program header table?

• Try prog3 on shared libraries. What do their program header tables look
like?

• Can you locate ELF objects on your system that have PT TLS header
entries?

32 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

Chapter 5

Looking at Sections

In the previous chapter we looked at the way an executable ELF objects are
viewed by the operating system. In this section we will look at the features of
the ELF format that are used by compilers and linkers.

For linking, data in an ELF object is grouped into sections. Each ELF
section represents one kind of data. For example, a section could contain a table
of strings used for program symbols, another could contain debug information,
and another could contain machine code. Non-empty sections do not overlap in
the file.

ELF sections are described by entries in an ELF section header table. This
table is usually placed at the very end of the ELF object (see figure 3.1 on
page 16). Table 5.1 describes the elements of section header table entry and
figure 5.1 on page 35 shows graphically how the fields of an ELF section header
specify the section’s placement.

Table 5.1: ELF Section Header Table Entries
32 bit SHDR Table Entry 64 bit SHDR Table Entry

typedef struct { typedef struct {

1 Elf32_Word sh_name; Elf64_Word sh_name;

2 Elf32_Word sh_type; Elf64_Word sh_type;

3 Elf32_Xword sh_flags; Elf64_Xword sh_flags;
Elf32_Addr sh_addr; Elf64_Addr sh_addr;
Elf32_Off sh_offset; Elf64_Off sh_offset;

4 Elf32_Xword sh_size; Elf64_Xword sh_size;

5 Elf32_Word sh_link; Elf64_Word sh_link;

6 Elf32_Word sh_info; Elf64_Word sh_info;

7 Elf32_Word sh_addralign; Elf64_Word sh_addralign;

8 Elf32_Word sh_entsize; Elf64_Word sh_entsize;
} Elf32_Shdr; } Elf64_Shdr;

1 The sh name field is used to encode a section’s name. As section names

33

34 CHAPTER 5. LOOKING AT SECTIONS

are variable length strings, they are not kept in the section header table
entry itself.Instead, all section names are collected into an object-wide
string table holding section names and the sh name field of each section
header stores an index into the string table. The ELF executable header
has an e shstrndx member that points to the section index of this string
table. ELF string tables, and the way to read them programmatically are
described in section 5.1.1 on page 37.

2 The sh type field specifies the section type. Section types are defined by
the SHT * constants defined in the system’s ELF headers. For example, a
section of type SHT PROGBITS is defined to contain executable code, while
a section type SHT SYMTAB denotes a section containing a symbol table.

The ELF specification reserves values in the range 0x60000000 to 0x6FFF-
FFFF to denote OS-specific section types, and values in the range 0x7000-
0000 to 0x7FFFFFFF for processor-specific section types. In addition,
applications have been given the range 0x80000000 to 0xFFFFFFFF for
their own use.

3 Section flags indicate whether a section has specific properties, e.g., whether
it contains writable data or instructions, or whether it has special link
ordering requirements. Flag values from 0x00100000 to 0x08000000 (8
flags) are reserved for OS-specific uses. Flags values from 0x10000000 to
0x80000000 (4 flags) are reserved for processor specific uses.

4 The sh size member specifies the size of the section in bytes.

5 6 The sh link and sh info fields contain additional additional section
specific information. These fields are described in the elf(5) manual page.

7 For sections that have specific alignment requirements, the sh addralign
member holds the required alignment. Its value is a power of two.

8 For sections that contain arrays of fixed-size elements, the sh entsize mem-
ber specifies the size of each element.

There are a couple of other quirks associated with ELF sections. Valid
section indices range from SHN UNDEF (0) upto but not including SHN LORESERVE
(0xFF00). Section indices between 0xFF00 and 0xFFFF are used to denote
special sections (like FORTRAN COMMON blocks). Thus if an ELF file has
more than 65279 (0xFEFF) sections, then it needs to use extended section
numbering (see section 3.1 on page 19).

The section header table entry at index ‘0’ (SHN UNDEF) is treated specially:
it is always of type SHT NULL. It has its members set to zero except when ex-
tended numbering is in use, see section 3.1 on page 19.

5.1 ELF section handling with libelf

You can conveniently retrieve the contents of sections and section headers us-
ing the APIs in the ELF(3) library. Function elf getscn will retrieve section

5.1. ELF SECTION HANDLING WITH LIBELF 35

Ehdr Phdr ELF Sectionn Shdr

sh type

sh size
sh addralign

sh offset
... etc ...

sh offset sh size

%sh addralign

Figure 5.1: Section layout

information for a requested section number.Iteration through the sections of an
ELF file is possible using function elf nextscn.These routines will take care
of translating between in-file and in-memory representations, thus simplifying
your application.

In the ELF(3) API set, ELF sections are managed using Elf Scn descriptors.
There is one Elf Scn descriptor per ELF section in the ELF object. Functions
elf getscn and elf nextscn retrieve pointers to Elf Scn descriptors for pre-
existing sections in the ELF object. (Chapter 6 on page 43 covers the use of
function elf newscn for allocating new sections)..

Given an Elf Scn descriptor, functions elf32 getshdr and elf64 getshdr
retrieve its associated section header table entry. The GELF(3) API set offers
an equivalent ELF-class independent function gelf getshdr.

Each Elf Scn descriptor can be associated with zero or more Elf Data de-
scriptors. Elf Data descriptors describe regions of application memory that
contain the actual data in the ELF section. Elf Data descriptors for a given
Elf Scn descriptor are retrieved using the elf getdata function.

Figure 5.2 on the next page shows graphically how an Elf Scn descriptor
could conceptually cover the content of a section with Elf Data descriptors.

Figure 5.3 on the following page depicts how an Elf Data structure describes
a chunk of application memory. Note that the figure reflects the fact that the
in-memory representation of data could have a different size and endianness
than its in-file representation.

Figure 5.1 shows the C definition of the Elf Scn and Elf Data descriptors.

Listing 5.1: Definition of Elf Data and Elf Scn

typedef struct _Elf_Scn Elf_Scn;
1

typedef struct _Elf_Data {

/*

* ‘Public ’ members that are part of the ELF(3) API.

*/

uint64_t d_align;
2

void *d_buf;
3

36 CHAPTER 5. LOOKING AT SECTIONS

::: ::: A section in an ELF file

Elf Scn Elf Scn Descriptor

D1 D2 D3 D4 Elf Data Descriptor List

Figure 5.2: Managing data in an Elf Section

Elf Data Elf Data Descriptor

d off

d size

%d align

d buf

Memory Buffer

ELF File Section

Figure 5.3: Elf Data descriptors

5.1. ELF SECTION HANDLING WITH LIBELF 37

’\0’ ’N’ ’a’ ’m’ ’e’ ’1’ ’\0’ ’N’
’a’ ’m’ ’e’ ’2’ ’\0’ ... ’\0’

Initial NUL NUL-separated strings

Terminating NUL

Figure 5.4: String Table Layout

uint64_t d_off;
4

uint64_t d_size;
5

Elf_Type d_type;
6

unsigned int d_version;
7

/* ... other library -private fields ... */

} Elf_Data;

1 The Elf Scn type is opaque to the application.

2 The d align member specifies alignment of data referenced in the Elf Data
with respect to its containing section.

3 The d buf member points to a contiguous region of memory holding data.

4 The d off member contains the file offset from the start of the section of
the data in this buffer. This field is usually managed by the library, but
is under application control if the application has requested full control of
the ELF file’s layout (see chapter 6 on page 43).

5 The d size member contains the size of the memory buffer.

6 The d type member specifies the ELF type of the data contained in the
data buffer. Legal values for this member are precisely those defined by
the Elf Type enumeration in libelf.h.

7 The d version member specifies the working version for the data in this
descriptor. It must be one of the values supported by the libelf library.

Before we look at an example program we need to understand how string
tables are implemented by libelf.

5.1.1 String Tables

String tables hold variable length strings, allowing other structures in an ELF
object to refer to strings using offsets into the string table. Sections containing
string tables have type SHT STRTAB.

Figure 5.4 shows the layout of a string table graphically:

38 CHAPTER 5. LOOKING AT SECTIONS

• The initial byte of a string table is NUL (a ‘\0’). This allows an string
offset value of zero to denote the NULL string.

• Subsequent strings are separated by NUL bytes.

• The final byte in the section is again a NUL so as to terminate the last
string in the string table.

An ELF file can have multiple string tables; for example, section names
could be kept in one string table and symbol names in another.

Given the section index of a section containing a string table, applications
would use the elf strptr function to convert a string offset to char * pointer
usable by C code.

5.2 Example: Listing section names

Let us now write a program that would retrieve and print the names of the
sections present in an ELF object. This example will show you how to use:

• Functions elf nextscn and elf getscn to retrieve Elf Scn descriptors.

• Function gelf getshdr to retrieve a section header table entry corre-
sponding to a section descriptor.

• Function elf strptr to convert section name indices to NUL-terminated
strings.

• Function elf getdata to retrieve translated data associated with a sec-
tion.

Listing 5.2: Program 4
/*

* Print the names of ELF sections.

*/

#include <err.h>

#include <fcntl.h>

#include <gelf.h>

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

#include <vis.h>

int

main(int argc , char **argv)

{

int fd;

Elf *e;

char *name , *p, pc[4* sizeof(char)];

Elf_Scn *scn;

Elf_Data *data;

5.2. EXAMPLE: LISTING SECTION NAMES 39

GElf_Shdr shdr;

size_t n, shstrndx , sz;

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)

err(EX_NOINPUT , "open \%s\" failed", argv [1]);

if ((e = elf_begin(fd, ELF_C_READ , NULL)) == NULL)

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)

errx(EX_DATAERR , "%s is not an ELF object.",

argv [1]);

if (elf_getshdrstrndx(e, &shstrndx) != 0)
1

errx(EX_SOFTWARE , "elf_getshdrstrndx () failed: %s.",

elf_errmsg (-1));

scn = NULL;
2

while ((scn = elf_nextscn(e, scn)) != NULL) {
3

if (gelf_getshdr(scn , &shdr) != &shdr)
4

errx(EX_SOFTWARE , "getshdr () failed: %s.",

elf_errmsg (-1));

if ((name = elf_strptr(e, shstrndx , shdr.sh_name))

== NULL)
5

errx(EX_SOFTWARE , "elf_strptr () failed: %s.",

elf_errmsg (-1));

(void) printf("Section %-4.4jd %s\n", (uintmax_t)

elf_ndxscn(scn), name);

}

if ((scn = elf_getscn(e, shstrndx)) == NULL)
6

errx(EX_SOFTWARE , "getscn () failed: %s.",

elf_errmsg (-1));

if (gelf_getshdr(scn , &shdr) != &shdr)

errx(EX_SOFTWARE , "getshdr(shstrndx) failed: %s.",

elf_errmsg (-1));

(void) printf(".shstrab: size=%jd\n", (uintmax_t)

shdr.sh_size);

40 CHAPTER 5. LOOKING AT SECTIONS

data = NULL; n = 0;

while (n < shdr.sh_size &&

(data = elf_getdata(scn , data)) != NULL) {
7

p = (char *) data ->d_buf;

while (p < (char *) data ->d_buf + data ->d_size) {

if (vis(pc, *p, VIS_WHITE , 0))

printf("%s", pc);

n++; p++;

(void) putchar ((n % 16) ? ’ ’ : ’\n’);

}

}

(void) putchar(’\n’);

(void) elf_end(e);

(void) close(fd);

exit(EX_OK);

}

1 We retrieve the section index of the ELF section containing the string
table of section names using function elf getshdrstrndx. The use of
elf getshdrstrndx allows our program to work correctly when the ob-
ject being examined has a very large number of sections.

2 Function elf nextscn has the useful property that it returns the pointer
to section number ‘1’ if a NULL section pointer is passed in. Recall that
section number ‘0’ is always of type SHT NULL and is not interesting to
applications.

3 We loop over all sections in the ELF object. Function elf nextscn will
return NULL at the end, which is a convenient way to exit the processing
loop.

4 Given a Elf Scn pointer, we retrieve the associated section header using
function gelf getshdr. The sh name member of this structure holds the
required offset into the section name string table.indexsections!header ta-
ble entry!retrieval of

5 We convert the string offset in member sh name to a char * pointer using
function elf strptr. This value is then printed using printf.

6 We retrieve the section descriptor associate with the string table holding
section names. Variable shstrndx was retrieved by a prior call to function
elf getshdrstrndx.

7 We cycle through the Elf Data descriptors associated with the section in
question, printing the characters in each data buffer.

Save the program in listing 5.2 on page 38 to file prog4.c and then compile
and run it as shown in listing 5.3 on the next page.

5.2. EXAMPLE: LISTING SECTION NAMES 41

Listing 5.3: Compiling and Running prog4

% cc -o prog4 prog4.c -lelf
1

% ./ prog4 prog4
2

Section 0001 .interp

Section 0002 .note.ABI -tag

Section 0003 .hash

Section 0004 .dynsym

Section 0005 .dynstr

Section 0006 .rela.plt

Section 0007 .init

Section 0008 .plt

Section 0009 .text

Section 0010 .fini

Section 0011 .rodata

Section 0012 .data

Section 0013 .eh_frame

Section 0014 .dynamic

Section 0015 .ctors

Section 0016 .dtors

Section 0017 .jcr

Section 0018 .got

Section 0019 .bss

Section 0020 .comment

Section 0021 .shstrtab
3

Section 0022 .symtab

Section 0023 .strtab

.shstrab: size =287
4

\^@ . s y m t a b \^@ . s t r t a b

\^@ . s h s t r t a b \^@ . i n t e

r p \^@ . h a s h \^@ . d y n s y m

...etc ...

1 Compile and link the program in the standard way.

2 We make our program print the names of its own sections.

3 One of the sections contains the string table used for sections names them-
selves. This section is called .shstrtab by convention.

4 This is the content of the string table holding section names.

42 CHAPTER 5. LOOKING AT SECTIONS

Chapter 6

Creating new ELF objects

We will now look at how ELF objects can be created (and modified, see sec-
tion 6.2.4 on page 49) using the libelf library.

Broadly speaking, the steps involved in creating an ELF file with libelf
are:

1. An ELF descriptor needs to be allocated with a call to elf begin, passing
in the parameter ELF C WRITE.

2. You would then allocate an ELF executable header using one of the
elf32 newehdr, elf64 newehdr or gelf newehdr functions. Note that
this is a mandatory step since an ELF executable header is always present
in an ELF object. The ELF “class”, of the object, i.e., whether the object
is a 32-bit or 64-bit one, is fixed at this time.

3. An ELF program header table is optional and can be allocated using one of
functions elf32 newphdr, elf64 newphdr or gelf newphdr. The program
header table can be allocated anytime after the executable header has been
allocated.

4. Sections may be added to an ELF object using function elf newscn.
Elf Data descriptors associated with an ELF section can be added to
a section descriptor using function elf newdata. ELF sections can be
allocated anytime after the object’s executable header has been allocated.

5. If you are creating an ELF object for a non-native architecture, you can
change the byte ordering of the object by changing the byte order byte at
offset EI DATA in the ELF header.

6. Once your data is in place, you then ask the libelf library to write out
the final ELF object using function elf update.

7. Finally, you close the ELF descriptor allocated using function elf end.

6.1 Example: Creating an ELF object

In listing 6.1 on the next page we will look at a program that creates a simple
ELF object with a program header table, one ELF section containing translat-

43

44 CHAPTER 6. CREATING NEW ELF OBJECTS

able data and one ELF section containing a section name string table. We will
mark the ELF of the object as using a 32-bit, MSB-first data ordering.

Listing 6.1: Program 5
/*

* Create an ELF object.

*/

#include <err.h>

#include <fcntl.h>

#include <libelf.h>
1

#include <stdio.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

uint32_t hash_words [] = {
2

0x01234567 ,

0x89abcdef ,

0xdeadc0de

};

char string_table [] = {
3

/* Offset 0 */ ’\0’,

/* Offset 1 */ ’.’, ’f’, ’o’, ’o’, ’\0’,

/* Offset 6 */ ’.’, ’s’, ’h’, ’s’, ’t’,

’r’, ’t’, ’a’, ’b’, ’\0’

};

int

main(int argc , char **argv)

{

int fd;

Elf *e;

Elf_Scn *scn;

Elf_Data *data;

Elf32_Ehdr *ehdr;

Elf32_Phdr *phdr;

Elf32_Shdr *shdr;

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

if ((fd = open(argv[1], O_WRONLY|O_CREAT , 0777)) < 0)
4

err(EX_OSERR , "open \%s\" failed", argv [1]);

if ((e = elf_begin(fd, ELF_C_WRITE , NULL)) == NULL)
5

6.1. EXAMPLE: CREATING AN ELF OBJECT 45

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

elf_errmsg (-1));

if ((ehdr = elf32_newehdr(e)) == NULL)
6

errx(EX_SOFTWARE , "elf32_newehdr () failed: %s.",

elf_errmsg (-1));

ehdr ->e_ident[EI_DATA] = ELFDATA2MSB;

ehdr ->e_machine = EM_PPC; /* 32-bit PowerPC object */

ehdr ->e_type = ET_EXEC;

if ((phdr = elf32_newphdr(e, 1)) == NULL)
7

errx(EX_SOFTWARE , "elf32_newphdr () failed: %s.",

elf_errmsg (-1));

if ((scn = elf_newscn(e)) == NULL)
8

errx(EX_SOFTWARE , "elf_newscn () failed: %s.",

elf_errmsg (-1));

if ((data = elf_newdata(scn)) == NULL)

errx(EX_SOFTWARE , "elf_newdata () failed: %s.",

elf_errmsg (-1));

data ->d_align = 4;

data ->d_off = 0LL;

data ->d_buf = hash_words;

data ->d_type = ELF_T_WORD;

data ->d_size = sizeof(hash_words);

data ->d_version = EV_CURRENT;

if ((shdr = elf32_getshdr(scn)) == NULL)

errx(EX_SOFTWARE , "elf32_getshdr () failed: %s.",

elf_errmsg (-1));

shdr ->sh_name = 1;

shdr ->sh_type = SHT_HASH;

shdr ->sh_flags = SHF_ALLOC;

shdr ->sh_entsize = 0;

if ((scn = elf_newscn(e)) == NULL)
9

errx(EX_SOFTWARE , "elf_newscn () failed: %s.",

elf_errmsg (-1));

if ((data = elf_newdata(scn)) == NULL)

errx(EX_SOFTWARE , "elf_newdata () failed: %s.",

elf_errmsg (-1));

data ->d_align = 1;

data ->d_buf = string_table;

data ->d_off = 0LL;

data ->d_size = sizeof(string_table);

46 CHAPTER 6. CREATING NEW ELF OBJECTS

data ->d_type = ELF_T_BYTE;

data ->d_version = EV_CURRENT;

if ((shdr = elf32_getshdr(scn)) == NULL)

errx(EX_SOFTWARE , "elf32_getshdr () failed: %s.",

elf_errmsg (-1));

shdr ->sh_name = 6;

shdr ->sh_type = SHT_STRTAB;

shdr ->sh_flags = SHF_STRINGS | SHF_ALLOC;

shdr ->sh_entsize = 0;

elf_setshstrndx(e, elf_ndxscn(scn));
10

if (elf_update(e, ELF_C_NULL) < 0)
11

errx(EX_SOFTWARE , "elf_update(NULL) failed: %s.",

elf_errmsg (-1));

phdr ->p_type = PT_PHDR;

phdr ->p_offset = ehdr ->e_phoff;

phdr ->p_filesz = elf32_fsize(ELF_T_PHDR , 1, EV_CURRENT);

(void) elf_flagphdr(e, ELF_C_SET , ELF_F_DIRTY);

if (elf_update(e, ELF_C_WRITE) < 0)
12

errx(EX_SOFTWARE , "elf_update () failed: %s.",

elf_errmsg (-1));

(void) elf_end(e);

(void) close(fd);

exit(EX_OK);

}

1 We include libelf.h to bring in prototypes for libelf’s functions.

2 We will create an ELF section containing ‘hash’ values. These values are
present in host-native order in the array hash words. These values will
be translated to the appropriate byte order by the libelf library when
the object file is created.

3 We use a pre-fabricated ELF string table to hold section names. See sec-
tion 5.1.1 on page 37 for more information on the layout of ELF string
tables.

4 The first step to create an ELF object is to obtain a file descriptor from the
OS that is opened for writing.

5 By passing parameter ELF C WRITE to function elf begin, we obtain an
ELF descriptor suitable for creating new ELF objects.

6.1. EXAMPLE: CREATING AN ELF OBJECT 47

6 We allocate an ELF executable header and set the EI DATA byte in its
e ident member. The machine type is set to EM PPC denoting the Pow-
erPC architecture, and the object is marked as an ELF executable.

7 We allocate an ELF program header table with one entry. At this point
of time we do not know how the ELF object will be laid out so we don’t
know where the ELF program header table will reside. We will update
this entry later.

8 We create a section descriptor for the section containing the ‘hash’ values,
and associate the data in the hash words array with this descriptor. The
type of the section is set to SHT HASH. The library will compute its size and
location in the final object and will byte-swap the values when creating
the ELF object.

9 We allocate another section for holding the string table. We use the pre-
fabricated string table in variable string table. The type of the section
is set to SHT STRTAB. Its offset and size in the file will be computed by the
library.indexsections!string table!allocation of

10 We set the string table index field in the ELF executable header using the
function elf setshstrndx.

11 Calling function elf update with parameter ELF C NULL indicates that
the libelf library is to compute the layout of the object, updating all
internal data structures, but not write it out. We can thus fill in the
values in the ELF program header table entry that we had allocated using
the new values in the executable header after this call to elf update.
The program header table is then marked “dirty” using a call to function
elf flagdata, so that a subsequent call to elf update will use the new
contents.

12 A call to function elf update with parameter ELF C WRITE causes the
object file to be written out.

Save the program in listing 6.1 on page 44 to file prog5.c and then compile
and run it as shown in listing 6.2.

Listing 6.2: Compiling and Running prog5

% cc -o prog5 prog5.c -lelf
1

% ./ prog5 foo

% file foo
2

foo: ELF 32-bit MSB executable , PowerPC or cisco 4500, \

version 1 (SYSV), statically linked , stripped

% readelf -a foo
3

ELF Header:

Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2’s complement , big endian

48 CHAPTER 6. CREATING NEW ELF OBJECTS

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: PowerPC

Version: 0x1

Entry point address: 0x0

Start of program headers: 52 (bytes into file)

Start of section headers: 112 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 1

Size of section headers: 40 (bytes)

Number of section headers: 3

Section header string table index: 2

...etc...

1 Compile, link and run the program in the standard way.

2 3 We use the file and readelf programs to examine the object that we
have created.

6.2 The finer points in creating ELF objects

Some of the finer points in creating ELF objects using the libelf library are
examined below. We cover memory management rules, ELF data structure
lifetimes, and how an application can take full control over an object’s layout.
We also briefly cover how to modify an existing ELF object.

6.2.1 Controlling ELF Layout

By default, the libelf library will lay out your ELF objects for you. The default
layout is shown in figure 3.1 on page 16.An application may request fine-grained
control over the ELF object’s layout by setting the flag ELF F LAYOUT on the
ELF descriptor using function elf flagelf.

Once an ELF descriptor has been flagged with flag ELF F LAYOUT the follow-
ing members of the ELF data structures come under application control:

• The e phoff and e shoff fields, which determine whether the ELF pro-
gram header table and section header table start.

• For each section, the sh addralign, sh offset, and sh size fields in its
section header.

These fields must set prior to calling function elf update.
The library will fill “gaps” between parts of the ELF file with a fill character .

An application may set the fill character using the function elf fill. The
default fill character is a zero byte.

6.2. THE FINER POINTS IN CREATING ELF OBJECTS 49

6.2.2 Memory Management

Applications pass pointers to allocated memory to the libelf library by setting
the d buf members of Elf Data structures passed to the library. The libelf
library also passes data back to the application using the same mechanism. In
order to keep tracking memory ownership simple, the libelf library follows the
rule that it will never attempt to free data that it did not allocate. Conversely,
the application is also not to free memory allocated by the libelf library.

6.2.3 libelf data structure lifetimes

As part of the process of writing out an ELF object, the libelf library may
release or reallocate its internal bookkeeping structures.

A rule to be followed when using the libelf library is that all pointers to
returned data structures (e.g., pointers to Elf Scn and Elf Data structures or
to other ELF headers become invalid after a call to function elf update with
parameter ELF C WRITE.

After a successful call to function elf update all ELF data structures will
need to be retrieved afresh.

6.2.4 Modifying existing ELF objects

The libelf library also allows existing ELF objects to be modified. The process
is similar to that for creating ELF objects, the differences being:

• The underlying file object would need to be opened for reading and writ-
ing, and the call to function elf begin would use parameter ELF C RDWR
instead of ELF C WRITE.

• The application would use the elf get* APIs to retrieve existing ELF
data structures in addition to the elf new* APIs used for allocating new
data structures. The libelf library would be informed of modifications
to ELF data structures by calls to the appropriate elf flag* functions.

The rest of the program flow would be similar to the object creation case.

50 CHAPTER 6. CREATING NEW ELF OBJECTS

Chapter 7

Processing ar(1) archives

The libelf library also offers support for reading archives members in an ar(1)
archive. This support is “read-only”; you cannot create new ar(1) archives
or update members in an archive using these functions. The libelf library
supports both random and sequential access to the members of an ar(1) archive.

7.1 Archive structure

Each ar(1) archive starts with a sequence of 8 signature bytes (see the constant
ARMAG defined in the system header ar.h). The members of the archive follow,
each member preceded by an archive header describing the metadata associated
with the member. Figure 7.1 on the following page depicts the structure of an
ar(1) archive pictorially.

Each archive header is a collection of fixed size ASCII strings. Archive
headers are required to reside at even offsets in the archive file. Figure 7.1
shows the layout of the archive header as a C structure.

Listing 7.1: Archive Header Layout
struct ar_hdr {

char ar_name [16]; /* file name */

char ar_date [12]; /* file modification time */

char ar_uid [6]; /* creator user id */

char ar_gid [6]; /* creator group id */

char ar_mode [8]; /* octal file permissions */

char ar_size [10]; /* size in bytes */

#define ARFMAG "‘\n"

char ar_fmag [2]; /* consistency check */

} __packed;

The initial members of an ar(1); archive may be special:

• An archive member with name “/” is an archive symbol table. An archive
symbol table maps program symbols to archive members in an archive. It
is usually maintained by tools like ranlib and ar.

• An archive member with name “//” is an archive string table. The mem-
bers of an ar(1) header only contain fixed size ASCII strings with space

51

52 CHAPTER 7. PROCESSING AR(1) ARCHIVES

File 1 File 2 File 3

Archive ‘magic’

Archive Headers

ar name
ar date
ar uid
ar gid

ar mode
ar size
ar fmag

Archive Header Entry

Figure 7.1: The structure of ar(1) archives

and ‘/’ characters being used for string termination. File names that ex-
ceed the length limits of the ar name member are handled by placing them
in a special string table (not to be confused with ELF string tables) and
storing the offset of the file name in the ar name member as a string of
decimal digits.

The archive handling functions offered by the libelf library insulate the
application from these details of the layout of ar(1) archives.

7.2 Example: Stepping through an ar(1) archive

We now illustrate (listing 7.2) how an application may iterate through the mem-
bers of an ar(1) archive. The steps involved are:

1. Archives are opened using elf begin in the usual way.

2. Each archive managed by the libelf library tracks the next member to
opened. This information is updated using the functions elf next and
elf rand.

3. Nested calls to function elf begin retrieve ELF descriptors for the mem-
bers in the archive.

Figure 7.2 on the next page pictorially depicts how functions elf begin and
elf next are used to step through an ar(1) archive.

We now look at an example program that illustrates these concepts.

Listing 7.2: Program 6
/*

7.2. EXAMPLE: STEPPING THROUGH AN AR(1) ARCHIVE 53

File 1 File 2 File 3

elf begin()
elf next()
elf begin()

elf next()
elf begin()

elf next()
elf begin()

Archive headersAR magic

Figure 7.2: Iterating through ar(1) archives with elf begin and elf next

* Iterate through an ar(1) archive.

*/

#include <err.h>

#include <fcntl.h>

#include <libelf.h>

#include <stdio.h>

#include <stdlib.h>

#include <sysexits.h>

#include <unistd.h>

int

main(int argc , char **argv)

{

int fd;

Elf *ar , *e;

Elf_Arhdr *arh;

if (argc != 2)

errx(EX_USAGE , "usage: %s file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)

errx(EX_SOFTWARE , "ELF library initialization "

"failed: %s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)

err(EX_NOINPUT , "open \%s\" failed", argv [1]);

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)
1

err(EX_NOINPUT , "open \%s\" failed", argv [1]);

if ((ar = elf_begin(fd, ELF_C_READ , NULL)) == NULL)
2

errx(EX_SOFTWARE , "elf_begin () failed: %s.",

54 CHAPTER 7. PROCESSING AR(1) ARCHIVES

elf_errmsg (-1));

if (elf_kind(ar) != ELF_K_AR)

errx(EX_DATAERR , "%s is not an ar(1) archive.",

argv [1]);

while ((e = elf_begin(fd , ELF_C_READ , ar)) != NULL) {
3

if ((arh = elf_getarhdr(e)) == NULL)
4

errx(EX_SOFTWARE , "elf_getarhdr () failed: %s.",

elf_errmsg (-1));

(void) printf("%20s %d\n", arh ->ar_name ,

arh ->ar_size);

(void) elf_next(e);
5

(void) elf_end(e);
6

}

(void) elf_end(ar);

(void) close(fd);

exit (0);

}

1 2 We open the ar(1) archive for reading and obtain a descriptor in the
usual manner.

3 Function elf begin is used to the iterate through the members of the
archive. The third parameter in the call to elf begin is a pointer to the
descriptor for the archive itself. The return value of function elf begin
is a descriptor that references an archive member.

4 We retrieve the translated ar(1) header using function elf getarhdr. We
then print out the name and size of the member. Note that function
elf getarhdr translates names to null-terminated C strings suitable for
use with printf.

Figure 7.3 shows the translated information returned by elf getarhdr.

Listing 7.3: The Elf Arhdr Structure
typedef struct {

time_t ar_date; /* time of creation */

char *ar_name; /* archive member name */

gid_t ar_gid; /* creator ’s group */

mode_t ar_mode; /* file creation mode */

char *ar_rawname; /* ’raw’ member name */

size_t ar_size; /* member size in bytes */

uid_t ar_uid; /* creator ’s user id */

} Elf_Arhdr;

7.2. EXAMPLE: STEPPING THROUGH AN AR(1) ARCHIVE 55

5 The elf next function sets up the parent archive descriptor (referenced by
variable ar in this example) to return the next archive member on the
next call to function elf begin.

6 It is good programming practice to call elf end on descriptors that are no
longer needed.

Save the program in listing 7.2 on page 52 to file prog6.c and then compile
and run it as shown in listing 7.4.

Listing 7.4: Compiling and Running prog6

% cc -o prog6 prog6.c -lelf
1

% ./ prog6 /usr/lib/librt.a
2

timer.o 7552

mq.o 8980

aio.o 8212

sigev_thread.o 15528

1 Compile and link the program in the usual fashion.

2 We run the program against a small library and get a list of its members.

7.2.1 Random access in an ar(1) archive

Random access in the archive is supported by the function elf rand. However,
in order to use this function you need to know the file offsets in the archive for
the desired archive member. For archives containing object files this information
is present in the archive symbol table.

If an archive has an archive symbol table, it can be retrieved using the
function elf getarsym. Function elf getarsym returns an array of Elf Arsym
structures. Each Elf Arsym structure (figure 7.5) maps one program symbol to
the file offset inside the ar(1) archive of the member that contains its definition.

Listing 7.5: The Elf Arsym structure
typedef struct {

off_t as_off; /* byte offset to member header */

unsigned long as_hash; /* elf_hash () value for name */

char *as_name; /* null terminated symbol name */

} Elf_Arsym;

Once the file offset of the member is known, the function elf rand can be
used to set the parent archive to open the desired archive member at the next
call to elf begin.

56 CHAPTER 7. PROCESSING AR(1) ARCHIVES

Chapter 8

Conclusion

This tutorial covered the following topics:

• We gained an overview of the facilities for manipulating ELF objects of-
fered by the ELF(3) and GELF(3) API sets.

• We studied the basics of the ELF format, including the key data structures
involved and their layout inside ELF objects.

• We looked at example programs that retrieve ELF data structures from
existing ELF objects.

• We looked at how to create new ELF objects using the ELF(3) library.

• We looked at accessing information in the ar(1) archives.

8.1 Further Reading

There are very few books today on the topic of linking and loading. John
Levine’s “Linkers and Loaders” is a readable book that offers a overview of the
concepts involved in the process of linking and loading object files.

On the Web, Peter Seebach’s DeveloperWorks article “An unsung hero: The
hardworking ELF” covers the history and features of the ELF format. Other
tutorials include Hongjiu Liu’s “ELF: From The Programmer’s Perspective”,
which covers GCC and GNU ld, and Michael L. Haung’s “The Executable and
Linking Format (ELF)”.

Neelakanth Nadgir’s tutorial on ELF(3) and GELF(3) is a readable and brief
introduction to the ELF3 and GELF3 APIs for SolarisTM.

The Linkers and Libraries Guide from Sun Microsystems R© describes linking
and loading tools in SolarisTM. Chapter 7 of this book, “Object File Format”
contains a readable introduction to the ELF format.

The current specification of the ELF format, the “Tool Interface Standard
(TIS) Executable and Linking Format (ELF) Specification, Version 1.2” is freely
available to download.

57

http://linker.iecc.com/
http://www-128.ibm.com/developerworks/power/library/pa-spec12/index.html
http://www-128.ibm.com/developerworks/power/library/pa-spec12/index.html
http://linux4u.jinr.ru/usoft/WWW/www_debian.org/Documentation/elf/elf.html
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://developers.sun.com/solaris/articles/elf.html
http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWdev/LLM/toc.html
http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.x86.org/ftp/manuals/tools/elf.pdf

58 CHAPTER 8. CONCLUSION

Index

ar archive
header, 51
elf getarhdr, 54
layout, 51
retrieval of, 54

long file names, 52
magic, 51
random access, 55

use of elf rand, 55
reading of
elf begin, 54

sequential access, 52
elf begin, 52
elf next, 52

string table, 51
symbol table, 51, 55
elf getarsym, 55
retrieval of, 55

dynamically loadable objects, 15

ELF
class, 16

agnostic APIs, 19, 20, 27, 29,
35, 38

retrieval of, 23
creation of, 43
data conversion

application control over, 19
automatic, 19

definition of, 7
descriptor

allocation, 43
e ident

retrieval of, 23
endianness, 16
fill character, 48
version number, 16

Elf Arhdr
definition of, 54

Elf Arsym

definition of, 55
Elf Data

adding to section descriptor, 43
alignment, 37
data pointer, 37
data size, 37
data type, 37
definition of, 35
describing application memory, 35
descriptor version, 37
offset in section, 37

Elf Scn
definition of, 35
Elf Data descriptors, 35
use of, 35

executable
definition of, 15

executable header, 15
allocation, 47

functions, 43
gelf newehdr, 43

e ident
definition, 16

e ident field, 16
executable architecture, 17
executable type, 17
flags, 18
layout, 16
own size, 18
program entry point, 18
retrieval of, 22
setting the string table index, 47
updating

with elf update, 43, 47
extended numbering, 18, 19

APIs to use, 20
elf getphdrnum, 23
elf getshdrnum, 23
elf getshdrstrndx, 23
need for, 19
program header, 20

59

60 INDEX

sections, 19
use of APIs, 23

GELF, 20
downsides to, 20

libelf
automatic data conversion, 19
header elf.h, 12
header gelf.h, 22
linking with, 13, 23, 30, 40, 47, 55
purpose of, 7

library
shared, 15

linking
definition of, 15

loading
of programs, 15, 25

object creation
default layout, 48
layout

application control of, 48
elf fill, 48
fill character, 48

memory management rules, 49
non-native byte order, 43
refreshing of data structures, 49
with elf begin, 46
writing to file

with elf update, 47
object modification

flagging modified data, 49
process to follow, 49

object representation, 18
automatic translation, 35
differences between file and mem-

ory, 19
in-file, 18
in-memory, 18

program header
entry size, 18
layout in file, 18
table, 15, 25

allocation of, 43
entry, 25
iteration over, 29
layout, 26
retrieval of, 29

self-description, 31

relocatable
definition of, 15

sections, 15, 16, 33
adding to an object, 43
alignment of, 34
coverage by data descriptors, 35
data

retrieval of, 38
entry sizes, 34
flags, 34
hash values, 46
header table entry
elf32 getshdr, 35
elf64 getshdr, 35
gelf getshdr, 35
retrieval of, 35

header table, 16, 33
entry size, 18
layout in file, 18

indices
SHN UNDEF, 34
valid indices, 34

iteration through
elf nextscn, 35

names
elf strptr, 40
representation of, 34
retrieval of, 38, 40
string table, 18, 34, 40

placement in file, 33
retrieval
elf getscn, 35

size of, 34
string table, 37, 46
elf strptr, 38
layout, 37
retrieval of strings, 38

type, 34
reserved values, 34

use of, 33
segments, 25

aligment of, 27
definition of, 25
example layout, 25
examples of, 31
file size of, 27
flags, 27

INDEX 61

memory size of, 27
offset in file, 27
type, 26

reserved values, 26
virtual address of, 27

	Introduction
	Tutorial Overview
	Tutorial Structure

	Getting Started
	Example: Getting started with libelf

	Peering Inside an ELF Object
	The Layout of an ELF file
	Example: Reading an ELF executable header

	Examining the Program Header Table
	The ELF Program Header Table
	Example: Reading a Program Header Table

	Looking at Sections
	ELF section handling with libelf
	Example: Listing section names

	Creating new ELF objects
	Example: Creating an ELF object
	The finer points in creating ELF objects

	Processing ar(1) archives
	Archive structure
	Example: Stepping through an ar(1) archive

	Conclusion
	Further Reading

