

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper. �©
Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system,or transmitted in any form
or by any means, electronic, mechanical, photocopying, scanning, or otherwise, without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission”and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN-13: 978-0-12-374515-6

For information on all Morgan Kaufmann publications,
visit our Website at www.books.elsevier.com

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Foreword

In Federalist 51, James Madison wrote:“If men were angels, no government would
be necessary.” If he lived today, Madison might have written: “If software devel-
opers were angels, debugging would be unnecessary.” Most of us, however, make
mistakes, and many of us even make errors while designing and writing software.
Our mistakes need to be found and fixed, an activity called debugging that origi-
nated with the first computer programs. Today every computer program written
is also debugged, but debugging is not a widely studied or taught skill. Few books,
beyond this one, present a systematic approach to finding and fixing programming
errors.

Be honest: Does debugging seem as important, difficult, or worthy of study as
writing a program in the first place? Or, is it just one of those things that you need
to do to finish a project? Software developers though spend huge amounts of time
debugging—estimates range up to half or more of their workdays. Finding and fixing
bugs faster and more effectively directly increases productivity and can improve
program quality by eliminating more defects with available resources. Preventing
mistakes in the first place would be even better, but no one has yet found the
technique to prevent errors, so effective debugging will remain essential.

Improved programming languages and tools can supplant, but not eliminate,
debugging, by statically identifying errors and by dynamically detecting invariant
violations. For example, the type system in modern languages such as Java and
C# prevents many simple mistakes that slip by C programmers. Moreover, these
languages’ runtime bounds checks stop a program when it strays out of bounds,
which may be billions of instructions before the error manifests itself. Unfortunately,
there are countless ways in which a program can go wrong, almost all of which
languages and tools cannot detect or prevent. For example, in recent years there
has been considerable work in verifying sequences of operations in a program.Tools
can ensure that a file is opened before a program reads it, but they cannot check
that the correct file is accessed or that the program properly interprets its contents.
If either mistake occurs, someone still must debug the program to understand the
error and determine how to fix it.

In addition, debugging can be an enjoyable activity that shares the thrill of the
hunt and chase found in a good detective novel or video game. On the other hand,
a protracted, unsuccessful search for a bug in your code quickly loses its charm,
particularly when your boss is asking repeatedly about your (lack of) progress.
Learning to debug well is essential to enjoying software development.

This book can teach you how to debug more effectively. It is a complete and
pragmatic overview of debugging, written by a talented researcher who has devel-
oped many clever ways to isolate bugs. It explains best practices for finding and
fixing errors in programs, ranging from systematically tracking error reports, repro-
ducing failures, observing symptoms, isolating the cause, and correcting defects.
Along with basic techniques and commonly used tools, the book also explores the xv

xvi Foreword

author’s innovative techniques for isolating minimal input to reproduce an error
and for tracking cause and effect through a program.

Studying this book will make you a better programmer. You will be able to find
and fix errors in your code (and your colleague’s code) faster and more effectively,
a valuable skill that will enable you to finish projects earlier and produce programs
with fewer defects. Also, if you read between the lines you will learn how to write
code that is more easily tested and debugged, which further increases your ability
to find and correct defects. And thinking hard about what can go wrong with your
program can help you avoid mistakes in the first place, so you have less to debug.

James Larus
Microsoft Research

Preface

This is a book about bugs in computer programs—how to reproduce them, how
to find them, and how to fix them such that they do not occur. This book teaches
a number of techniques that allow you to debug any program in a systematic, and
sometimes even elegant, way. Moreover, the techniques can be widely automated,
which allows you to let your computer do most of the debugging. Questions this
book addresses include:

■ How can I reproduce failures faithfully?
■ How can I isolate what is relevant for the failure?
■ How does the failure come to be?
■ How can I fix the program in the best possible way?
■ How can I learn from mistakes to prevent future ones?

Once you understand how debugging works,you will not think about debugging
in the same way. Instead of seeing a wild mess of code, you will think about causes
and effects, and you will systematically set up and refine hypotheses to track failure
causes. Your insights may even make you set up your own automated debugging
tool. All of this allows you to spend less time on debugging, which is why you are
interested in automated debugging in the first place, right?

How This Book Came to Be Written
Although I work as a researcher, I have always considered myself a programmer,
because this is how I spend most of my time. During programming, I make mis-
takes, and I have to debug my code. I would like to say that I am some type of
überprogrammer—that I never make mistakes—but I am only human, just like
anyone else.

During my studies,I have learned that an ounce of prevention is more than worth
a pound of cure. I have learned many ways of preventing mistakes. Today, I teach
them to my students. However, in striving for prevention we must not forget about
the cure. If we were doctors,we could not simply refuse treatment just because our
patient had not taken all possible preventive measures.

So, rather than designing yet another ultimate prevention, I have sought good
cures. This same pragmatic attitude has been adopted by other researchers around
the globe. I am happy to report that we have succeeded. Today, a number of
advanced debugging techniques are available that widely automate the debugging
process.

These techniques not only automate debugging, but also turn debugging from
a black art into a systematic and well-organized discipline that can be taught just
like any software engineering topic. Thus, I created a course on automated debug-
ging and reworked the lecture notes into a book. The result is what you see
before you. xvii

xviii Preface

What Is New in this Second Edition
In the past three years, the field of automated debugging has made tremendous
advances. This second edition treats some of the most exciting novelties.

A new chapter on “Learning from Mistakes.” In Chapter 16, I describe recent
work on leveraging change and bug databases, to detect automatically where
previous defects were located, and how to predict where the next ones will be.

New insights on how to report problems. Chapter 2 now includes insights
from a ground-breaking study by Bettenburg et al., who have surveyed what
developers need most in a problem report.

Reproducing crashes. In Chapter 4, I present the Cdd and ReCrash tools, which
allow for automatic reproduction of crashes while requiring little to no overhead.
This addresses one of the most pressing problems in debugging.

New material on tracking origins. Chapter 9 now discusses the WHYLINE tool
for JAVA,allowing expert developers to ask questions on why specific things hap-
pened during execution,or why they did not (e.g., “Why did this error message
occur?”).

Updated and extended discussions all over the book. Along with several
updates on the state of the art, I have also fixed all errors reported by readers,
and revised and updated all the material.

Despite the additions, the numbering of chapters,sections,and exercises is virtually
unchanged. Thus, references to items in the first edition should also apply to this
second edition (which is helpful if you use this book in a course).

Audience
This book is intended for computer professionals, graduate students, and advanced
undergraduates who want to learn how to debug programs systematically and with
automated support. The reader is assumed to be familiar with programming and
manual testing, either from introductory courses or work experience.

What This Book Is and What It Is Not
This book focuses on the cure of bugs—that is, the act of isolating and fixing the
defect in the program code once a failure has occurred. It only partially covers pre-
venting defects. Many other books are available that provide an in-depth treatment
of this topic. In fact,one might say that most of computer science is concerned with
preventing bugs. However, when prevention fails, there is need for a cure, and that
is what this book is about.

Overview of Content
This book is divided into 16 chapters and an Appendix. Chapters 1, 6, and 12 are
prerequisites for later chapters.

Preface xix

At the end of each chapter, you will find a section called “Concepts,” which
summarizes the key concepts of the chapter. Some of these concepts are denoted
“How To.” These summarize recipes that can be easily followed (they are also listed
in the Contents). Furthermore, each chapter ends with practical exercises, for ver-
ifying your knowledge, and a “Further Reading” section. This book is organized as
follows.

Chapter 1: How Failures Come To Be
Your program fails. How can this be? The answer is that the programmer created
a defect in the code. When the code is executed, the defect causes an infection in
the program state, which later becomes visible as a failure. To find the defect, one
must reason backward, starting with the failure. This chapter defines the essential
concepts when talking about debugging, and hints at the techniques discussed
subsequently—hopefully whetting your appetite for the remainder of this book.

Chapter 2: Tracking Problems
This chapter deals with the issue of how to manage problems as reported by users—
how to track and manage problem reports,how to organize the debugging process,
and how to keep track of multiple versions. This information constitutes the basic
framework in which debugging takes place.

Chapter 3: Making Programs Fail
Before a program can be debugged,we must set it up such that it can be tested—that
is, executed with the intent to make it fail. In this chapter, we review basic testing
techniques, with a special focus on automation and isolation.

Chapter 4: Reproducing Problems
The first step in debugging is to reproduce the problem in question—that is,to create
a test case that causes the program to fail in the specified way.The first reason is to
bring it under control, such that it can be observed. The second reason is to verify
the success of the fix. This chapter discusses typical strategies for reproducing an
operating environment, including its history and problem symptoms.

Chapter 5: Simplifying Problems
Once we have reproduced a problem, we must simplify it—that is, we must find
out which circumstances are not relevant to the problem and can thus be omitted.
This process results in a test case that contains only the relevant circumstances.
In the best case, a simplified test case report immediately pinpoints the defect. We
introduce delta debugging, an automated debugging method that simplifies test
cases automatically.

Chapter 6: Scientific Debugging
Once we have reproduced and simplified a problem, we must understand how the
failure came to be. The process of arriving at a theory that explains some aspect of

xx Preface

the universe is known as scientific method. It is the appropriate process for obtain-
ing problem diagnostics. We introduce basic techniques of creating and verifying
hypotheses, creating experiments, conducting the process in a systematic fashion,
and making the debugging process explicit.

Chapter 7: Deducing Errors
In this chapter, we begin exploring the techniques for creating hypotheses that
were introduced in Chapter 6.We start with deduction techniques—reasoning from
the abstract program code to the concrete program run. In particular, we present
program slicing, an automated means of determining possible origins of a vari-
able value. Using program slicing, one can effectively narrow down the number of
possible infection sites.

Chapter 8: Observing Facts
Although deduction techniques do not take concrete runs into account,observation
determines facts about what has happened in a concrete run. In this chapter, we
look under the hood of the actual program execution and introduce widespread
techniques for examining program executions and program states.These techniques
include classical logging, interactive debuggers, and postmortem debugging—as
well as eye-opening visualization and summarization techniques.

Chapter 9: Tracking Origins
Once we have observed an infection during debugging, we need to determine its
origin.We discuss omniscient debugging,a technique that records an entire execu-
tion history such that the user can explore arbitrary moments in time without ever
restarting the program. Furthermore,we explore dynamic slicing, a technique that
tracks the origins of specific values.

Chapter 10: Asserting Expectations
Observation alone is not enough for debugging. One must compare the observed
facts with the expected program behavior. In this chapter, we discuss how to auto-
mate such comparisons using well-known assertion techniques.We also show how
to ensure the correct state of important system components such as memory.

Chapter 11: Detecting Anomalies
Although a single program run can tell you quite a bit,performing multiple runs for
purpose of comparison offers several opportunities for locating commonalities and
anomalies—anomalies that frequently help locate defects. In this chapter, we dis-
cuss how to detect anomalies in code coverage and anomalies in data accesses. We
also show how to infer invariants from multiple test runs automatically, in order
to flag later invariant violations. All of these anomalies are good candidates for
identification as infection sites.

Preface xxi

Chapter 12: Causes and Effects
Deduction, observation, and induction are all useful in finding potential defects.
However, none of these techniques alone is sufficient in determining a failure
cause. How does one identify a cause? How does one isolate not just a cause but
the actual cause of a failure?This chapter lays the groundwork for techniques aimed
at locating failure causes systematically and automatically.

Chapter 13: Isolating Failure Causes
This chapter is central to automating most of debugging.We show how delta debug-
ging isolates failure causes automatically—in program input,in the program’s thread
schedule, and in program code. In the best case, the reported causes immediately
pinpoint the defect.

Chapter 14: Isolating Cause–Effect Chains
This chapter presents a method of narrowing down failure causes even further. By
extracting and comparing program states, delta debugging automatically isolates
the variables and values that cause the failure, resulting in a cause–effect chain of
the failure: For example,“variable x was 42; therefore p became null, and thus the
program failed.”

Chapter 15: Fixing the Defect
Once we have understood the failure’s cause–effect chain,we know how the failure
came to be. However, we must still locate the origin of the infection—that is, the
actual location of the defect. In this chapter, we discuss how to narrow down the
defect systematically—and, having found the defect, how to fix it.

Chapter 16: Learning from Mistakes
At the end of each debugging session,one wonders how the defect could have come
to be in the first place.We discuss techniques to collect,aggregate,and locate defect
information; techniques to predict where the next defects will be; and what to do
to prevent future errors.

Appendix: Formal Definitions
For the sake of readability, all formal definitions and proofs have been grouped in
the Appendix.

Glossary
The Glossary defines important terms used throughout the book.

Bibliography
The bibliography presents a wide range of sources of further reading in the topics
covered by the text.

xxii Preface

Supplements, Resources, and Web Extensions
Much of the material covered in this book has never been discussed in a text-
book before. The later chapters have not been widely tested in practice, and
like any book on an evolving field, this one will benefit from more refinement
and from further work. In other words, this book is full of bugs, and I wel-
come any comments on it. You can write to me care of Morgan Kaufmann, or
email me at zeller@whyprogramsfail.com. There is also a Web page at http://www.
whyprogramsfail.com for late-breaking information and updates (read: errata).

Advice for Instructors
I have used this book for five graduate courses on automated debugging. Each
course consisted of approximately 16 lectures of 60 to 90 minutes each. Essen-
tially, there was one lecture per chapter. The exercises stem from these courses
(and their exams). I have also used parts of the book for a number of tutorials
on debugging, as well as for inclusion in programming and software engineering
courses. For your convenience, my presentation slides for these courses are avail-
able in Keynote and Powerpoint format. Instructions on how to access them are
available at http://www.whyprogramsfail.com.

If you prefer to make your own slides,all of the original illustrations for this book
are also available at this site.

Advice for Readers
Typographics
To keep things simple, most examples in this book use simple input/output
mechanisms—that is, the command line and the console. In all of these exam-
ples, typewriter font stands for program output, and bold typewriter font
for user input. The command-line prompt is denoted by a dollar sign ($), and the
cursor by an underscore (_). The following is a simple example. The user invokes
the hello program, which prints the text Hello, world! on the console.

$./hello
Hello, world!
$ _

Programming Environment
The concepts and techniques discussed in this book do not depend on a particular
programming environment or operating system.To illustrate the techniques,though,
I frequently use command-line tools, typically from the Linux/UNIX community. In
addition to saving space,this is a matter of simplicity;these command-line tools pro-
vide a functional core similar to that found in almost all sophisticated programming
environments. Therefore, you should have no trouble transferring the examples to
your personal programming workbench.

Preface xxiii

ACKNOWLEDGMENTS
Many people have had a part in the development of this book. I would like to
thank everybody who reviewed drafts of the manuscript or parts of it: Philipp
Bouillon, Holger Cleve, David Cok, Michael Ernst, David Evans, Clint Jeffery, Dieter
Kranzlmüller, Jens Krinke, Raimondas Lencevicius, Bil Lewis, Ben Liblit, Christian
Lindig, Edu Metz, Robert Muth, Stephan Neuhaus, Jeff Offutt, Kerstin Reese, Zoltan
Somogyi, Peter Weißgerber, Thomas Zimmermann, and the students of the Auto-
mated Debugging courses at Saarland University, the University of Washington,
and ETH Zürich. Philipp Bouillon, Silvia Breu, Holger Cleve, Andreas Leitner, and
Martin Mehlmann also helped with the conception of the exercises. Thanks to all
readers who reported bugs in the first edition, in particular Martin Burger, Roland
Illig, and Yong-Wu Wang. Christa Preisendanz of dpunkt Verlag and Tim Cox of
Morgan Kaufmann Publishers were most helpful. And finally, my family has
supported me enormously while writing this book—it’s great to have you with me.

Have fun debugging!

For the Snark’s a peculiar creature, that won’t
Be caught in a commonplace way.
Do all that you know, and try all that you don’t:
Not a chance must be wasted to-day!

– LEWIS CARROLL

The Hunting of the Snark (1876)

CHAPTER

1How Failures Come to Be

Your program fails. How can this be? The answer is that the programmer creates
a defect in the code. When the code is executed, the defect causes an infec-
tion in the program state, which later becomes visible as a failure. To find the
defect, one must reason backward, starting with the failure. This chapter defines
the essential concepts when talking about debugging, and hints at the techniques
discussed subsequently—hopefully whetting your appetite for the remainder of this
book.

1.1 MY PROGRAM DOES NOT WORK!
Oops!Your program fails. Now what? This is a common situation that interrupts our
routine and requires immediate attention. Because the program mostly worked until
now, we assume that something external has crept into our machine—something
that is natural and unavoidable;something we are not responsible for—namely,a bug.

If you are a user, you have probably already learned to live with bugs. You may
even think that bugs are unavoidable when it comes to software. As a programmer,
though, you know that bugs do not creep out of mother nature into our programs.
(See Bug Story 1 for an exception.) Rather, bugs are inherent parts of the programs
we produce. At the beginning of any bug story stands a human who produces the
program in question.

The following is a small program I once produced.The sample program is a very
simple sorting tool. Given a list of numbers as command-line arguments, sample
prints them as a sorted list on the standard output ($ is the command-line prompt).

$./sample 9 7 8
Output: 7 8 9
$ _

Unfortunately, sample does not always work properly, as demonstrated by the
following failure:

$./sample 11 14
Output: 0 11
$ _

1

2 CHAPTER 1 How Failures Come to Be

BUG STORY 1

The First Bug
We do not know when the first defect in a program was introduced. What we know,
though,is when the first actual bug was found. It may have been in search of plant food,
or a warm place to lay its eggs,or both. Now it wandered around in this humming,warm
machine that constantly clicked and rattled. But suddenly,it got stuck between the metal
contacts of a relay—actually, one of 13,000 high-performance relays commissioned for
this particular machine. The current killed it instantly—and its remains caused the
machine to fail.

This first actual bug was a moth, retrieved by a technician from the Harvard Mark II
machine on September 9,1947.The moth got taped into the logbook,with the comment
“1545 Relay #70 Panel F (moth) in relay. First actual case of bug being found.”The moth
thus became the living proof that computer problems could indeed be caused by actual
bugs.

Although the sample output is sorted and contains the right number of items,
some original arguments are missing and replaced by bogus numbers. Here, 14 is
missing and replaced by 0. (Actual bogus numbers and behavior on your system
may vary.) From the sample failure,we can deduce that sample has a bug (or,more
precisely, a defect). This brings us to the key question of this chapter:

HOW DOES A DEFECT CAUSE A FAILURE, AND HOW CAN WE FIX IT?

1.2 FROM DEFECTS TO FAILURES
In general, a failure such as that in the sample program comes about in the four
stages discussed in the following.

1. The programmer creates a defect.A defect is a piece of the code that can cause an
infection. Because the defect is part of the code,and because every code is initially
written by a programmer, the defect is technically created by the programmer. If
the programmer creates a defect, does that mean the programmer was at fault?
Not necessarily. Consider the following:
■ The original requirements did not foresee future changes.Think about theY2K

problem, for instance.
■ A program behavior may become classified as a “failure” only when the user

sees it for the first time.
■ In a modular program,a failure may happen because of incompatible interfaces

of two modules.
■ In a distributed program, a failure may be the result of some unpredictable

interaction of several components.

1.2 From Defects to Failures 3

BUG STORY 2

F-16 Problems
A programmer who works for General Dynamics in Ft. Worth,TX, wrote some of the
code for the F-16, and he has reported some neato-whiz-bang bug/feature they keep
finding in the F-16.

■ Because the F-16 is a fly-by-wire aircraft, the computer keeps the pilot from doing
dumb things to himself. So if the pilot jerks hard over on the joystick, the computer
will instruct the flight surfaces to make a nice and easy 4- or 5-G flip. But the plane
can withstand a much higher flip than that. So when they were “flying” the F-16 in
simulation over the equator, the computer got confused and instantly flipped the
plane over, killing the pilot [in simulation]. And since it can fly forever upside down,
it would do so until it ran out of fuel.

The remaining bugs were actually found while flying, rather than in simulation.

■ One of the first things the Air Force test pilots tried on an early F-16 was to tell the
computer to raise the landing gear while standing still on the runway. Guess what
happened? Scratch one F-16. […]

■ The computer system onboard has a weapons management system that will attempt
to keep the plane flying level by dispersing weapons and empty fuel tanks in a
balanced fashion. So,if you ask to drop a bomb the computer will figure out whether
to drop a port or starboard bomb in order to keep the load even. One of the early
problems with that was the fact that you could flip the plane over and the computer
would gladly let you drop a bomb or fuel tank. It would drop, dent the wing, and
then roll off.

In such settings, deciding on who is to blame is a political, not a technical, ques-
tion. Nobody made a mistake, and yet a failure occurred. (See Bug Story 2 for
more on such failures.)

2. The defect causes an infection. The program is executed,and with it the defect.
The defect now creates an infection—that is, after execution of the defect, the
program state differs from what the programmer intended.

A defect in the code does not necessarily cause an infection. The defective
code must be executed, and it must be executed under such conditions that the
infection actually occurs.

3. The infection propagates. Most functions result in errors when fed with erro-
neous input.As the remaining program execution accesses the state, it generates
further infections that can spread into later program states.An infection need not,
however, propagate continuously. It may be overwritten, masked, or corrected
by some later program action.

4. The infection causes a failure. A failure is an externally observable error in
the program behavior. It is caused by an infection in the program state.

4 CHAPTER 1 How Failures Come to Be

The program execution process is sketched in Figure 1.1. Each program state
consists of the values of the program variables, as well as the current execution
position (formally, the program counter). Each state determines subsequent states,
up to the final state (at the bottom in the figure),in which we can observe the failure
(indicated by the �).

Not every defect results in an infection,and not every infection results in a failure.
Thus,having no failures does not imply having no defects.This is the curse of testing,
as pointed out by Dijkstra.Testing can only show the presence of defects,but never
their absence.

In the case of sample, though, we have actually experienced a failure. In hind-
sight,every failure is thus caused by some infection,and every infection is caused by
some earlier infection,originating at the defect.This cause–effect chain from defect
to failure is called an infection chain.

The issue of debugging is thus to identify the infection chain, to find its root
cause (the defect), and to remove the defect such that the failure no longer occurs.
This is what we shall do with the sample program.

Variable and input values

P
ro

gr
am

 e
x

ec
u

ti
o

n

Observer sees failure

Sane state

Erroneous code

Infected state

Program
states

FIGURE 1.1

A program execution as a succession of states. Each state determines the following states,
and where from defect to failure errors propagate to form an infection chain.

1.3 Lost in Time and Space 5

1.3 LOST IN TIME AND SPACE
In general, debugging of a program such as sample can be decomposed into seven
steps (List 1.1), of which the initial letters form the word TRAFFIC.

1. Track the problem in the database.
2. Reproduce the failure.
3. Automate and simplify the test case.
4. Find possible infection origins.
5. Focus on the most likely origins.
6. Isolate the infection chain.
7. Correct the defect.

Of these steps,tracking the problem in a problem database is mere bookkeeping
(see also Chapter 2) and reproducing the problem is not that difficult for determin-
istic programs such as sample. It can be difficult for nondeterministic programs
and long-running programs, though, which is why Chapter 4 discusses the issues
involved in reproducing failures.

Automating the test case is also rather straightforward, and results in auto-
matic simplification (see also Chapter 5). The last step, correcting the defect, is
usually simple once you have understood how the defect causes the failure (see
Chapter 15).

The final three steps—from finding the infection origins to isolating the infection
chain—are the steps concerned with understanding how the failure came to be.

LIST 1.1: Seven Steps in Debugging (TRAFFIC)

Track the problem in the database.

Reproduce the failure.

Automate and simplify the test case.

Find possible infection origins.

Focus on the most likely origins:

■ Known infections
■ Causes in state, code, and input
■ Anomalies
■ Code smells

Isolate the infection chain.

Correct the defect.

6 CHAPTER 1 How Failures Come to Be

This task requires by far the most time, as well as other resources. Understanding
how the failure came to be is what the rest of this section, and the other chapters
of this book, are about.

Why is understanding the failure so difficult? Considering Figure 1.1,all one need
do to find the defect is isolate the transition from a sane state (i.e., noninfected, as
intended) to an infected state.This is a search in space (as we have to find out which
part of the state is infected) as well as in time (as we have to find out when the
infection takes place).

However,examination of space and time are enormous tasks for even the simplest
programs. Each state consists of dozens, thousands, or even millions of variables.
For example, Figure 1.2 shows a visualization of the program state of the GNU
compiler (GCC) while compiling a program. The program state consists of about
44,000 individual variables, each with a distinct value, and about 42,000 references
between variables. (Chapter 14 discusses how to obtain and use such program states
in debugging.)

Not only is a single state quite large, a program execution consists of thousands,
millions, or even billions of such states. Space and time thus form a wide area in
which only two points are well known (Figure 1.3): initially, the entire state is sane
(�), and eventually some part of the state is infected (�). Within the area spanned
by space and time, the aim of debugging is to locate the defect—a single transition
from sane (�) to infected (�) that eventually causes the failure (Figure 1.4).

Thinking about the dimensions of space and time, this may seem like searching
for a needle in an endless row of haystacks—and indeed, the fact is that debugging

/hash table/Hash table/Hash table/Hash table
Extend tabExtend tabExtend tabExtend tab

/yyvsa

FIGURE 1.2

A program state of the GNU compiler. The state consists of 44,000 individual variables (shown
as vertices) and about 42,000 references between variables (shown as edges).

1.3 Lost in Time and Space 7

T
im

e

Variables

?

FIGURE 1.3

Debugging as search in space and time. Initially, the program state is sane (�), eventually,
it is infected (�). The aim of debugging is to find out where this infection originated.

Variables

T
im

e

FIGURE 1.4

The defect that is searched. A defect manifests itself as a transition from sane state (�) to
infected state (�), where an erroneous statement causes the initial infection.

is largely a search problem. This search is driven by the following two major
principles:

1. Separate sane from infected. If a state is infected, it may be part of the infec-
tion propagating from defect to failure. If a state is sane, there is no infection
to propagate.

2. Separate relevant from irrelevant. A variable value is the result of a limited
number of earlier variable values.Thus,only some part of the earlier state may
be relevant to the failure.

8 CHAPTER 1 How Failures Come to Be

Variables

T
im

e

FIGURE 1.5

Deducing value origins. By analyzing the program code, we can find out that an infected
variable value (�) can have originated only from a small number of earlier variables (�).

Figure 1.5 illustrates this latter technique. The failure, to reiterate, can only have
been caused by a small number of other variables in earlier states (denoted using
the exclamation point, �), the values of which in turn can only have come from
other earlier variables. One says that subsequent, variable values depend on earlier
values.This results in a series of dependences from the failure back to earlier variable
values.To locate the defect, it suffices to examine these values only—as other values
could not have possibly caused the failure—and separate these values into sane and
infected. If we find an infected value, we must find and fix the defect that causes it.
Typically, this is the same defect that causes the original failure.

Why is it that a variable value can be caused only by a small number of earlier
variables? Good programming style dictates division of the state into units such that
the information flow between these units is minimized.Typically,your programming
language provides a means of structuring the state, just as it helps you to structure
the program code. However, whether you divide the state into functions, modules,
objects,packages,or components, the principle is the same:a divided state is much
easier to conquer.

1.4 FROM FAILURES TO FIXES
Let’s put our knowledge about states and dependences into practice, following the
TRAFFIC steps (List 1.1).

1.4.1 Track the Problem
The first step in debugging is to track the problem—that is, to file a problem report
such that the defect will not go by unnoticed. In our case,we have already observed

1.4 From Failures to Fixes 9

the failure symptom: the output of sample, when invoked with arguments 11 and
14, contains a zero.

$./sample 11 14
Output: 0 11
$ _

An actual problem report would include this invocation as an instruction on how
to reproduce the problem (see Chapter 2).

1.4.2 Reproduce the Failure
In case of the sample program, reproducing the failure is easy. All you need
do is reinvoke sample, as shown previously. In other cases, though, reproducing
may require control over all possible input sources (techniques are described in
Chapter 4).

1.4.3 Automate and Simplify the Test Case
If sample were a more complex program, we would have to think about how to
automate the failure (in that we want to reproduce the failure automatically) and
how to simplify its input such that we obtain a minimal test case. In the case of
sample,though,this is not necessary (for more complex programs,Chapter 5 covers
the details).

1.4.4 Find Possible Infection Origins
Where does the zero in the output come from?This is the fourth step in theTRAFFIC
steps:We must find possible infection origins.To find possible origins,we need the
actual C source code of sample, shown in Example 1.1. We quickly see that the
program consists of two functions:shell_sort() (which implements the shell sort
algorithm) and main,which realizes a simple test driver around shell_sort().The
main function:

■ Allocates an array a[] (line 32).
■ Copies the command-line arguments into a[] (lines 33–34).
■ Sorts a[] by invoking shell_sort() (line 36).
■ Prints the content of a[] (lines 38–41).

By matching the output to the appropriate code, we find that the 0 printed
by sample is the value of the variable a[0], the first element of the array a[].
This is the infection we observe: at line 39 in sample.c, variable a[0] is obviously
zero.

Where does the zero in a[0] come from?Working our way backward from line 40,
we find in line 36 the call shell_sort(a, argc), where the array a[] is passed
by reference.This function might well be the point at which a[0] was assigned the
infected value.

10 CHAPTER 1 How Failures Come to Be

EXAMPLE 1.1: The sample program sorts given numbers—that is, mostly

1 /* sample.c -- Sample C program to be debugged */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 static void shell_sort(int a[], int size)
7 {
8 int i, j;
9 int h = 1;
10
11 do {
12 h = h * 3 + 1;
13 } while (h <= size);
14 do {
15 h /= 3;
16 for (i = h; i < size; i++)
17 {
18 int v = a[i];
19 for (j = i; j >= h && a[j --- h] > v; j ---= h)
20 a[j] = a[j --- h];
21 if (i != j)
22 a[j] = v;
23 }
24 } while (h != 1);
25 }
26
27 int main(int argc, char *argv[])
28 {
29 int *a;
30 int i;
31
32 a = (int *)malloc((argc --- 1) * sizeof(int));
33 for (i = 0; i < argc --- 1; i++)
34 a[i] = atoi(argv[i + 1]);
35
36 shell_sort(a, argc);
37
38 printf("Output: ");
39 for (i = 0; i < argc --- 1; i++)
40 printf("%d ", a[i]);
41 printf("N");
42
43 free(a);
44
45 return 0;
46 }

Unfortunately, shell_sort() in lines 6–25 is quite obscure. We cannot trace
back the value of a[0] to a specific origin simply by deduction from the program
code. Instead, we have to observe what actually happens in the failing run.

1.4 From Failures to Fixes 11

Variables

argv argv
argc

3 “11” “14” ?

11

?

14

? ?

3 “11” “14” 0 11 ? 2

0

1

2

[1] [2] [0] [1] [2] i size
a=malloc(...)

i=0

a[i]=atoi(argv[i+1])

a[i]=atoi(argv[i+1])

shell_sort(a,argc)

return0

i++

i++

3 ?

h
a a a

T
im

e

FIGURE 1.6
Observing the sample run. Using observation tools, we can observe the program state as it
progresses through time.

In principle, we can observe anything about the sample run, as sketched in
Figure 1.6. We can even “execute” it on paper. However, this approach does not
scale. We must focus on specific parts of the state or on specific moments in time.
Relying on our earlier deduction on the origins of a[0],we focus on the execution
of shell_sort().

■ We can easily find out that shell_sort() does not access any nonlocal variables.
Whatever comes out of shell_sort() is determined by its input. If we observe
the arguments at the invocation of shell_sort(), two things can happen:

1. The arguments at the invocation of shell_sort(�) are sane (i.e., are just as
intended). In this case, the infection must take place during the execution
of shell_sort(), as sketched in Figure 1.7.

2. The arguments are already infected. In this case,the infection must have taken
place before the execution of shell_sort().

To find out how shell_sort()was actually invoked,we need a means of observ-
ing the state during execution. In this introductory chapter, we use the simplest of
all observation techniques: We insert output statements in the code that log spe-
cific variables and their values when executed. For instance, we could insert the
following code in line 10 to have the values of the parameters a[] and size logged
on the standard error channel whenever shell_sort() is invoked.

12 CHAPTER 1 How Failures Come to Be

Variables

T
im

e

FIGURE 1.7
Observing a transition from sane to infected. If we know that an earlier state is sane (�) and a
later state is infected (�), we can narrow down our search to isolate the transition between
these two states.

fprintf(stderr, "At shell_sort");
for (i = 0; i < size; i++)

fprintf(stderr, "a[%d] = %d\n", i, a[i]);
fprintf(stderr, "size = %d\n", size);

1.4.5 Focus on the Most Likely Origins
After inserting the code and restarting sample with the arguments 11 and 14, you
will find that at shell_sort() the values of the parameters are as follows.

a[0] = 11
a[1] = 14
a[2] = 0
size = 3

We see that shell_sort() is invoked with three elements—that is, the array a[]
to be sorted is [11, 14, 0].This state is infected—that is,a[] should contain only
two elements. As discussed previously, an infected state is likely to cause failures,
and this particular state may well be the cause of our failure. Our hypothesis is that
shell_sort() properly sorts the three elements of a[] in place to [0, 11, 14].
Later on, though,only the first two elements of a[] will be printed, resulting in the
failure output.

1.4.6 Isolate the Origin of the Infection
According to our earlier reasoning, the infection must have occurred before the
invocation of shell_sort(). Obviously,the parameter size is wrong.We can trace

1.5 From Failures to Fixes 13

back its origin to the point at which shell_sort() is invoked: In line 36, we find
the invocation

shell_sort(a, argc);

and find that the size parameter gets its value from the argc variable. However,
argc is not the number of elements in a[]. It is the number of arguments to the
sample program, including the name sample itself (argc is always one more than
the number of elements in a). Thus, the following is our speculation about what is
happening in our program:

1. The array a[] is allocated and initialized with the correct number of
elements (2).

2. shell_sort() is invoked such that the size parameter is 3 instead of 2 (the
state is infected).

3. size being 3 causes shell_sort() to access a[] beyond the allocated space
(namely, at a[2]).

4. The uninitialized memory at a[2] happens to be 0.
5. During the sort,a[2] is eventually swapped with a[0], thus setting a[0] to

zero (the infection has spread to a[0]).
6. Thus, the zero value of a[0] is printed, causing the failure.

You may wonder why sample actually worked when being invoked with the
arguments 9 7 8.The defect was the same,and it caused the same infection. How-
ever, as a[3] in this case turned out to be larger than 9 it did not get swapped with
another array element. At the return of shell_sort() the infection was gone, and
thus the defect never showed up as a failure.

1.4.7 Correct the Defect
So far, we are still speculating about the failure cause. To deliver the final proof, we
have to correct the defect. If the failure no longer occurs, we know that the defect
caused the failure.

In addition to prohibiting the failure in question we want to prohibit as many
failures as possible. In our case, we achieve this by replacing line 36,

shell_sort(a, argc);

with the correct invocation

shell_sort(a, argc - 1);

Repeating the test with the fixed program,as follows,shows that the original failure
no longer occurs.

$./sample 11 14
Output: 11 14
$ _

This resolves the sample problem.

14 CHAPTER 1 How Failures Come to Be

1.5 AUTOMATED DEBUGGING TECHNIQUES
Essentially, we have solved the sample problem manually—that is, without using
any specific tools. In principle,all debugging problems can be solved manually—by
deduction from the source code and observation of what is going on in a program.
(Purists might even argue that deduction alone suffices to prove a program correct,
removing the need to fix defects.)

In practice, though, it is unwise to rely on manual debugging alone, as the com-
puter can relieve you of most boring and tedious tasks. In particular, the sample
program discussed earlier can be debugged almost automatically. Figure 1.8 depicts
the automated debugging techniques discussed in the following.

Simplified input. Chapter 5 introduces delta debugging—a technique that auto-
matically narrows down the difference between a passing and a failing run.
Applied to program input, delta debugging returns a simplified input wherein
each part contributes to the failure.

Variables

(a) (b)

T
im

e

Variables

?

T
im

e

(d)

?

Variables

T
im

e

(c)

?

Variables

T
im

e

(f)

Variables

T
im

e

(e)

Variables

T
im

e

FIGURE 1.8
Some automated debugging techniques: (a) program slice, (b) observing state, (c) watching
state, (d) asserting an invariant, (e) anomalies, and (f) cause–effect chain.

1.5 Automated Debugging Techniques 15

Applied to the failing sample run, delta debugging determines that each of
the arguments 11 and 14 is relevant. The failure no longer occurs if sample is
being called with one argument only.

Program slices. Chapter 7 explores basic deduction methods—that is, deducing
from the (abstract) program code what can and cannot happen in the (concrete)
program run. The most important technique is slicing—separating the part of
a program or program run relevant to the failure. In Figure 1.8(a), we can see
that only a fraction of the state actually could have caused the failure. Applied to
sample, a program slice could determine that a[0] got the zero value because
of the values of a[2] and size, which is already a good hint.

Observing state. Chapter 8 discusses observation techniques, especially using
debuggers.A debugger is a tool that can make a program stop under specific con-
ditions,which allows a programmer to observe the entire state (see Figure 1.8b).
This allows us to tell the sane program state from the infected state. Using a
debugger on sample, we would be able to observe the values of a[] and size
at any moment in time without changing or recompiling the program.

Watching state. Another important feature of debuggers, also discussed in Chap-
ter 8, is that they allow us to watch small parts of the state to determine if they
change during execution. As sketched in Figure 1.8(c), this allows us to identify
the precise moment at which a variable becomes infected. Using a debugger
on sample, we would be able to watch the value of a[0] to catch the precise
statement that assigns the zero from a[2].

Assertions. When observing a program state, the programmer must still compare
the observed values with the intended values—a process that takes time and is
error prone. Chapter 10 introduces assertions, which are used to delegate this
comparison process to the computer. The programmer specifies the expected
values and has the computer check them at runtime—especially at the beginning
and ending of functions (i.e., pre- and postconditions). Such assertions typically
include invariants over data structures that hold during the entire run.

If all assertions pass, this means that the state is just as expected. When used
to check invariants, as sketched in Figure 1.8(d), assertions can mark large parts
of the state as “sane,”allowing the programmer to focus on the other parts.

One specific instance of assertions is memory assertion, checking whether
memory is accessed in a legal way. Applied to sample, tools exist that can easily
identify that a[2] is accessed without being allocated or initialized. These tools
are also discussed in Chapter 10.

Anomalies. In general,we can assume that a program works well most of the time.
If a program fails nonetheless,we can use our knowledge about the passing runs
and focus on the differences between the passing runs and the failing run. Such
differences point out anomalies, as sketched in Figure 1.8(e). Detecting anoma-
lies requires techniques designed to compare program runs. It also requires
techniques for creating abstractions over multiple runs. Chapter 11 discusses
these techniques.

16 CHAPTER 1 How Failures Come to Be

Applied to sample, we can, for instance, compare the coverage of the two
runs sample 11 (passing) and sample 11 14 (failing). It turns out that the
statements where a[j] is assigned a value are executed only in the failing run,
but not in the passing run.Thus, if we are looking for a zero value in a[0] these
two lines might be a good starting point.

Cause–effect chains. Chapter 14 applies delta debugging to program states, thus
identifying in each state which particular variable(s) caused the failure. This
results in a cause–effect chain, as sketched in Figure 1.8(f). Although causes are
not necessarily errors, they help to narrow down the relevant elements of a
failure.

Delta debugging on states is also the basis of theASKIGOR automated debug-
ging server. Its diagnosis, shown in Figure 1.9, summarizes how the failure came
to be: variable argc was 3; hence,a[2] was zero; thus,sample failed.

FIGURE 1.9
The ASKIGOR debugging server with a diagnosis for sample. Given an executable, a failing
invocation, and a passing invocation, ASKIGOR automatically produces a diagnosis consisting
of a cause–effect chain from invocation to failure.

1.5 Automated Debugging Techniques 17

FIGURE 1.10
Defect distribution in ECLIPSE . Each rectangle stands for a package; the brighter the
rectangle, the more defects were discovered (and fixed) in the package after release.

Learning from mistakes. After discussing how to fix the defect in Chapter 15,
Chapter 16 shows how to aggregate earlier problem reports and fixes to find out
where the most defects occur in the program. Figure 1.10, for instance, shows
the distribution of defects across the ECLIPSE project: Each package is depicted
by a rectangle; the larger the rectangle, the larger the class, and the brighter the
rectangle,the higher the defect density—that is,the higher the number of defects
that were fixed per 1,000 lines of code in the package.

Defect distributions as in ECLIPSE can guide the debugging process toward
likely defect sources. They can also help in predicting where the next defects
will be,such that quality assurance efforts are directed toward those components
that deserve most of the attention.

All of these techniques can be combined to locate the defect systematically—and
with a substantial degree of automation. In addition to these chapters focusing on
concrete techniques, the following chapters focus on prerequisites:

■ Tracking failures (Chapter 2)
■ Running tests automatically (Chapter 3)
■ Reproducing failures (Chapter 4)

18 CHAPTER 1 How Failures Come to Be

■ Combining various reasoning techniques (Chapter 6)
■ Finding failure causes systematically (Chapter 12)

The first of these prerequisites is that a problem exists. Consequently, the next
chapter starts with tracking and reproducing failures.

1.6 BUGS, FAULTS, OR DEFECTS?
Before we conclude this chapter, let’s examine our vocabulary. As illustrated at the
beginning of this chapter, the word bug suggests something humans can touch and
remove—and are probably not responsible for. This is already one reason to avoid
the word bug. Another reason is its lack of precision. Applied to programs, a bug
can mean:

■ An incorrect program code (“This line is buggy”).
■ An incorrect program state (“This pointer, being null, is a bug”).
■ An incorrect program execution (“The program crashes; this is a bug”).

This ambiguity of the term bug is unfortunate, as it confuses causes with symp-
toms:The bug in the code caused a bug in the state, which caused a bug in the
execution—and when we saw the bug we tracked the bug, and finally found and
fixed the bug.The remainder of this book uses the following,more precise, terms:

■ Defect:An incorrect program code (a bug in the code).
■ Infection:An incorrect program state (a bug in the state).
■ Failure:An observable incorrect program behavior (a bug in the behavior).

The wording of the previous example thus becomes clearer:The defect caused
an infection, which caused a failure—and when we saw the failure we tracked
the infection, and finally found and fixed the defect.

The industry uses several synonyms of these terms.The IEEE standards define the
term fault as defect is defined here.They also define bug as a fault, thus making it a
synonym of defect—and debugging thus becomes the activity of removing defects
in the software.

The terms error and fault are frequently used as a synonym of infection,but also
for mistakes made by the programmer. Failures are also called issues or problems.
In this book, we use problem as a general term for a questionable property of the
program run. A problem becomes a failure as soon as it is considered incorrect.

Some defects cannot be attributed to a specific location in the software, but
rather to its overall design or architecture. I call such defects flaws. In general,
flaws are bad news, because they suggest major changes involved in fixing the
problem.

So much for our family of bugs and related terms. Actually, your choice of one
term over another shows two things. First, your wording shows how seriously you
take the quality of your work. As Humphrey (1999) points out, the term bug “has

1.7 Concepts 19

an unfortunate connotation of merely being an annoyance; something you could
swat away or ignore with minor discomfort.” He suggests defect instead, and this
book follows his advice. Likewise, the word failure is to be taken more seriously
than issue. (If you find a flaw, you should be truly alarmed.)

Second,your choice shows whether you want to attribute failures to individuals.
Whereas bugs seem to creep into the software as if they had a life of their own,errors
and faults are clearly results of human action. These terms were coined by Edsger
W. Dijkstra as pejorative alternatives to bug in order to increase the programmers’
sense of responsibility. After all, who wants to create a fault? However, if a program
does not behave as intended this may not be the effect of a human mistake (as
discussed in Section 1.2). In fact, even a program that is correct with respect to
its specification can still produce surprises.This is why I use the terms defect and
infection instead of the guilt-ridden faults and errors.All of these definitions (and
more) can be found in the Glossary.

1.7 CONCEPTS
In general, a failure comes about in the following three stages (see also List 1.2):

■ The programmer creates a defect in the program code (also known as bug or
fault).

■ The defect causes an infection in the program state.
■ The infection causes a failure—an externally observable error.

LIST 1.2: Facts on Debugging

■ Barron (2002) states that roughly 22% of PCs and 25% of notebooks break down every
year, compared to 9% of VCRs, 7% of big-screen TVs, 7% of clothes dryers, and 8% of
refrigerators.

■ According to a U.S. federal study conducted by RTI (2002), software bugs are costing the
U.S. economy an estimated $59.5 billion each year.

■ Beizer (1990) reports that of the labor expended to develop a working program, 50% is
typically spent on testing and debugging activities.

■ According to Hailpern and Santhanam (2002), validation activities (debugging, testing, and
verification) can easily range from 50% to 75% of the total development cost.

■ Gould (1975) reports that out of a group of experienced programmers the three program-
mers best at debugging were able to find defects in about 30% the time and made only
40% as many errors as the three worst.

■ In RTI (2002), developers estimate that improvements in testing and debugging could
reduce the cost of software bugs by a third, or $22.5 billion.

20 CHAPTER 1 How Failures Come to Be

To debug a program, proceed in seven steps (TRAFFIC):How To
1. Track: Create an entry in the problem database (see Chapter 2).

2. Reproduce: Reproduce the failure (see Chapter 4).

3. Automate:Automate and simplify the test case (see Chapters 3 and 5).

4. Find origins: Follow back the dependences from the failure to possible
infection origins (see Chapters 7 and 9).

5. Focus: If there are multiple possible origins, first examine the following:

■ Known infections, as determined by assertions (see Chapter 10) and
observation (see Chapter 8)

■ Causes in state, code, and input (see Chapters 13 and 14)
■ Anomalies (see Chapter 11)
■ Code smells (see Chapter 7)
■ Earlier defect sources (see Chapter 16)

Prefer automated techniques where possible.

6. Isolate: Use scientific method (see Chapter 6) to isolate the origin of the
infection. Continue isolating origins transitively until you have an infection
chain from defect to failure.

7. Correct: Remove the defect, breaking the infection chain (see Chapter 15).
Verify the success of your fix.

Of all debugging activities, locating the defect (the find–focus–isolate loop in
TRAFFIC) is by far the most time consuming.

Correcting a defect is usually simple, unless it involves a major redesign (in which
case we call the defect a flaw).

Not every defect results in an infection,and not every infection results in a failure.
Yet, every failure can be traced back to some infection, which again can be traced
back to a defect.

1.8 TOOLS
Toward your own experimentation with techniques,the“Tools”section within chap-
ters provides references where tools mentioned in the text are publicly available.
Typically, the text provides a URL where the tool is available—often as an open-
source download. If the tool is not publicly available, the reference describing it
will be listed in the “Further Reading” section. You may want to ask the authors
whether they will make their tool available to you.

As this chapter is an introduction, references to tools will come in the later
chapters. However, note that Clint Jeffery’s Algorithmic and Automatic Debug-
ging Home Page—a Web page that collects links to debugging techniques and
tools, and which will give you the latest and greatest in debugging, is available at
http://www2.cs.uidaho.edu/∼jeffery/aadebug.html.

1.9 Further Reading 21

1.9 FURTHER READING
To avoid breaking up the flow of the main text, references to related work are
collected in a section at the end of each chapter.This first“Further Reading”section
describes papers,books,and other resources relevant to the material covered in this
chapter.

The story about the“first bug”was reported by Hopper (1981). Apparently,Hop-
per believed that this“first bug”coined the term bug for computer programs (“From
then on, when anything went wrong with a computer, we said it had bugs in it”).
However, as Shapiro (1994) points out, bug was already a common “shop” term in
Edison’s time (1878) for unexpected systems faults. The carryover to computers
(certainly complex systems) is almost unavoidable.

Dijkstra’s quote that testing can only show the presence of bugs stems from 1972.
In 1982,Dijkstra was also among the first to criticize the word bug and suggest error
instead. In 1989, he made clear that this wording would put “the blame where it
belongs, viz., with the programmer who made the error.”

The origin of the word bug is clarified by Beizer (1999). In 2000, he sug-
gested dropping fault and error due to their pejorative aspect. The terms bug
and defect are compared by Humphrey (1999). The term infection, as well as
the idea of an infection propagating from defect to failure, were proposed by
Voas (1992).

Finally, in that this chapter serves as introduction to the book,we will now look
into other material that serves as an introduction to debugging.

The Soul of a New Machine, by Kidder (1981), tracks a team of engineers at
Data General working on an innovative new computer. This is not a techni-
cal book but a well-orchestrated hymn to the man behind the machine. It
describes the challenges and strains of debugging. It the Pulitzer prize winner for
nonfiction.

Showstopper!, by Zachary (1994), describes how Microsoft created Windows NT.
Not too technical, it focuses on the people and their processes. Not too surpris-
ing, eventually finishing the product becomes a struggle with always resurfacing
“showstopper”bugs.

Zen and the Art of Motorcycle Maintenance, by Pirsig (1974), despite its title,
neither contains many facts on Zen nor many facts on motorcycle maintenance.
It is an inquiry on what is good and what is not, in a clear engineer’s language,
digging into the depths of philosophy—still a cult book today.The section on how
a mechanic fixes a motorcycle is a must-read.

Code Complete, by McConnell (1993), is a practical handbook on how to construct
software. “Practical” means “pragmatic” and “easily understandable.” McConnell
goes straight at the topic and tells you how to code and how not to code—and
how to debug, of course.

22 CHAPTER 1 How Failures Come to Be

The Practice of Programming, by Kernighan and Pike (1999), describes best prac-
tices that help make individual programmers more effective and productive.
Although just 250 pages long,barrels of wisdom and experience have been distilled
in this book.

Figure 1.10, visualizing the distribution of defect density in ECLIPSE was created
by Michael Ogawa (2007), inspired by Martin Wattenberg’s “Map of the Market”
(1998). The actual data was mined by ? (?) from the ECLIPSE version and bug
databases.

Bug Story 2, about the F-16 problems, was posted in Risks digest (vol. 3, issue 44),
August 1986.

EXERCISES
1.1 Relate the following statements to the terms defect, infection, propagation,

and failure. Discuss how they (possibly) came to be, and how they (possibly)
relate to the output.
■ A program throws a null pointer exception.
■ A print statement printf("Helo World") has a typo.
■ A constant � � 31.4 is declared, but all but one test case pass.
■ Variable z has the value 15.
■ A bug is removed by fixing three files.
■ A clock shows Greenwich mean time rather than the local time zone.

1.2 Compile sample on your system. (You can download the source from
http://www.whyprogramsfail.com/.) When compiling, enable all possible
warning options you can find.

1.3 Test sample on your system. Do the failures occur as described here? If not,
can you find a test case that triggers a failure?

1.4 Each of the following actions effectively fixes the sample program. Which
are the advantages and disadvantages of these actions?
(a) Insert a statement argc = argc — 1 at the top of main, and replace all

later occurrences of argc — 1 by argc.
(b) Change the loop in shell_sort() such that it ends at size — 1 instead

of size.
(c) Introduce a variable size = argc — 1 at the top of main, and replace

all later occurrences of argc — 1 by size. Change the shell_sort()
invocation to shell_sort(a, size).

(d) Insert a statement size = size — 1 at the top of shell_sort().

1.5 “If we can prove a program is correct,we have no need for testing or debug-
ging.”Argue for and against this assertion. Use at least three arguments in
either case.

1.9 Further Reading 23

1.6 Perform a Web search for as many occurrences of bug, defect, and fault you
can find via the following:
(a) On the entire Internet.
(b) On the Web pages of your preferred software vendor.
(c) In computer-related newsgroups.

You are in a little maze of twisty passages, all different.

– WILL CROWTHER

Adventure game (1972)

CHAPTER

2Tracking Problems

This chapter deals with the issue of how to manage problems as reported by users:
how to track and manage problem reports, how to organize the debugging pro-
cess, and how to keep track of multiple versions. All of this constitutes the basic
framework within which debugging takes place.

2.1 OH! ALL THESE PROBLEMS
Technically, a defect is created at the moment the programmer writes the appropri-
ate code. However, its actual life cycle begins when some human spots the defect
itself or one of its effects. Frequently,the human is a user,and the effect is a problem
that needs to be solved.

Solving a user’s problem is more than just debugging. At the start, we need to
find out whether we can actually do something. Maybe the problem is a simple
misunderstanding, or is caused by external components we cannot control. At the
end, it does not suffice to fix the defect in our production code. To solve the user’s
problem, we also need to deploy the fix. All these steps involved in solving the
problem need to be organized and managed.The life cycle of a software problem—
from the first occurrence of a problem to its fix—can be summarized in the following
five steps:

1. The user informs the vendor about the problem.
2. The vendor reproduces the problem.
3. The vendor isolates the problem circumstances.
4. The vendor locates and fixes the defect locally.
5. The vendor delivers the fix to the user.

As a programmer,you can be involved in each of these steps. First,you may always
take the role of a user (for instance, when testing software or when working with
third-party components). Later, you may be involved with reproducing, isolating,
locating, and fixing the problem—the core of debugging. Finally, you may even be
involved with delivering the fix.

25

26 CHAPTER 2 Tracking Problems

Unless you are a one-person company with an elephant memory, this life
cycle must be organized in some way. As a manager, you must be able to answer
questions, such as:

■ Which problems are currently open? An open problem indicates that there
is probably some defect in the software that must be fixed.

■ Which are the most severe problems? Typically, the most severe problems
are the first to get fixed.

■ Did similar problems occur in the past? If there were similar problems,
there may be a solution at hand that need only to be delivered.

Furthermore, the user may want to know the state of his or her problem, and be
quickly informed about any progress made. Our challenge is thus:

HOW CAN WE ORGANIZE THE LARGE-SCALE DEBUGGING PROCESS?

2.2 REPORTING PROBLEMS
To fix a problem, the developer must first be able to reproduce it. Otherwise, there
would be no way of ascertaining further details about the problem. Worse, there
would be no way of determining if the problem were fixed.The information required
for this task is called a problem report (PR),also known as a change request (CR) or
simply bug report.What goes into a problem report?The basic principle of problem
reports is:

State all relevant facts.

Here, relevant means “relevant for reproducing the problem”—that is, state the
problem from the developer’s perspective.However,determining the relevant facts
can impose problems. How can the user know what is relevant or not?

Real-life problem reports frequently include too much, such as gigantic core
dumps, entire hard disk content, and even entire drives. However, they may not
include enough: “Your program crashed. Just wanted to let you know”(A problem
report about the GNU DDD debugger I received in 1999). Let us therefore explore
which specific facts typically should be included in every problem report.

2.2.1 Problem Facts
In 2008,students of Saarland University conducted a survey across 156 experienced
APACHE, ECLIPSE, and MOZILLA developers, trying to find out on what makes a
good bug report.Their study found a frequent“mismatch between what developers
consider most helpful and what users provide,” and also found that for developers,
facts about the problem are by far the most important.

2.2 Reporting Problems 27

The problem history
This is a description of what has to be done to reproduce the problem,as a minimal
set of steps necessary. Typically, this also includes any accessed resources, such as
input or configuration files:

1. Start the Preview application.
2. Using “Open File”, open the attached document “Book.pdf”.

In the study by Bettenburg et al., the problem history was considered the most
important fact: If the problem cannot be reproduced, it is unlikely to be fixed. If
you can, have another user or tester repeat and review the steps described here.

If you can, simplify the problem as much as possible. If your database fails (say,
on a 1,000-line SQL statement), the chances of getting the problem fixed are low—
simply because such SQL statements do not occur this frequently in practice. But
if you can simplify the SQL statement to three lines, such that the problem still
persists, you’re likely to get heard. Likewise, if certain circumstances are crucial for
the problem to occur,be sure to include them.This gives developers a head start in
debugging. (See Chapters 5 and 13 for more on this issue,especially on automating
these steps.)

Diagnostic information as produced by the program
Some programs collect information for diagnostic purposes while executing. If the
error occurs after a long series of events, it is often difficult for the user to retrace
all steps from the program invocation to the failure.Therefore,the program can also
be set up to record important events in a log file, which can later be forwarded to,
and examined and reproduced by, the vendor. (In Chapter 8, we will learn more
about log files. Section 11.4 in Chapter 11 has more ideas on information that can
be collected and sampled from users.)

If a program crashes, the operating system is frequently able to produce a stack
trace, a list of the functions active at the time of the program crash:

Thread 0 Crashed:
0 libSystem.B.dylib 0x95fef4a6 mach_msg_trap + 10
1 libSystem.B.dylib 0x95ff6c9c mach_msg + 72
2 com.apple.CoreFoundation 0x952990ce CFRunLoopRunSpecific + 1790
3 com.apple.CoreFoundation 0x95299cf8 CFRunLoopRunInMode + 88
4 com.apple.HIToolbox 0x92638480 RunCurrentEventLoopInMode

+ 283
5 com.apple.HIToolbox 0x92638299 ReceiveNextEventCommon + 374
6 com.apple.HIToolbox 0x9263810d BlockUntilNextEventMatching

ListInMode + 106
7 com.apple.AppKit 0x957473ed _DPSNextEvent + 657
8 com.apple.AppKit 0x95746ca0 --- [NSApplication nextEvent

MatchingMask:untilDate:inMode
:dequeue:] + 128

9 com.apple.AppKit 0x9573fcdb ---[NSApplication run] + 795
10 com.apple.AppKit 0x9570cf14 NSApplicationMain + 574
11 com.apple.Preview 0x000024ea start + 54

28 CHAPTER 2 Tracking Problems

Not very surprising,the study of Bettenburg et al. found diagnostic information
like logs and stack traces to be the second most important information in a bug
report.

A description of the experienced behavior
These are the symptoms of the problem—that is,what has happened in contrast to
the expected behavior. For example:

The program crashed.

As you are the bearer of bad news, it is important to remain neutral. Humor,
sarcasm, or attacks will divert developers from their goal, which is increasing the
product quality. Just stay with the facts.

In the survey by Bettenburg et al., the experienced behavior was also rated
important by developers, because it frequently “mimics steps to reproduce
the bug.”

A description of the expected behavior
This describes what should have happened according to the user. For example:

The program should have opened the file, or reported an error.

In the study, developers considered the expected behavior to be of less impor-
tance than steps to reproduce and diagnose information, possibly because the
expected behavior is generally just the opposite of the (reported) experienced
behavior.

A one-line summary
The one-line summary captures the essence of the problem. It is typically
the basis for deciding the severity of the problem—that is, its impact on
customers—and,consequently,the priority by which the problem will get fixed. For
example:

Preview crashes when opening PDF document

2.2.2 Product Facts
All the facts discussed so far refer directly refer to the problem.The second category
of facts refers to the product as well as the environment in which the problem
occurred.

The product release
This is the version number or some other unique identifier of the product. Using this
information, the developer can recreate a local copy of the program in the version

2.2 Reporting Problems 29

as installed in the user’s environment. For example:

Preview 4.1 (469.2.2), Build Info Preview-4690202∼2

The operating environment
Typically, this is version information about the operating system. As problems may
occur because of interactions between third-party components, information about
such components may be useful as well. For example:

Mac OS X 10.5.5 (9F33)

Again, if you can, try to generalize. Does the problem occur under different
operating environments, too? In our case, for instance, you might wish to check
alternate operating systems or alternate printers.

The system resources
Some problems occur only under limited resources. Therefore, it is advisable to
include information about your system’s memory, disk space, or other hardware
resources.

Model: MacBook1,1, BootROM MB11.0061.B03, 2 processors, Intel Core Duo, 2 GHz, 2 GB
Graphics:kHW_IntelGMA950Item, GMA 950, spdisplays_builtin, spdisplays_integrated_vram
Memory Module: BANK 0/DIMM0, 1 GB, DDR2 SDRAM, 667 MHz
Memory Module: BANK 1/DIMM1, 1 GB, DDR2 SDRAM, 667 MHz
AirPort: spairport_wireless_card_type_airport_extreme (0x168C, 0x86), 1.4.8.0
Bluetooth: Version 2.1.0f17, 2 service, 1 devices, 1 incoming serial ports
Serial ATA Device: Hitachi HTS722020K9SA00, 186,31 GB
Parallel ATA Device: MATSHITADVD-R UJ-857
USB Device: Built-in iSight, Micron, high_speed, 500 mA
USB Device: HUAWEI Mobile, HUAWEI Technologies, full_speed, 500 mA
USB Device: Apple Internal Keyboard / Trackpad, Apple Computer, full_speed, 500 mA
USB Device: Bluetooth USB Host Controller, Apple, Inc., full_speed, 500 mA
USB Device: IR Receiver, Apple Computer, Inc., full_speed, 500 mA

Looking on how system information impacts the failure can be helpful. If you
can (for instance, if you are a tester), try to generalize. Does the problem occur
under alternate releases, too? Does it occur in the most recent version?

Knowing details about the product and its environment can be crucial
if the problem indeed depends on specific product or environment features.
In the study by Bettenburg et al., though, developers considered these facts
secondary:

Hardware, and to some degree, [OS] fields are rarely needed as most our bugs
are usually found in all platforms.

2.2.3 Querying Facts Automatically
Facts on the product and the environment can easily be queried automatically, as
products or systems include specific functionality or stand-alone tools to produce

30 CHAPTER 2 Tracking Problems

FIGURE 2.1

Mac OS talkback dialog. When a program fails, users can send relevant information to Apple.

standardized problem reports. Figure 2.1 shows the talkback dialog of Mac OS,
which appears whenever a program crashes. Clicking on “Send to Apple” forwards
all relevant information (shown in the Comments, Problem Details, and System
Configuration fields) to the operating system vendor, who will in turn contact the
developers.

Talkback-like tools typically also forward internal information to the vendor—
for instance, a full core dump, which records the state of the program at the
moment it failed. Such core dumps can be read in and examined by developers
(see Section 8.3.3 in Chapter 8 for details on how to perform such postmortem
debugging).

2.3 Managing Problems 31

In all of these cases, the privacy of the user is an important issue. It is very
advisable that the user be aware of whatever information is being sent to third
parties (such as the vendor). This is not as much of a risk with manually writ-
ten problem reports, but it becomes an increasing risk with information collected
automatically.

Internal information (such as a core dump) cannot be interpreted by the user at
all, and thus brings the greatest risk of an unwanted breach of privacy. In addition,
log files about user interactions can be misused for all types of purposes, including
third-party attacks. For these reasons,users should be made aware of any information
your product may be collecting and forwarding. In addition,users should be able to
turn off all recording features.

Privacy issues are less of a concern if a problem is discovered during testing. If
an in-house tester finds a problem,she should make every effort to fix the problem.
This includes recording and providing as much information as possible.

2.3 MANAGING PROBLEMS
Most developer teams keep track of the current problems in their system using a sin-
gle“problem list”document that lists all open or unresolved problems to date. Such
a document is easy to set up and easy to maintain. However, associated problems
include the following:

■ Only one person at a time can work on the document. Exception: The doc-
ument is in a version control system that allows parallel editing and later
merging.

■ History of earlier (and fixed) problems is lost.Exception: The document is in a
version control system and evolves together with the product.

■ Does not scale. You cannot track hundreds of different issues in a simple text
document.

The alternative to keeping a document is to use a problem database, which
stores all problem reports. Problem databases scale up to a large number of
developers, users, and problems.

Figure 2.2 shows an example of such a problem-tracking system. This is
BUGZILLA, the problem-tracking system for the MOZILLAWeb browser. BUGZILLA
employs a Web browser as a user interface, which means that it can be accessed
from anywhere (and by anyone, as MOZILLA is an open-source project). You
can even install and adapt BUGZILLA for your own project. Note, though, that
BUGZILLA (and other problem-tracking systems) is meant for developers, not for
end users. Information provided from end users must be distilled and classified
before it can be entered into the database.

32 CHAPTER 2 Tracking Problems

FIGURE 2.2

The BUGZILLA problem database. The database organizes all problem reports for MOZILLA.

2.4 CLASSIFYING PROBLEMS
Assume we want to report a problem in BUGZILLA (either because we are expert
users and know how to enter a problem on a web site or because we are in charge
of processing a user problem report). To report a problem, we must supply the
required information (Section 2.2 has details on how to report problems) and
classify the problem. The attributes BUGZILLA uses to classify problems, discussed
in the following, are typical for problem-tracking systems.

2.4 Classifying Problems 33

2.4.1 Severity
Each problem is assigned a severity that describes the impact of the problem on
the development or release process. BUGZILLA knows the following severity levels,
from those with the greatest impact to those with the least.

■ Blocker: Blocks development and/or testing work. This highest level of severity
is also known as a showstopper.

■ Critical: Crashes, loss of data, and severe memory leak.

■ Major: Major loss of function.

■ Normal: This is the “standard”problem.

■ Minor: Minor loss of function, or other problem for which an easy workaround
is present.

■ Trivial: Cosmetic problem such as misspelled words or misaligned text.

■ Enhancement: Request for enhancement. This means that the problem is not
a failure at all, but rather a desired feature. Do not confuse this with missing
functionality, though:If the product does not meet a requirement, this should be
treated as a major problem.

Ideally, a product is not shipped unless all “severe” problems have been fixed—
that is,major,critical,or blocker problems have been resolved,and all requirements
are met. If a product is to be released at a fixed date, optional functions that still
cause problems can be disabled.

The severity also determines our wording. In general,the word problem is just as
a general term for a questionable property of the program run.A problem becomes a
failure as soon as it is considered an incorrect behavior of the system. It is a feature if
it is considered normal behavior (“It’s not a bug,it’s a feature!”). However,a missing
or incomplete feature can also be a problem, as indicated by the enhancement
category.

2.4.2 Priority
Each problem is assigned a specific priority. The higher the priority, the sooner
the problem is going to be addressed. The priority is typically defined by the man-
agement. In fact, it is the main means for management to express what should
be done first and what later. The importance of the priority attribute when it
comes to control the process of development and problem solving cannot be
overemphasized.

2.4.3 Identifier
Each problem gets a unique identifier (a PR number; in BUGZILLA, bug number)
such that developers can refer to it within the debugging process—in emails,change
logs, status reports, and attachments.

34 CHAPTER 2 Tracking Problems

2.4.4 Comments
Every user and developer can attach comments to a problem report—for instance,
to add information about the circumstances of the problem, to speculate about
possible problem causes,to add first findings,or to discuss how the problem should
be fixed.

2.4.5 Notification
Developers and users can attach their email address to a problem report. They will
get notified automatically every time the problem report changes.

2.5 PROCESSING PROBLEMS
Assume that someone has entered a new problem report into the problem database.
This problem report must now be processed.During this process,the problem report
runs through a life cycle (Figure 2.3)—from UNCONFIRMED to CLOSED. The position
in the life cycle is determined by the state of the problem report. These states are
described in the following.

UNCONFIRMED: This is the state of any new problem report, as entered into the
database. Let us introduce Olaf, who is a happy user of the Perfect Publishing
Program—until it suddenly crashes. Thus:
1. Olaf reports the failure to Sunny at customer support.
2. Sunny enters the failure details as a new problem report into the problem

database. She reports how Olaf can reproduce the failure, ascertains the rel-
evant facts about Olaf’s configuration, and sets the severity to “normal.” She
also reports Olaf’s contact address.

Unconfirmed New Assigned

Reopened

Invalid

Invalid

Duplicate

Duplicate

Fixed

Wontfix

Worksforme

Resolved Verified

If resolution is Fixed

Closed

New Status

Resulting
resolution

Fixed

FIGURE 2.3

The life cycle of a problem in BUGZILLA. A problem starts UNCONFIRMED, is later ASSIGNED to a
specific developer, and finally CLOSED with a specific resolution.

2.5 Processing Problems 35

3. The problem gets a PR number (say,PR 2074). Its initial state is UNCONFIRMED.
Nobody has yet tried to reproduce it.

NEW: The problem report is valid.

■ It contains the relevant facts. (Otherwise, its resolution becomes INVALID.
See material following.)

■ It is not an obvious duplicate of a known problem. (Otherwise, its resolution
becomes DUPLICATE. See material following.)

A NEW problem need not necessarily be reproducible.This is being taken care
of in the remainder of the life cycle. In our example, programmer Violet may be
in charge of checking problem reports. Finding that PR 2074 was not known
before, she sets its state to NEW.

ASSIGNED: The problem is not yet resolved, but is already assigned to a developer
(in BUGZILLA, to the bug owner). Mr. Poe, the manager, asks Violet to solve PR
2074. The state is now ASSIGNED.

RESOLVED: The problem is resolved.The resolution tells what has become (for now)
of the problem report.

■ FIXED: The problem is fixed.

■ INVALID: The problem is not a problem, or does not contain the relevant
facts.

■ DUPLICATE: The problem is a duplicate of an existing problem.

■ WONTFIX: The problem described is a problem that will never be fixed.
This may also be the case for problems that turn out to be features rather
than failures. The following is a WONTFIX example. The MOZILLA browser
does not display ALT texts for images as tooltips, which many consider a
problem. However, the MOZILLA developers say this behavior is mandated
by Web standards and thus will not fix the “problem.” (See bug #25537 at
www.bugzilla.mozilla.org.)

■ WORKSFORME: All attempts at reproducing this problem were futile. If more
information appears later, the problem may be reopened. If the resolution is
FIXED, the fix must be verified (state VERIFIED) and finally delivered (state
CLOSED). In our example, let’s assume Violet is unable to reproduce PR 2074
in her environment. In this case, the following happens:
1. Violet documents her attempts in additional comments to the problem

report, and sets the resolution to WORKSFORME and the state to RESOLVED.
However,could it be that Olaf has the product configured to use the metric
system? She asks Sunny whether she could get further data.

2. Sunny requests further information from Olaf and sets the state of PR 2074
to REOPENED.

3. Violet is still responsible for PR 2074 (state ASSIGNED). With the new data,
she can finally reproduce and fix the problem.The state becomes RESOLVED;
the resolution is FIXED.

36 CHAPTER 2 Tracking Problems

VERIFIED: The problem is fixed.The fix has been verified as successful.The problem
remains VERIFIED until the fix has been delivered to the user (for instance, by
shipping a new release). Tester Klaus reviews Violet’s fix. He gives his okay to
integrate the fix in the current production release.The state of PR 2074 becomes
VERIFIED.

CLOSED: A new release (or patch) of the product was shipped. In this release, the
problem no longer occurs. As soon as the fix is delivered to Olaf, the PR 2074
state is CLOSED.

REOPENED: If a problem occurs again, it is assigned a state of REOPENED rather than
NEW. It must be assigned again. In our example, if further users contact customer
support about the problem, Sunny can look up the problem in the problem-
tracking system and point them to the new release.

All of these states and resolutions can (and should) be adapted to the process at
hand. If there is no independent verification,for example,reports skip the VERIFIED
state. If problems are fixed at the user’s site (skipping shipment), the RESOLVED
and CLOSED states become synonyms. On the other hand, if additional clearance is
required before a fix gets accepted this can be expressed by additional states and
resolutions.

2.6 MANAGING PROBLEM TRACKING
A good problem-tracking system is the basis for all daily work on problems and
failures. If nobody files problem reports, it is useless. If nobody marks problems as
resolved,it will quickly be filled with outdated information.Therefore,the following
issues should be resolved:

■ Who files problem reports? This could be support personnel only. In general,
though, it is probably useful if any developer can add new entries. Advanced
users and beta testers may also be enabled to file problem reports.

■ Who classifies problem reports? The severity of a problem can be extracted
from the initial report. Sometimes, the severity is determined only after the
problem could be reproduced.

■ Who sets priorities? To determine the priority of a problem, management
must assess the impact of a problem—that is, not only its severity but the
following:
– Its likelihood
– The number of users affected
– The potential damage

Thus, the priority need not be correlated with the severity of a problem.
A “blocker” problem in an alpha release may have lower priority than a “major”
problem in a widely distributed product.

2.7 Requirements as Problems 37

Many organizations use a software change control board (SCCB) to set prior-
ities.This is a group of people who track problem reports and take care of their
handling. Such a group typically consists of developers,testers,and configuration
managers.

■ Who takes care of the problem? All problem-tracking systems allow assigning
problems to individual developers.This is also the task of an SCCB or like group.

■ Who closes issues? This can be the SCCB or like group, the individual tester, or
some quality assurance instance that verifies fixes (as in the scenario described
previously).

■ What’s the life cycle of a problem? The BUGZILLA model, shown in Figure 2.3,
is typical of problem databases but is by no means the only possible one.
Depending on your individual needs, one can design alternate states and
transitions. Problem-tracking systems may be configured to incorporate such
processes.

Once a problem-tracking system is well integrated into your development pro-
cess, you can use it to organize all aspects of software development. As it always
gives you insights about the current state of the product,a problem-tracking system
is a great management asset when it comes to decide whether a system is ready
for release.A problem-tracking system can also be used for historical insights—that
is, in hindsight, finding out what the most important problems were and how they
could have been avoided. We will talk more about this role of problem tracking in
Chapter 16.

2.7 REQUIREMENTS AS PROBLEMS
Problem-tracking systems are frequently used during the entire development of
the product. In fact, they can be used from the very start, even when the product
does not exist. In this setting, one enters requirements into the problem-tracking
database, implying that each requirement not yet met is a problem. The severity of
the problem indicates the importance of the requirement. Central requirements not
yet met are marked as “major” problems. Minor or optional requirements could be
marked as “requests for enhancement.”

As requirements are typically broken down into subrequirements, the problem-
tracking system should have a way of organizing problems hierarchically. That is,
there should be a way of decomposing problems into subproblems, and of mark-
ing the problems as FIXED as soon as all subproblems are FIXED. In this fashion,
requirement 1 is the product itself, and problem 1 thus becomes “the product is
missing.”As requirement 1 is broken down into a large number of individual fea-
tures, so is the problem—with one subproblem for every feature. The product is
ready for shipping when all problems are resolved—indicated by problem 1 being
FIXED, which implies that all features are now implemented.

38 CHAPTER 2 Tracking Problems

BUG STORY 3

Tracking Milk Issues at Microsoft
The following bug report is purported to originate from Microsoft’s Excel group from
1994. Aliases have been removed. The T : indicates that the person was a tester,
whereas D: stands for developer and P: for program manager.

------------------- ACTIVE - 05/12/94 - T:XXXXXX ----------------------

: Go to the kitchen

: Grab a Darigold chocolate milk carton

: Read the ingredients list

--! Either Darigold has discovered a chocolate cow, or something’s

missing from the ingredients list. It only lists milk, vitamin A,

and vitamin D. So where does the chocolate/sugar flavor come from?

------------------- ACTIVE - 05/12/94 - T:XXXXXX ----------------------

Moo info:

: Grab a Darigold 2% milk carton (NOT chocolate)

: Read the ingredients

--! Says it contains Cocoa, Sugar, Guar gum ...

Looks like the Chocolate

and 2% ingredient lists have been swapped.

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXXXXX ------------

looks like an internals problem?

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

UI Problem. I’ll take it.

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

They don’t make milk at the Issaquah Darigold. Calling Ranier Ave.

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

I can’t repro. Do you have the wrong MILKINTL.DLL?

-------------- ASSIGNED to D:XXXXX - 05/12/94 - T:XXXXXXXX ------------

By design? I think new US health labeling went into effect this month.

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

Wrong Department. Transferred from Distribution to Production.

Left voice mail for "Frank".

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

Reproduces in the Development Kitchen. Need a native

build of the Kitchen ...

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXXX ---------------

This is a feature. IntelliSense labeling knew that you didn’t want to feel

guilty about the chocolate in the milk, so it didn’t list it on the box.

-------------- ASSIGNED to D:XXXXX - 05/12/94 - D:XXXX ---------------

Recommend postpone. Reading the ingredients is not a common user

scenario ...

-------------- RESOLVED - WON’T FIX - 05/12/94 - P:XXXXX --------------

Fixing the package is just a band-aid. We need to come up with a solution

that addresses the real problem in 96. My recommendation is

chocolate cows.

Please close and assign to DARIGOLD.

2.8 Managing Duplicates 39

A good problem-tracking system can summarize the problem database in the
form of statistics (how many problems are still open,how many problems are being
assigned to whom, and so on). A problem-tracking system may thus become the
primary tool for organizing the debugging process,or the development process in
general.The key is that managers check the problem-tracking system for outstanding
issues, and assign appropriate priorities for developers. Eventually, your problem-
tracking database will be a universal tool for resolving all types of problems—even
those only remotely related to the product at hand (see Bug Story 3).

2.8 MANAGING DUPLICATES
If your problem-tracking system is well used, you may experience a metaproblem:
a lot of problem reports. In September 2003 the MOZILLA problem database listed
roughly 8,300 UNCONFIRMED problems waiting to be assigned and resolved.

One reason for such a large number of problem reports is duplicates. If your
program has several users and a defect,chances are that several users will experience
similar failures. If all of these users send in problem reports, your problem-tracking
system will quickly fill up with similar reports, all related to the same defect.

For instance,if your Web browser crashes whenever it tries to render a dropdown
list users will send in problem reports: “I opened Web page X , and it crashed,”
“I openedWeb page Y ,and it crashed,”and so on. Processing all of these reports and
finding out that each of the mentioned Web pages includes a dropdown list takes a
lot of time.

A partial solution to this problem is to identify duplicates.The idea is that within
the problem-tracking system one can mark problems as a duplicate of another prob-
lem. Submitters of new problem reports can then be encouraged to search the
problem database for similar problems first. If a similar problem is found, the new
problem can be marked as a duplicate. When the initial problem is fixed, the devel-
oper can close the duplicates where the same failure cause occurs. Unfortunately,
it is not always easy to spot duplicates. This is due to two conflicting goals:

■ A problem report includes as many facts as possible, in that any of them may
be relevant for reproducing the problem.

■ Identifying duplicates requires as few facts as possible, because this makes it
easier to spot the similarity.

The solution here is simplification—that is, to simplify a problem report such
that only the relevant facts remain. We will come back to this issue in Section 5.1,
on simplifying problems. Automated methods are presented in Chapter 5.

Even if all duplicates have been resolved,however,your database will eventually
fill up with unresolved problem reports—problems that could not be reproduced,
problems that may be fixed in a later version,and low-priority problems.This is less
a problem of space or performance (modern databases can easily cope with millions

40 CHAPTER 2 Tracking Problems

of problem reports) than of maintenance,as your developers wade again and again
through this swamp of unresolved bugs. Having thousands of unresolved problems
is also bad for morale. The solution is to clean up the database by searching for
obsolete problems. A problem report could be declared obsolete if, for instance:

■ The problem will never be fixed—for instance, because the program is no
longer supported.

■ The problem is old and has occurred only once.
■ The problem is old and has occurred only internally.

Obsolete problem reports should show up only if explicitly searched for. If
they ever show up again, you can recycle them by making them nonobsolete. In
BUGZILLA, problems that will never be fixed are assigned a WONTFIX resolution.

2.9 RELATING PROBLEMS AND FIXES
Few products ever came out as a single version.Thus,whenever users report a prob-
lem they must state the version of the product in which the problem occurred.
Without this, developers will not know which version to use when trying to
reproduce the problem.

But even with a version identifier,are you prepared to access the specific version
as released to your user? This means not only the binaries as shipped, but every
source that went into this specific release and all tools in their specific versions
that were used to produce the binary. This is one of the key issues of software
configuration management : to be able to recreate any given configuration any
time.

To keep track of versions and configurations is something far too error prone to
be done manually. Instead, use a version control system to support the task. Using
version control has few costs and many benefits. Not using version control, though,
makes your development process risky, chaotic, and generally unmanageable.

So, how do you manage your versions in order to track bugs? Simple:Whenever
a new version is shipped, mark its source base with an appropriate tag. Use this
tag to recreate the source base, and together with the source base, the product
itself.

Another good thing about version control systems is the management of
branches for storing fixes. The basic idea is to separate the evolution into two
parts:

■ A main trunk in which new features are tested and added.
■ Branches in which fixes (and only fixes) are added to stable versions.

This separation allows vendors to ship out new fixed versions of stable prod-
ucts while developing new features for the next major release. The use of tags and
branches is illustrated in Figure 2.4.

2.9 Relating Problems and Fixes 41

File A

Release
1.0

1.1.1.1

1.1

1.1 1.2 1.3

1.2.1.1 1.2.1.2

Release
1.1

File B

Version successor

Common configuration tag

FIGURE 2.4

Tags and branches in version control. As a system progresses, individual releases are tagged
such that they can be reconstructed on demand.

A product consists of two files,which have evolved independently into multiple
revisions. Consider Figure 2.4. The initial release of the system, indicated by the
dotted line,consisted of revision 1.1 of fileA and revision 1.2 of file B. In the version
control system, this is reflected by an appropriate tag of these revisions. Since then,
file B has evolved into revision 1.3 with new features, but is as yet untested.

When a user now reports a problem that calls for a fix, what do we do? Do
we ship the new, untested configuration with file B included? Usually not. Instead,
based on the initial release,we create a branch for files A and B,containing the new
versions 1.1.1.1 and 1.2.1.1, respectively. This branch holds only the indispensable
fixes for the initial release, which can then be released as minor service updates
(shown as release 1.1 in the figure). New, risky features still go to the main trunk.
Eventually, all fixes from the branch can be merged back into the main trunk such
that they will also be present in the next major releases. As maintainers routinely
want to check whether a certain problem has been fixed in a specific release, be
sure to relate problem reports to changes as follows:

■ Within the problem-tracking system, identify the change in version control that
fixed the problem. For instance, attach the branch identifier as a comment to
the problem report:

Problem fixed in RELEASE_1_1_BRANCH

■ Within the version control system, identify the problem report number that is
addressed by a specific change.This can be done in the log message given when
the change is committed:

Fix: null pointer could cause crash (PR 2074)

42 CHAPTER 2 Tracking Problems

FIGURE 2.5

Open issues as reported by the TRAC system. The report shows which problems persist for
which version of the product.

2.10 Relating Problems and Tests 43

Such a relationship between problem tracking and version control works best
when it is established automatically. Some version control systems integrate with
problem-tracking systems such that the relationship between problems and fixes
is maintained automatically. This allows for queries to determine which problem
reports have occurred or fixed in which release.

As an example, consider the report of the TRAC system, shown in Figure 2.5.
TRAC is a lightweight system that integrates version control and problem tracking.
Its report shows which problems still persist in which version of the product.

2.10 RELATING PROBLEMS AND TESTS
Many developers use problem-tracking systems not only for problems as reported by
end users but also for problems encountered in-house.That is,as soon as a developer
stumbles across a problem, he or she reports it just as if an end user had told him
or her about the problem.

In principle, this is a good thing, in that no problem remains unreported. How-
ever,the main way in which developers find problems is by testing the program,and
this induces a conflict between test outcomes and problem reports. Should a failing
test be tracked in the problem database?And if so,how are we going to synchronize
the problem database with the test outcomes?

Unless you have a problem-tracking system that neatly integrates with your test
suite, I recommend keeping test outcomes separate from problem reports. There
are several reasons for doing so:

■ Test outcomes occur frequently—possibly (and hopefully) far more frequently
than user’s problem reports. Storing these test outcomes in the problem database
would quickly flood the database—and divert from the actual problems in the
field.

■ If you use automated testing (see Chapter 3), you can at any time check test
outcomes for any version, at the press of a button. Thus, there is no need for
storing that information.

■ Suppose a test fails. If you can find the defect and fix it right away, there is no
need to enter a record in the problem-tracking system.

All of this boils down to one point: Test cases make problem reports obsolete.
If a problem occurs during development, do not enter it into the problem-tracking
system. Instead, write a test case that exposes the problem. This way, the test case
will show that the problem is still present,and you can always check for the problem
by running the test.

You can always use the problem-tracking system, though, for storing ideas and
feature requests—that is,for anything that does not immediately translate into code
or a test case. As soon as you start to implement the feature request, start writing a

44 CHAPTER 2 Tracking Problems

test case that exposes the lack of the feature, and close the entry in the problem-
tracking system. Once the feature is implemented, the successive test case can be
used to determine whether it meets expectations.

2.11 CONCEPTS
Reports about problems encountered in the field are stored in a problem database
and are classified with respect to status and severity.

A problem report must contain all information that is relevant to reproduce the
problem.

To obtain the relevant problem information,set up a standard set of items that usersHow To
must provide (see also Section 2.2, on reporting problems). This includes:
■ Problem history
■ Diagnostic information
■ Expected behavior
■ Experienced behavior
■ Product release
■ Operating environment

To write an effective problem report, make sure the report:
■ Is well structured
■ Is reproducible
■ Has a descriptive one-line summary
■ Is as simple as possible
■ Is as general as possible
■ Is neutral and stays with the facts

For details, see Section 2.2.

Products can be set up to collect and forward information that may be relevant to
reproduce the problem. Be aware of privacy issues, though.

A typical life cycle of a problem starts with a status of UNCONFIRMED. It ends with
CLOSED and a specific resolution such as FIXED or WORKSFORME (Figure 2.3).

To organize the debugging process,have a software change control board that uses
the problem database to:

■ Keep track of resolved and unresolved problems
■ Assign a priority to individual problems
■ Assign problems to individual developers

To track requirements, one can also use a problem-tracking system. Each require-
ment not yet met is a problem.

Keep problem tracking simple. If it gets in the way, people won’t use it.

2.12 Tools 45

To restore released versions, use a version control system to tag all configurations
as they are released to users.

To separate fixes and features,use a version control system to keep fixes in branches
and features in the main trunk.

To relate problems and fixes, establish conventions to relate problem reports to
changes, and vice versa (Section 2.9). Advanced version control systems inte-
grate with problem-tracking systems to maintain this relationship automatically.

To relate problems and tests,make a problem report obsolete as soon as a test case
exists. When a problem occurs, prefer writing test cases to entering problem
reports.

2.12 TOOLS
BUGZILLA. The BUGZILLA problem-tracking system can be found at http://www.

bugzilla.org/.
Its specific incarnation for MOZILLA is available for browsing at http://

bugzilla.mozilla.org/.

PHPBUGTRACKER. PHPBUGTRACKER is a lightweight problem-tracking system
that is simpler to install and manage than BUGZILLA . It can be found at
http://phpbt.sourceforge.net/.

ISSUETRACKER. Like PHPBUGTRACKER,ISSUETRACKER aims to be a lightweight
problem tracker, with a special focus on being user friendly. If you want to
toy with a problem-tracking system at your site, PHPBUGTRACKER or ISSUE-
TRACKER might be your choice. ISSUETRACKER can be found at http://www.
issue-tracker.com/.

TRAC. TRAC is another lightweight problem-tracking system. Its special feature is
that it integrates with version control. This makes it easier to track problems
across multiple versions. Just as PHPBUGTRACKER and ISSUETRACKER ,TRAC
is open-source software, but with optional commercial support. TRAC can be
found at http://trac.edgewall.org/.

SOURCEFORGE. The SOURCEFORGE project provides automated project organi-
zation beyond simple problem tracking. It includes facilities such as discussion
forums,public version archives,user management,and mailing lists. It is available
to open-source projects.A simple registration suffices,and there is no installation
hassle. SOURCEFORGE is also available as a commercial version to be installed
at other sites and to manage commercial projects. SOURCEFORGE can be found
at http://www.sourceforge.net/.

GFORGE. GFORGE is a fork of the original SOURCEFORGE code. Just like
SOURCEFORGE, it provides problem tracking,discussion forums,public version
archives,user management,mailing lists,and much more. In contrast to SOURCE-
FORGE, the GFORGE people do not host projects. Instead, you install the

46 CHAPTER 2 Tracking Problems

GFORGE software at your site. (Commercial support is available.) If you want
a single open-source package that manages the entire development life cycle,
GFORGE delivers. GFORGE can be found at http://www.gforge.org/.

2.13 FURTHER READING
Regarding problem-tracking systems, there is not too much information available
except from those provided by vendors. Mirrer (2000) addresses the issue of obso-
lete test cases. For him,organizing a problem-tracking system is like“organizing your
socks”: Once in a while, an overflowing sock drawer has to be cleaned up.

Kolawa (2002) comments on the relationship between problem-tracking systems
and testing. He states that problem-tracking systems“should be used exclusively as a
place to store feedback when you cannot immediately modify the code.”Otherwise,
you should create a reproducible test case.

Advanced problem-tracking systems can do an even better job of integrating with
version control systems.The Software Configuration Management FAQ posting of
the comp.software.config-mgmt newsgroup contains a large list of problem-
tracking systems and their integration within software configuration management.
The newsgroup can be found at http://www.daveeaton.com/scm/.

The award-winning study of Bettenburg (2008) was one of the first to survey
what developers need in a bug report; it is worth a read. It is available at the ACM
digital library at http://doi.acm.org/10.1145/1453101.1453146.

EXERCISES
2.1 Write a bug report for the sample problem (Section 1.1). Justify the amount

of information you gave.

2.2 Visit the MOZILLA problem-tracking site at http://bugzilla.mozilla.org/, and
answer the following questions:

(a) How many problems have been entered as NEW into BUGZILLA in the past
three days?

(b) How many of these are critical (or even blocking)?
(c) How many of these are invalid? Why?
(d) How many unresolved or unconfirmed problems are there in the currently

released version?
(e) Which is the worst currently unresolved problem?
(f) According to problem priority, which problem should you address first as

a programmer?

2.13 Further Reading 47

2.3 What are the major differences between a dedicated problem-tracking sys-
tem such as BUGZILLA and a general organizing and messaging tool such as
Microsoft Outlook?

2.4 Which other problems (in addition to software) could be managed using a
problem-tracking system?

Six Stages of Debugging

1. That can’t happen.
2. That doesn’t happen on my machine.
3. That shouldn’t happen.
4. Why does that happen?
5. Oh, I see.
6. How did that ever work?

CHAPTER

3Making Programs Fail

Before a program can be debugged,we must set it up such that it can be tested—that
is, executed with the intent to make it fail. In this chapter, we review basic testing
techniques, with a special focus on automation and isolation.

3.1 TESTING FOR DEBUGGING
User reports are not the only way of learning about problems.Typically,most prob-
lems (and in the best of all worlds, all problems) are found by testing at the
developer’s site before they ever could be experienced by a user. Testing is the
process of executing a program with the intent of producing some problem. Once
such a problem has been found by testing, the process of tracing down the defect
and fixing it is the same as if the problem had been reported by a user (except
that problems found by testing, or any other means of quality assurance, are less
embarrassing, and generally much cheaper to fix). First comes the problem (from a
test or a user), then comes the debugging.

This classical view of testing is called testing for validation. It is geared toward
uncovering yet unknown problems. A great deal of research revolves around the
question of how to test programs such that the tests uncover as many problems
as possible. We summarize the basics in Section 3.8. In the context of debugging,
though, testing also has its place. However, it is geared toward uncovering a known
problem. Such testing for debugging is required at many stages of the debugging
process, and thus throughout this book:

■ One must create a test to reproduce the problem (see Chapter 4).
■ One must rerun the test multiple times to simplify the problem (see

Chapter 5).
■ One must rerun the test to observe the run (see Chapter 8).
■ One must rerun the test to verify whether the fix has been successful (see

Section 15.4 in Chapter 15).
■ One must rerun the test before each new release such that the problem (or a

similar one) will not occur in the future.This is also called regression testing
(see Chapter 16). 49

50 CHAPTER 3 Making Programs Fail

As testing occurs so frequently while debugging, it is a good thing to automate
it as much as possible. In general, by using automation, more thorough tests can be
achieved with less effort. Automation:

■ Allows the reuse of existing tests (for instance, to test a new version of a
program).

■ Allows one to perform tests that are difficult or impossible to carry out
manually (such as massive random tests).

■ Makes tests repeatable.
■ Increases confidence in the software.

All of these benefits apply to validation as well as to debugging, such as the previ-
ously listed.

Automation not only streamlines the “classic” testing and debugging tasks, but
enables additional automated debugging techniques, such as those discussed in
this book:

■ Automated tests enable automated simplification of test cases (see
Chapter 5).

■ One can use automated tests to isolate failure causes automatically,
including:
– Failure-inducing input (see Section 13.5 in Chapter 13)
– Failure-inducing code changes (see Section 13.7 in Chapter 13)
– Failure-inducing thread schedules (see Section 13.6 in Chapter 13)
– Failure-inducing program states (see Section 14.4 in Chapter 14)

In this chapter, we will thus focus on how to set up automated tests that
support our (automated and nonautomated) debugging tasks. We examine the
question:

HOW CAN WE LEVERAGE TESTS TO SUPPORT DEBUGGING?

3.2 CONTROLLING THE PROGRAM
Consider a real-world example, related to the MOZILLA Web browser—or more
specifically, its HTML layout engine named Gecko. In July 1999, two years before
the final completion of MOZILLA 1.0, BUGZILLA (the MOZILLA problem database)
listed more than 370 open problem reports—problem reports that were not
even reproduced. At the same time, test automation was in bad shape. To test
MOZILLA , developers essentially had to visit a number of critical Web pages,
such as www.cnn.com/, and (visually) check whether the layout and functionality
was okay.

3.2 Controlling the Program 51

EXAMPLE 3.1: MOZILLA problem report 24735

Ok the following operations cause mozilla to crash consistently
on my machine

-> Start mozilla
-> Go to bugzilla.mozilla.org
-> Select search for bug
-> Print to file setting the bottom and right margins to .50

(I use the file /var/tmp/netscape.ps)
-> Once it’s done printing do the exact same thing again on

the same file (/var/tmp/netscape.ps)
-> This causes the browser to crash with a segfault

Example 3.1 shows the problem report we want to turn into an automated test
case. Under certain conditions,MOZILLA crashes when printing a page. How do we
automate this sequence of actions? In general, an automated test must simulate the
environment of the program—that is,the test must provide the program’s input and
assess the program’s output. Simulating an environment can be very tricky, though.
If the environment involves users who interact with the program, the automated
test must simulate actual users (including all of their capabilities).

Figure 3.1 shows the steps our user simulation must conduct, which are:

1. Launch MOZILLA.
2. Open the Open Web Location dialog.
3. Load bugzilla.mozilla.org.
4. Open the Print dialog.
5. Enter appropriate print settings.
6. Invoke the actual printing.

However,our user simulation must also synchronize its actions with the application.
For instance,the simulation can“click”in the dialog only after it has popped up.The
same applies for the second printing, which can only start after the first printing
is done. Thus, the user simulation must not only provide input but interpret the
output.

Such efforts can be avoided by identifying alternate interfaces, where control
and assessment are easier to automate. Figure 3.2 shows a typical decomposition of
a program into three layers:

■ The presentation layer handles the interaction with the user (or whatever
constitutes the environment of the program).

■ The functionality layer encapsulates the actual functionality of the program,
independent of a specific presentation.

■ The unit layer splits the functionality across multiple units, cooperating to
produce a greater whole.

52 CHAPTER 3 Making Programs Fail

FIGURE 3.1

Making MOZILLA print (and crash). This takes just six easy steps.

User

Presentation

Functionality

Unit Unit Unit
Result

Execution

Automated test

(1) (2) (3)

FIGURE 3.2

Testing layers. A program can be tested (1) at the presentation layer, (2) at the functionality
layer, or (3) at the unit layer.

3.3 Testing at the Presentation Layer 53

Whereas the user (and the environment) interact only with the presentation
layer, an automated test can use all three layers for automating execution and for
retrieving and assessing results. Each layer requires individual techniques, though,
and brings its own benefits and drawbacks for testing and debugging. In the next
three sections,we discuss testing at the individual layers and check for the following
features:

■ Ease of execution: How easy is it to get control over program execution?
■ Ease of interaction: How easy is it to interact with the program?
■ Ease of result assessment: How can we check results against expectations?
■ Lifetime of test case: How robust is my test when it comes to program

changes?

3.3 TESTING AT THE PRESENTATION LAYER
Let’s start with the presentation layer, where the program interacts with its envi-
ronment. How does one test at the presentation layer? Basically, one simulates the
input and monitors the output. Depending on the nature of the input and output,
this can be done at multiple abstraction levels. For a networking device,for instance,
we can capture input and output at the data link layer (monitoring and sending
individual bits between two ends of a physical connection), or at the transport
layer (monitoring and sending data packets between two machines). The higher
the abstraction level, the more details are abstracted away, which makes it easier to
simulate interaction. On the other hand,one risks abstracting away the very details
that cause a failure.

As a more detailed (and frequent) example of abstraction levels, let’s take a
look at user interaction. User interaction can be simulated at two abstraction lev-
els: at a low level (expressing interaction as a sequence of mouse and keyboard
events) or at a higher level,denoting interaction using graphical user controls of the
application.

3.3.1 Low-Level Interaction
At the lowest abstraction level,user input becomes a stream of mouse and keyboard
events. Such event streams can be captured (i.e., recorded from the input devices)
and replayed, substituting the stream from actual input devices by the previously
recorded stream.

As an example, Example 3.2 shows a script recorded by the open-source tool
ANDROID (not to be confused with Google’s Android operating system) to repro-
duce the MOZILLA interaction shown in Figure 3.1. To make it more user readable,
the script has been simplified to the relevant events.

Each of these send_xevents command simulates a user action. The command

send_xevents @550,170 click 1

54 CHAPTER 3 Making Programs Fail

EXAMPLE 3.2: ANDROID script to make MOZILLA print. This script simulates
user interaction at a low level by means of keyboard and mouse interaction.

1. Launch mozilla and wait for 2 seconds
exec mozilla &
send_xevents wait 2000

2. Open URL dialog (Shift+Control+L)
send_xevents keydn Control_L
send_xevents keydn Shift_L
send_xevents key L
send_xevents keyup Shift_L
send_xevents keyup Control_L
send_xevents wait 500

3. Load bugzilla.mozilla.org
and wait for 5 seconds
send_xevents @400,100
send_xevents type {http://bugzilla.mozilla.org}
send_xevents key Return
send_xevents wait 5000

4. Open Print Dialog (Ctrl+P)
send_xevents @400,100
send_xevents keydn Control_L
send_xevents key P
send_xevents keyup Control_L
send_xevents wait 500

5. Click on "Print to File"
send_xevents @550,170 click 1

6. Print (Return)
send_xevents key Return
send_xevents wait 5000

tells ANDROID to move the mouse pointer to position (550,170), and then to simu-
late a click of mouse button 1 (the left mouse button). Likewise, the command key
simulates the press of a key, and type is shorthand for typing several keys in a row.
The commands keydn and keyup are handy for simulating modifiers such as Shift,
Alt, or Ctrl that need to be held down while other keys are pressed.

As nobody wants to read or maintain tests that deal with absolute screen
coordinates, such event scripts are largely write-only. Furthermore, any recorded
information is fragile: The slightest change in the user’s display or the program’s
interface makes the recorded scripts obsolete.

To illustrate the fragility, just try to invoke the script twice in a row: The second
time the script executes, the file to be printed to already exists, and thus MOZILLA
wants special confirmation before overwriting the file. This extra dialog, though, is

3.3 Testing at the Presentation Layer 55

not handled in our script and thus will fail miserably. Other changes that quickly
make the script obsolete include a different placement of the MOZILLA main win-
dow or its dialogs (all coordinates in the script are absolute) and changes in font
size, screen size, layout, user language, or even interaction speed.

If we record and replay nonuser interaction at a low level, such as data flow
on a network, any changes to the program or the protocol will also make recorded
scripts quickly obsolete. Nonetheless,such recorded information can be very useful
for automating user interaction again and again—as long as it is used for one single
debugging session in one specific environment.

3.3.2 System-Level Interaction
One way of overcoming the problem of fragility (Section 3.3.1) is to control not
only the single application but the entire machine. For this purpose, one typically
uses a virtual machine system that simulates an entire machine as software. The
virtual machine FAUMachine, for instance,allows us to simulate many types of input
and can even inject faults such as simulated hardware defects. Example 3.3 shows
a simple script.

Use of virtual machines for testing and debugging typically requires that a
number of well-defined virtual machines be available. Therefore, virtual machines
are nice to have if one desires or requires complete control at the system level.
Although a large set of virtual machines requires careful administration, it is still
easier to administer and configure virtual rather than real machines.

3.3.3 Higher-Level Interaction
A more comfortable way of making user interaction scripts more robust against
changes and thus more persistent is to choose a higher abstraction level—that
is, controlling the application not by means of coordinates but by actual graphi-
cal user controls. As an example, consider Example 3.4. It shows a script in the
APPLESCRIPT language that makes MOZILLA on Mac OS load and print the page
bugzilla.mozilla.org. APPLESCRIPT is designed to be readable by end users. The
¬ character lets you split one line of script onto two.

EXAMPLE 3.3: A script for automating execution of a virtual FAUmachine. This
script interacts at the system level, simulating the hardware of a real machine

Power on the machine and wait for 5s
power <= true; wait for 5000;

Click mouse button 1
m_b1 <= true; wait for 300; m_b1 <= false;

Click the CDROM change button
cdctrl’shortcut_out_add("/cdrom%change/…");

56 CHAPTER 3 Making Programs Fail

EXAMPLE 3.4: APPLESCRIPT makes MOZILLA print. This script excerpt inter-
acts with MOZILLA at a higher level. It refers to named GUI elements to simulate
actions.

-- 1. Activate mozilla
tell application "mozilla" to activate

-- 2. Open URL dialog via menu
tell application "System Events"
tell process "mozilla"
tell menu bar 1
tell menu bar item "File"
click menu item "Open Web Location"

end tell
end tell

end tell
end tell

-- 3. Load bugzilla.mozilla.org
-- and wait for 5 seconds
tell window "Open Web Location"
tell sheet 1
set value of text field 1 to ¬
"http://bugzilla.mozilla.org/"

end tell
click button 1

end tell
delay 5
.
.
.

The main difference with the ANDROID script shown in Example 3.2 is that
APPLESCRIPT no longer references user controls by position but by names such as
Open Web Location and relative numbers such as menu bar 1. This makes the
script much more robust against size or position changes (only the labels and the
relative ordering of the user interface controls must remain constant).

Again, such scripts can also be recorded from user interactions. Several capture/
replay tools are available that work at the level of named user controls. However,
even if we raise the abstraction level to user controls scripts remain fragile: Any
single renaming or rearrangement of controls causes all scripts to become obsolete.

3.3.4 Assessing Test Results
Whether we are controlling the application using event streams or user controls,one
major problem remains: Our simulation must still examine the program’s output.

■ Examining the output is necessary for synchronization, as the simulated user
may have to wait until a specific action completes. In our MOZILLA script, we
circumvented this problem by introducing appropriate delays.

3.4 Testing at the Functionality Layer 57

■ Examining the program’s output is necessary for result assessment. Eventually,
our test must determine whether the result matches the expectations or not.
In our MOZILLA example, this was particularly easy. The crash of a program is
relatively easy to detect,but if we had to verify MOZILLA’s output on the screen
we would have a difficult time processing and assessing this output.

To sum up, the advantage of testing at the presentation layer is that it is always
feasible. We can always simulate and automate a user’s behavior. However, this is
already the only advantage. In general, one should use the presentation layer for
testing only:

■ If the problem occurs in the presentation
■ If the presentation layer is easily used by computers
■ If there is no other choice (for instance, because there is no clear separa-

tion between presentation and functionality, or because the lower layers are
inaccessible for testing)

The rule of thumb is: The friendlier an interface is to humans, the less friendly it
is to computers. Therefore, we should have a look at alternative interfaces that are
better suited to automation.

3.4 TESTING AT THE FUNCTIONALITY LAYER
Rather than simulate user interaction, it is much preferable to have the program
provide an interface that is designed for automation—or,more generally,designed
for interaction with technical systems. Such an interface may be designed for inter-
action with programming languages (for instance, the programming language the
application itself is written in). However, some programs provide interfacing with
scripting language, allowing even end users and nonprogrammers to automate
execution in a simple way.

Example 3.5 shows anAPPLESCRIPT program that uses the scripting capabilities
of the Safari Web browser to load a given Web page and to print it, mimicking our
MOZILLA example. This script uses commands such as

set the URL of the front document

that work regardless of what the user interface looks like, and thus make the script
unaffected by any changes of the user interface. Note, though, that not every Safari
feature is scriptable. To print a page (step 2 in Example 3.5), we still have to fall
back to the presentation layer.

Support for automation at the functionality layer greatly differs by operating
environment. In Mac OS, APPLESCRIPT is available for several applications. In Win-
dows,this role is filled byVisual Basic.Example 3.6 shows aVBSCRIPT program that
loads a file into Internet Explorer (IE;note how this program waits until the page is
actually loaded). Under Linux and UNIX,there is no single standard for scripting—no
scripting support for MOZILLA, for instance.

58 CHAPTER 3 Making Programs Fail

EXAMPLE 3.5: Loading a site in Safari using APPLESCRIPT. This script uses
Safari’s built-in functionality layer to open Web pages—except for printing,
where one has to resort to simulating user interaction

1. Load document
tell application "Safari"
activate
if not (exists document 1)
make new document at the beginning of documents

end if
set the URL of the front document ¬
to "http://bugzilla.mozilla.org/"

delay 5
end tell

2. Print it
No script support for printing, so we go via the GUI
tell application "System Events"
tell process "safari"
keystroke "p" using command down

end tell
end tell

EXAMPLE 3.6: Loading a site in Internet Explorer using VBSCRIPT. The script
uses IE’s functionality layer to open pages

’ Load document
Set IE = CreateObject("InternetExplorer.Application")
IE.navigate "http://bugzilla.mozilla.org/"
IE.visible=1

’ Wait until the page is loaded
While IE.Busy

WScript.Sleep 100
Wend

Nonetheless, the advent of Web components has encouraged further separation
of functionality and presentation, thus making automation far easier for future
applications. Every major scripting language (such as VBSCRIPT, PERL, PYTHON,
and, APPLESCRIPT) can use Web component interfaces such as SOAP to inter-
act with local and distributed components and services. Essentially, arbitrary Web
components can be accessed using arbitrary scripting languages.

You may be tempted to define your own home-grown scripting language that
is built into the application. In general, however, this is not worth the investment.
Sooner or later you will require variables, control structures, and modularization—
and it is difficult to add these features one at a time. It is far easier to incorporate

3.5 Testing at the Unit Layer 59

an existing interpreter for a powerful scripting language such as PYTHON,PERL,or
TCL and extend it with application-specific commands. Even more easily, you can
turn your application into a .NET component, a JAVA bean, or a CORBA compo-
nent. All of this makes the functionality available for arbitrary automation purposes
and is thus great for automated testing. (Be aware, though, that automation inter-
faces can be exploited by malicious users. For instance, automation features in
Microsoft Office have frequently been used to send document and email viruses
automatically.)

Overall, the big advantage of testing at the functionality layers is that the results
can be easily accessed and evaluated—something that is difficult to do at a pre-
sentation layer for humans. For Web components, results typically come in XML
format, which is easy to parse and process for all scripting languages. Thus, unless
one wants to test individual parts of the program, testing (and debugging) at the
functionality level is the way to go.

Unfortunately, all of this requires a clear separation between presentation and
functionality. Especially older programs may come as monolithic entities without
presentation or functionality layers. In this case, you have three choices:

■ You can go through the presentation layer, as discussed in Section 3.3, and
suffer all of the problems associated with assessing test results.

■ You can do a major redesign to separate presentation and functionality—or at
least to reduce dependences between them. We will come back to this idea
when discussing designing for debugging (Section 3.7).

■ You can decompose the program and access the individual units directly. (This
is discussed in the next section.)

3.5 TESTING AT THE UNIT LAYER
Any nontrivial program can be decomposed into a number of individual units—that
is, subprograms, functions, libraries, modules, abstract data types, objects, classes,
packages, components, beans, or whatever decomposition the design and the
language provide. These units communicate via interfaces—just like the program
communicates with its environment.

The idea now is not to automate the execution of the entire program but only
the execution of a specific unit. This has the advantage that automating the unit in
isolation is frequently easier than automating the entire program.The disadvantage,
of course, is that you can only automate the behavior of the given unit and thus
must count on the unit producing the problem in isolation.

Units are typically not accessible to end users, and thus not necessarily acces-
sible for scripting, as discussed in Section 3.4. However, they are accessible to
programmers, using the same means as the enclosing program to access their
services—typically, simple invocation of functions and methods in the language
of the program.

60 CHAPTER 3 Making Programs Fail

Whereas units are among the eldest concepts of programming, the concept of
automated testing at the unit level has seen a burst of interest only in the last few
years. This is due to the big interest in extreme programming, which mandates
automated tests as early and often as possible (and notably the creation of a unit
test case before implementation),and to the fact that massive automated testing has
become much more affordable than, say, 20 years ago.

All of these tools provide a testing framework that collects a number of indi-
vidual unit tests—a test that covers a single unit. Unit tests are supposed to run
automatically—that is, without any user interaction. On request, the testing frame-
work runs some or all unit tests and displays a summary of the executed unit tests
and their respective outcomes.When a single unit test executes,a testing framework
does three things:

1. It sets up an environment for embedding the unit. Frequently, a unit will
require services of other units or the operating environment.This part sets up the
stage.

2. It tests the unit. Each possible behavior of the unit is covered by a test case,
which first performs the operation(s) and then verifies whether the outcome is
as expected.

3. It tears down the environment again.This means it brings everything back in the
state encountered initially.

Consider an example of how to use unit tests. Assume that as part of a Web
browser you manage a JAVA class for uniform resource locators (URLS) such as the
following.

http://www.askigor.org/status.php?id=sample#top

A URL class has a constructor that takes a URL as a string. Among others, it provides
methods for retrieving the protocol (e.g.,http), the host (e.g.,www.askigor.org),
the path (e.g.,/status.php), and the query (e.g.,id=sample).

Suppose you want to test these methods. Because you are working with a JAVA
class,one of the first choices for unit testing is the JUNIT testing framework. JUNIT
provides all we want from a testing framework. It allows us to organize and con-
duct automated tests in a simple yet effective fashion. (In fact, JUNIT has been
so successful that its approach has been adopted for more than 100 languages,
including CPPUNIT for C++, VBUNIT for VBSCRIPT, PYUNIT for PYTHON, and
so on.)

To test the URL class with JUNIT,you create a test case URLTest that is a subclass
of TestCase. The source code URLTest.java is shown in Example 3.7. In this
template, the setUp() method is responsible for setting up the environment for
embedding the unit.The tearDown() method destroys the environment again. Our
environment consists of a rational member variable askigor_url containing the
URL. This variable can be used in all further tests.

3.5 Testing at the Unit Layer 61

EXAMPLE 3.7: URLTest.java—a unit test for URLS

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {

private URL askigor_url;

// Create new test
public URLTest(String name) {

super(name);
}

// Assign a name to this test case
public String toString() {

return getName();
}

// Setup environment
// will be called before any testXXX() method
protected void setUp() {

askigor_url = new URL("http://www.askigor.org/" +
"status.php?id=sample");

}

// Release environment
protected void tearDown() {

askigor_url = null;
}

We can add the individual tests to this class. In JUNIT, each test comes in a
separate method. We shall add four methods that test for equality and nonequality,
respectively, as shown in Example 3.8. The assertEquals() method makes the
test fail if the two arguments do not equal each other.

We next need a suite that runs all tests, as shown in Example 3.9. By default, any
method of the test class with a name that begins with the word test will be run
as a test. For the last step, we have to give the class a main method that invokes a
GUI for testing. This piece of code is shown in Example 3.10. This concludes the
URLTest class.

The main method we have added to the test case allows us to execute it as a
stand-alone application. If we do so, we obtain the graphical user interface shown
in Figure 3.3. Clicking on Run runs all tests at once.The bar below shows the status.
If the bar is green (as in the left window),all tests have been run successfully. If the
bar is red (as in the right window), some tests have failed.

The important thing about unit tests is that they run automatically—that is,
we can assess the unit state with a click of a single button. Recent studies by

62 CHAPTER 3 Making Programs Fail

EXAMPLE 3.8: Actual tests in URLTest.java

// Test for protocol ("http", "ftp", etc.)
public void testProtocol() {

assertEquals(askigor_url.getProtocol(), "http");
}

// Test for host
public void testHost() {

int noPort = ---1;
assertEquals(askigor_url.getHost(),

"www.askigor.org");
assertEquals(askigor_url.getPort(), noPort);

}

// Test for path
public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
}

// Test for query part
public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
}

EXAMPLE 3.9: Setting up a test suite in URLTest.java

// Set up a suite of tests
public static TestSuite suite() {

TestSuite suite =
new TestSuite(URLTest.class);

return suite;
}

EXAMPLE 3.10: A main method for URLTest.java

// Main method: Invokes GUI
public static void main(String args[]) {

String[] testCaseName =
{ URLTest.class.getName() };

// Run using a textual user interface
// junit.textui.TestRunner.main(testCaseName);

// Run using a graphical user interface
junit.swingui.TestRunner.main(testCaseName);

}
}

3.6 Isolating Units 63

FIGURE 3.3

The JUNIT graphical user interface. The left dialog shows a passing test, the right dialog a
failing test—with a failure description in the bottom test field.

Saff and Ernst (2004b) show that users write better code faster if the test runs
automatically each time they save the program (i.e., not even a button click is
needed). This idea of continuous testing suggests that you simply cannot test early
and often enough.

3.6 ISOLATING UNITS
Automated unit testing of low-level classes such as URL is particularly easy, because
such classes do not depend on anything. That is, we do not have to import and set
up an entire environment just to make the URL class run. In principle,we could also
unit test entire applications such as Mozilla—in a manner similar to testing at the
functionality layer (Section 3.4) but using an API rather than a scripting language.

However, all of this automation again requires that the unit in question clearly
separate functionality and presentation, and make its results available for auto-
matic assessment. This is true for many programs, which thus make it possible for
functionality to be examined (and tested and debugged) in isolation.

64 CHAPTER 3 Making Programs Fail

However, there are programs in which the functionality depends on the presen-
tation,such that it is impossible to separate them. Example 3.11 shows an example.
The function print_to_file() prints the currentWeb page to a file.To avoid over-
writing an existing file, it asks the user for confirmation if the file already exists.
From the user’s perspective, such protection against data loss is a strict necessity.
From the tester’s perspective, though, this confirmation makes the functionality
depend on the presentation. This introduces a circular dependence, as shown in
Figure 3.4:

■ The presentation invokes print_to_file(), thus depending on the func-
tionality.

■ The functionality invokes confirm_loss(), thus depending on the presen-
tation.

EXAMPLE 3.11: Functionality depending on presentation

// Print current Web page to FILENAME.
void print_to_file(string filename)
{

if (path_exists(filename))
{

// FILENAME exists;
// ask user to confirm overwrite
bool confirmed = confirm_loss(filename);
if (!confirmed)

return;
}

// Proceed printing to FILENAME
...

}

invokes

invokes

+print_to_file() +confirm_loss()

Core UserPresentation

FIGURE 3.4

A circular dependence. The Core and UserPresentation classes depend on each other
and thus cannot be tested (or debugged) separately.

3.6 Isolating Units 65

EXAMPLE 3.12: Functionality with parameterized presentation

// Print current Web page to FILENAME.
void print_to_file(string filename,

Presentation *presentation)
{

if (path_exists(filename))
{

// FILENAME exists; confirm overwrite
bool confirmed =

presentation->confirm_loss(filename);
if (!confirmed)

return;
}

// Proceed printing to FILENAME
...

}

As a result,presentation and functionality can no longer be separated from each
other. This has a bad impact on testing (and debugging),as we can no longer interact
at the functionality layer alone. If a testing program invokes print_to_file(),
setting up confirm_loss() to reply automatically will result in a major hassle.The
question is thus: How do we break dependences that keep us from isolating units?

In the case of confirm_loss(), we could easily hack it such that the function
runs in two modes: the “automated” mode disables confirmation, always returning
true; the“interactive”mode enables confirmation,querying the user. A much more
general solution,though,would be to parameterize the print_to_file() function
such that it could work with arbitrary presentations.

This variant of the print_to_file() function is shown in Example 3.12. The
idea here is to have a Presentation class that, among others, again includes
the confirm_loss() method. However, Presentation need not necessarily be
a presentation for the user. Instead, as shown in Figure 3.5, Presentation is an
interface—an abstract superclass that is instantiated only in subclasses. One of
these subclasses (e.g., UserPresentation) may be geared toward the user and
implement all user interaction. Another subclass (e.g., AutomatedPresentation)
may be geared toward automation, though, and always return true whenever
confirm_loss() is invoked.

What do we get by adopting the inheritance scheme shown in Figure 3.5? We
have effectively broken the dependence between functionality and presentation—
that is, the presentation that is geared toward the user. For testing purposes, we
must still provide some functionality we depend on, but this can be encapsulated
in a small class such as AutomatedPresentation.

Overall, the general principle of breaking a dependence is known as the
dependence inversion principle, which can be summarized as depending on

66 CHAPTER 3 Making Programs Fail

+print_to_file()

Core

+confirm_loss()

+confirm_loss() +confirm_loss()

ask user return true;

Presentation

UserPresentation AutomatedPresentation

FIGURE 3.5

Depending on abstractions rather than details. Presentation is now an abstract superclass,
which can be instantiated either as UserPresentation (with confirmation) or as
AutomatedPresentation (without confirmation). The circular dependency between
core and presentation is broken.

abstractions rather than details. Whenever you have some component A depend-
ing on some component B,and you want to break this dependence,you perform the
following:

1. Introduce an abstract superclass B′, and make B a subclass of B′.
2. Set up A such that it depends on the abstract B′ rather than on the concrete B.
3. Introduce alternate subclasses of B′ that can be used with A such that B is no

longer required.

By having A depend on the abstract B′ rather than on the concrete B,we can set
up arbitrary new subclasses of B′ without ever having to change A—and we have
effectively broken the dependence between A and B.

3.7 DESIGNING FOR DEBUGGING
The principle of reducing dependences by depending on abstractions rather than
on details goes a long way. In fact, entire application frameworks can be built
this way. Among the most popular examples is the model-view-controller archi-
tectural pattern, which decouples functionality and presentation at the application
level.

To illustrate the model-view-controller pattern, let’s imagine we want to build an
information system for election day. As illustrated in Figure 3.6, we want to display
the election data in a number of graphical formats, including pie and bar charts. We

3.7 Designing for Debugging 67

48%
28%

10%
6%
4%
4%

48
28
10
6
4
4 User

FIGURE 3.6

An information system for election day. The actual data (on top) is displayed in a number of
graphical formats, and also manipulated as text.

also want to display the data in the form of a spreadsheet,whereby an operator can
manipulate and enter the data.

How would one build such a system? The key idea here is again to separate
functionality and presentations. In no way do we want the core functionality being
dependent on a specific view. The model-view-controller pattern, as illustrated in
Figure 3.7, gives us a general solution to this problem. It splits responsibilities into
two parts:

1. A model that holds the core data and provides services that operate on this
core data.

2. A number of observers that register or attach to the model and get notified
whenever the core data changes.

Observers, again, are divided into two subclasses.

1. A view is responsible for displaying the core data in a specific way (such as pie
chart views or bar chart views).

2. A controller handles input events (typically from the user) and invokes
the services of the model.

When a user thus interacts with a controller, he or she will eventually invoke
a service that changes the core data. When this happens, all views attached to the
model are automatically notified—that is, they can get the data from the model in

68 CHAPTER 3 Making Programs Fail

Model

View

Controller

-coreData
Register observers

Notify observers

Update view

+update()

Observers

0..*

0. .11

Observer

1

+attach(Observer)
+detach(Observer)
+notify()
+getData()
+service()

+initialize(Model)
+makeController()
+activate()
+display()
+update()

+initialize(Model,View)
+handleEvent()
+update()

FIGURE 3.7

The model-view-controller pattern. A model has a number of observers, which can be either
views or controllers.

order to update their displays.This also includes the view of the user,who thus gets
visual feedback.

When it comes to testing and debugging, a model-view-controller architecture
has several benefits. For testing, one can build and add new controllers that invoke
services of the model—for instance, controllers that automate execution of these
services. For debugging, one can register special views that automatically log all
changes to the model. Finally,every observer and model can be examined and tested
in isolation, thus reducing complexity.

As the model-view-controller pattern shows, it is generally advisable to avoid
dependences between presentation and functionality. However, any dependence
may eventually cause problems in testing and debugging. Just as we want to examine

3.8 Preventing Unknown Problems 69

systems that are isolated in our controlled environment (rather than embedded in
the user’s environment), we want to examine units that are isolated in a controlled
environment rather than entangled with the entire system. Isolated units are not
only easier to test and debug but easier to understand,reuse,and maintain. Reducing
dependences is thus a key issue in software design. Fortunately, all software design
methods attempt to minimize dependences between units, using the same two
principles:

High cohesion. This is the basic principle that tells what to group into a unit.
Those parts of a system that operate on common data (and thus depend on
these data) should be grouped together—typically,into some unit as supported by
the design or programming language. For instance,object-oriented design groups
the state (i.e., data) and the functions that work on these data into classes and
objects.

Low coupling. This is the principle that reduces dependences. If two units do
not operate on common data, they should exchange as little information as pos-
sible. This principle is also known as information hiding, and is the key for
understandable, reusable, and extensible systems. The principle of low coupling
also prohibits circular dependences, as they couple all involved units.

Applying the principles of strong cohesion and low coupling consistently will
reduce the number of dependences in any design.Thus,the confirm_loss() invo-
cation (Example 3.11) would be counterintuitive as it violates the principle of low
coupling by coupling presentation and functionality more than necessary.

Given the time potentially saved on coding, testing, and debugging, any extra
hour spent on improving the design is a good investment. A good design will not
only make your system more flexible,more robust,and more reusable,but will make
it easier to test and to debug. If you want to know more about design, the “Further
Reading”section gives a number of useful references.

3.8 PREVENTING UNKNOWN PROBLEMS
So far, this section has been about setting up tests for debugging—that is, how to
isolate a unit in a controlled environment. All of this assumes that a problem has
already occurred.

Any problem that escapes into the wild (and is experienced by a user) indicates
that the product has not been tested (or reviewed or proven) well enough. Con-
sequently, the quality-assurance process must be refined such that the problem in
question (and hopefully similar problems) will not occur in the future.

As this is a book about debugging (i.e., the cure of known problems),we cannot
spend too much space on preventing yet unknown problems.This is not to negate
that prevention is better than cure. In fact, one might say that, by far, most of com-
puter science is concerned with preventing problems. But when prevention fails,

70 CHAPTER 3 Making Programs Fail

LIST 3.1: Essential Rules for Testing

Specify. A program cannot be correct on its own—it can only be correct with respect to some
specification that describes its purpose. Attempt precise, or even formal, specifications
that cover the entire behavior, including exceptions. A full specification will be a big help in
understanding how the system is supposed to work, and thus help you in writing a correct
system.

Test early. This principle states that you must not wait with testing until the entire system is
assembled. Instead, run test cases as soon as a unit is implemented, and assemble your
system out of carefully tested units.

Test first. Write test cases before implementing the unit. This is useful because test cases can
serve as specifications. Although test cases specify only examples, a sufficient number of
test cases can make it difficult to implement something else than the most elegant (and
correct) solution.

Test often. At the minimum, run your tests with each release of the system. Better yet, run
your tests with every change. The sooner you know that there is a defect, the smaller the
set of accumulated changes that might have caused the defect. Automation helps a lot
here.

Test enough. Measure the coverage of your tests. How many statements and branches are
actually taken? Instrument your code to gather coverage and design your test cases
to achieve sufficient coverage. Use random inputs to cover exceptional and extreme
situations.

Have others test. Testing for unknown problems is a destructive process. By all means, one
must try to uncover a weakness in the program. As people in general prefer being construc-
tive to ripping things apart, this is a difficult psychological situation for most. In particular,
it makes an author unsuited to test his or her own code. Therefore, always have someone
independent test your program, and be open to criticism.

there is need for a cure, and that is what this book is about. Nonetheless, for your
reference, Lists 3.1 and 3.2 capture basic rules of testing and quality assurance.

Quality assurance can never reach perfection. Even if all techniques are applied
to the extreme, we will still have programs with surprising behavior. However, as
a professional developer, you should know about all of these techniques, and be
prepared to suggest them whenever it comes to reducing risk. Making mistakes is
hard to avoid but not caring to prevent mistakes is unacceptable.

3.9 CONCEPTS
To test for debugging, one must:How To

■ Create a test to reproduce the problem
■ Run the test several times during debugging
■ Run the test before new releases to prevent regression

3.9 Concepts 71

LIST 3.2: More Tools and Techniques for Quality Assurance

Have others review. Testing is not the most effective way to catch defects. Reviewing is. No
other technique catches so many defects for the same amount of effort. Have someone
else review your code and check for possible defects. Think about pair programming as
a means of increasing the amount of reviews.

Check the code. More and more, computers can detect errors and anomalies in your system.
Chapters 7 and 11 give an overview. Running such tools on your code comes at a small
cost, but brings greater and greater benefits as computers get faster and faster.

Verify. Several important properties of software systems can today be shown automatically
or semiautomatically. If the behavior of your system can be modeled as a finite-state
machine, software model checking comes in handy to prove correctness. That is how
Microsoft validates its device drivers.

Assert. If you cannot fully prove correctness, go the simpler way: Let the computer do the
work and have it check its state at runtime (see Chapter 10). Your program may still fail
due to a failed assertion, but if all assertions are met the result will be correct with respect
to all assertions.

Due to the number of tests needed in debugging, it is thus useful to automate as
much as possible.

To automate program execution, one can access three layers.
■ Presentation layer
■ Functionality layer
■ Unit layer

The layers differ in ease of execution, ease of interaction, ease of result assessment,
and robustness against changes.

To test at the presentation layer, the testing environment must stimulate human
activities—either input devices (low level) or user controls (higher level).

To test at the functionality layer, use an interface designed for automation—
typically using specific scripting languages.

To test at the unit layer, use the API of a program unit to control it and to assess
its results.

To isolate a unit, break dependences using the dependence inversion principle,
making the unit depend on abstractions rather than on details.

To design for debugging, reduce the amount of dependences using the principles
of high cohesion and low coupling.

Design patterns such as model-view-controller are useful for reducing dependences.

To prevent unknown problems, one can use a variety of techniques, including the
following:
■ Testing early, testing often, and testing enough
■ Reviewing by others and pair programming

72 CHAPTER 3 Making Programs Fail

■ Having the computer check the code for anomalies and common errors
■ Proving correctness formally (using computer support)

3.10 TOOLS
JUNIT. JUNIT as well as unit test tools for other languages can be obtained via its

Web page at http://www.junit.org/.

ANDROID. All scripting languages described in the chapter are also documented
online.TheANDROID package,unfortunately, is no longer available for download;
an Internet search may help you out.

APPLESCRIPT. APPLESCRIPT documentation and examples are found at http://
www.apple.com/applescript/. Neuburg (2003) is strongly recommended as a
guide to APPLESCRIPT.

VBSCRIPT. VBSCRIPT and other Microsoft tools for scripting can be found via
http://en.wikipedia.org/wiki/VBScript.

Other Scripting Languages. Other scripting languages suitable for test automa-
tion include PYTHON,PERL,TCL, and JAVASCRIPT, all of which are documented
by a great deal of information available on the Web.

FAUMachine. The virtual machines discussed in this chapter are also publicly avail-
able. The FAUMachine is a virtual machine specifically built for testing purposes.
Among others, the FAUMachine allows you to control the entire virtual machine
via scripts. FAUMachine can be researched at http://www.faumachine.org/.

VMWare. At the time of this writing, VMWare was one of the most popular
providers of virtual machines. It can be found at http://www.vmware.com/.

Virtual PC. Microsoft also offers Microsoft Virtual PC for various operating
systems, found at http://www.microsoft.com/virtualpc/.

3.11 FURTHER READING
Testing
The book by Myers (1979) has been the classic text on testing for 30 years. It is
still up-to-date, and I recommend it as a first read to anyone who is interested in
testing. It also includes a chapter on testing for debugging. If you prefer a hands-on
approach, try Kaner et al. (1999).

The book by Pezzè and Young (2005) is an in-depth treatment of all things testing
and analysis. Psychological issues, in particular the law that developers are unsuited
to testing their own code, are addressed in Weinberg (1971).

3.11 Further Reading 73

Automation
Fewster and Graham (1998) and Dustin et al. (2001) focus on automated testing,
focusing especially on the management view—such as when and how we should
automate which parts of our test suite.A more technical view on automated testing
can be found on theWeb sites devoted to extreme programming and unit testing, in
particular http://www.junit.org/ for JUNIT and http://www.xprogramming.com/
for extreme programming.

Design
If you do not have it already, Design Patterns by Gamma et al. (1994) contains
much wisdom regarding how to structure systems. On the architectural level, the
Pattern-Oriented Software Architecture Series by Buschmann et al. (1996) and
Schmidt et al. (2000) contains several useful patterns. The model-view-controller
example is taken from this series.

The classic all-in-one textbook on object-oriented software design is the book
by Meyer (1997). Other classic design books include those by Booch (1994) and
Larman (2002). The dependence inversion principle was coined by Martin (1996).
The article is available online at http://www.objectmentor.com/.

EXERCISES
3.1 In a few words, describe testing for debugging and for validation. Discuss the

differences between these purposes.

3.2 Discuss the differences between testing at presentation,functionality,and unit
layer. Focus on ease of execution,ease of interaction,ease of result assessment,
and robustness against changes.

3.3 Is testing at the presentation layer of a command-line tool the same as functio-
nality testing? Discuss similarities and differences.

3.4 Use your favorite Web browser and try to automate the loading of a Web page,
interacting at the presentation or the functionality layer.

3.5 Run the URLtest.java JUNIT test (Example 3.7). You need a URL class for
testing. You can use the URL class that is part of the JAVA 1.4 java.net.URL
package,documented at http://java.sun.com/. Simply include import java.
net.URL in URLTest.java and you can start running JUNIT.

3.6 Extend URLTest.java to include tests for other methods of the URL class. Is
the documentation precise enough to let you write test cases?

3.7 In the model-view-controller pattern (Figure 3.7),every observer still depends
on a given model. How can you use the dependence inversion principle to
break this dependence?

74 CHAPTER 3 Making Programs Fail

3.8 When it comes to breaking dependences, there are alternatives to introducing
abstract classes. Sketch and discuss

(a) The usage of macros (C, C++)
(b) The usage of aspects (see Section 8.2.3 in Chapter 8)

to break the dependence illustrated in Example 3.11.

3.9 JUNIT works fine to discover defects at the unit level, but fails if a failure is
caused by multiple units. Discuss.

Software features that can’t be demonstrated by automated tests
simply don’t exist.

– KENT BECK

Extreme Programming Explained (2000)

CHAPTER

4Reproducing Problems

The first step in debugging is to reproduce the problem in question—that is, to
create a test case that causes the program to fail in the specified way. The first reason
is to bring it under control, such that it can be observed. The second reason is to
verify the success of the fix.This chapter discusses typical strategies for reproducing
the operating environment, the history, and the problem symptoms.

4.1 THE FIRST TASK IN DEBUGGING
Once a problem report is in the problem database, or once a test has failed, the
problem will eventually be processed by some programmer in order to fix it. The
programmer’s first task (or, more precisely, the first task of any debugging activity)
is to reproduce the problem—that is, the problem must occur in the very same way
as stated in the original problem report. Reproducing the problem is important for
two reasons:

1. To observe the problem. If you are not able to reproduce the problem,you cannot
observe what is going on.This thoroughly limits your ability to reason about the
program, as pointed out in Chapter 6. Basically, your only chance is to deduce
from the program code what might have happened to cause the problem.

2. To check whether the problem is fixed. You may be able to deduce a potential
problem cause—and even to design a change that would fix this potential cause.
But how do you show that your change actually fixes the problem in question?
You can do so only by reproducing the initial scenario with the changed product,
and showing that the problem now no longer occurs. Without reproducing the
problem, you can never know that the problem has been fixed.

Of course, if the problem occurred in a test in the local environment we are
already set and done,because we can reproduce the test at the touch of a button—
assuming the test was automated and deterministic. In other cases, and if the
problem was reported by a user, we must first create a test case that reproduces
the problem. This is the key issue in this chapter:

HOW CAN A TEST REPRODUCE A SPECIFIC PROBLEM?
75

76 CHAPTER 4 Reproducing Problems

4.2 REPRODUCING THE PROBLEM ENVIRONMENT
Whereas creating test cases per se is well understood (see Chapter 3), reproducing
a specific problem can be one of the toughest problems in debugging.The process
consists of two main steps:

1. Reproducing the problem environment—that is, the setting in which the
problem occurs.

2. Reproducing the problem history—the steps necessary to create the
problem.

We first focus on reproducing the problem environment. If a problem occurs
in a specific environment, the best place to study the problem is exactly this envi-
ronment. Thus, if Olaf has trouble with the Perfect Publishing Program we should
simply knock on Olaf’s door and ask him whether we could take a brief look at his
machine—or in a more tech-savvy environment ask him for permission to log on to
his machine.

Working in the problem environment offers the best chance of reproducing
the problem. However, for numerous reasons working in the problem environment
typically does not happen:

■ Privacy: The most important reason is privacy—users may simply not wish
others to operate their machines; the same goes for large corporations.

■ Ease of development: To examine the problem, programmers may require
a complete development environment, involving diagnostic software such as
debuggers, which are not typically found on customer’s machines.

■ Cost of maintenance: Users may depend on their machines being operational.
In many cases, you cannot simply take a machine out of production to maintain
the software.

■ Travel cost: When physical access is required, having maintainers move to the
user’s environment is expensive.

■ Risk of experiments: Debugging typically involves experiments, and running
experiments on a user’s machine may cause damage.

Thus,unless the problem environment is already prepared for diagnostic actions
your local environment involves the least cost in reproducing the problem. For
these reasons,as a maintainer you typically attempt to reproduce the problem using
as much of the local environment as possible.This is an iterative process,as follows:

1. Attempt to reproduce the problem in your environment, using the product
release as specified in the problem report (see Section 2.2 in Chapter 2). If
the problem occurs, you are done—and you are lucky.

However, do not cry “success” simply because you experience a problem—
cry “success” only if you experience the problem. Here, “the” problem means
the problem exactly as specified in the problem report. Every deviation from

4.2 Reproducing the Problem Environment 77

the specified symptoms increases the risk of you working on a problem that is
different from the user’s problem. Thus, be sure to check every single symptom
that is specified. If it does not occur in your environment,you may want to refine
your efforts.

2. If the problem does not occur yet,adopt more and more circumstances from the
problem environment—one after the other. This applies to configuration files,
drivers, hardware, or anything else that might possibly influence the execution
of the product. Start with those circumstances

■ that are the most likely to cause problems (as inferred from previous problem
reports), and

■ that are easy to change (and to be undone).

For instance, if the problem environment includes a specific set of user
preferences first try using this set of preferences. If, however, the problem envi-
ronment uses LemonyOS 1.0, but you use LemonyOS 1.1, you may want to
downgrade your machine to LemonyOS 1.0 only after adopting all less-expensive
aspects—or better yet have quality assurance keep a LemonyOS 1.0 machine for
testing.

3. Adopt one circumstance after the other until

■ you could reproduce the problem, or
■ your environment is identical to the problem environment (as far as specified

by the user).

In the latter case, there are two alternatives:

■ The first alternative is that because the problem does not occur in your envi-
ronment it cannot have occurred in the problem environment. Consider the
fact that the problem report is incomplete or wrong.

■ The second alternative is that the problem report is accurate but there still
is a difference between your environment and the problem environment—
because otherwise the problem would occur in your environment as well.
Try to find that difference by querying further facts about the problem
environment.

In both cases,it is wise to query further facts about the problem environment.As
illustrated in Bug Story 4,even otherwise insignificant details can have an impact
on whether one can reproduce earlier runs.

This process of getting nearer and nearer to the problem environment has a
beneficial side effect: you also isolate some circumstances that are relevant in pro-
ducing the problem. Let’s say the problem environment includes a Helquist graphics
card.Your environment does not yet include a Helquist graphics card and the prob-
lem does not occur. However, as soon as you add a Helquist graphics card the
problem does occur. This means that the Helquist graphics card is relevant for
reproducing the problem; more precisely, the Helquist graphics card is a problem
cause.Chapter 13 discusses systematic ways of isolating such causes—manually and
automatically.

78 CHAPTER 4 Reproducing Problems

BUG STORY 4

Mad Laptop
In 2002, I went to a conference to give a laptop demonstration of a complex soft-
ware system. Before I left, we had taken every precaution that the software would
run perfectly. But the evening before the demonstration, I sat in my hotel room and
nothing worked. The software would run into time-out errors anytime, everywhere.
I phoned my department at home. They had the same software on the same machine
and everything worked.

After three hours of trials, I decided to start from scratch. To my amazement, the
demo now ran just fine. What had happened? Within these three hours, the battery
had run out of power and I had connected my laptop to a power plug. I disconnected
the laptop, repeated the demo, and the problem occurred again. It turned out that my
laptop ran slower when running on batteries, which saved energy but also introduced
the time-out errors. Needless to say, all of our previous tests had been conducted on
AC power, and this was how I gave the demo.

4.3 REPRODUCING PROGRAM EXECUTION
Finding an environment in which the problem occurs is not enough. We must also
be able to recreate the individual steps that lead to the problem. Let’s assume that
we have recreated the problem environment, as discussed in Section 4.2. Let’s also
assume that the problem history, as stated in the problem report (see Section 2.2
in Chapter 2), is accurate and complete. Still, we may not be able to reproduce the
problem. In fact,even the user on the original machine may not be able to reproduce
the problem.

Why is it that for the same program a problem may or may not occur? The
execution of a program is determined by its code (which we assume constant) and
its input. If the input differs, so does the execution of the program. To reproduce a
specific execution, we must thus reproduce the program input.

To reproduce an input, the programmer must observe it and control it. Only
when the input is under control does the execution become deterministic—that
is, the outcome of the execution does not change when repeated. Without such
control, the execution becomes nondeterministic—that is, the problem may occur
or not, regardless of the will of the programmer.

All of this sounds rather trivial when thinking of the program input in a classical
sense—that is, data read from a file or a keyboard. Unfortunately, the input of a
program can be more than that—in particular, if you take the view that the input
comprises anything that influences the execution.The following are possible inputs,
as sketched in Figure 4.1:

■ Data: As stored in files and databases is the least problematic input, as it can
easily be reproduced.

4.3 Reproducing Program Execution 79

Physics

Schedules

Operating
environment

Network
input

Static
data

User
interaction

Time

Randomness

Debugging
tools

FIGURE 4.1

Input that might influence a program’s execution.

■ User inputs: Can differ in minor details, which may be relevant for a problem.

■ Communications: Between threads, processes, or machines, offer several chal-
lenges for reproduction.

■ Time: Can influence the program execution in various ways.

■ Random numbers: By definition make every program execution different.

■ Operating environments: Provide services beyond those listed previously that
can heavily interact with the program,all of which may or may not influence the
execution.

■ Process and thread schedules:Normally should not interfere with the program’s
execution. However, if the program has a defect they may.

Most of these inputs have intended effects on the program (which is why they
should be reproduced). Other inputs, though, have unintended effects, such as the
following inputs:

■ Physics: Is typically abstracted away at the hardware layer, but cosmic rays,
electrical discharges, or quantum effects can influence a program’s execution.

■ Debugging tools: Typically interfere with the program execution, and thus may
uncover but also mask problems.

The general pattern for controlling these inputs is to set up a control layer
between the real input and the input as perceived by the program, as sketched
in Figure 4.2. This control layer isolates the program under observation from its
environment. The program input becomes controllable, and thus the execution
becomes deterministic. Any of the automated techniques discussed in Chapter 3
can be used for actually controlling the program.

In the remainder of this chapter, we will focus on applying this pattern to
make a run deterministic, organized by input source. In Section 4.2, we have
already discussed how to reproduce the environment. Start with your own envi-
ronment and reproduce one input source after the other until the problem is

80 CHAPTER 4 Reproducing Problems

Input sources

FIGURE 4.2

Controlling a program’s input. To control program input, one sets up a control layer between
the real input and the input as perceived by the program.

reproduced. In the process,you will narrow down the input sources relevant to the
problem.

4.3.1 Reproducing Data
Regarding reproduction,data as stored in files and/or databases are seldom an issue.
Files and databases can easily be transferred from one machine to another, and can
be easily replicated. The following are the only three issues to be aware of:

1. Get all the data you need. Be sure to reproduce all data your application
accesses and all data under the user’s control. This also includes configuration
data such as registries or configuration files.

Most of the data required to reproduce the problem is typically already
included in the problem report. As discussed in Section 2.2 in Chapter 2, on
reporting problems,it is helpful to set up a specific tool or functionality to collect
such data.

2. Get only the data you need. Some programs operate on enormous amounts of
data, which makes it difficult to examine the problem. Chapter 5 discusses how
to simplify input data.

3. Take care of privacy issues. Data under the user’s control may contain private
or confidential information. Be sure not to find entire hard disks with sensitive
information in your mailbox (this has happened!).

4.3.2 Reproducing User Interaction
In the good old days, programs would read their input from data files only, making
reproduction an easy task. Modern programs, though, use complex user interfaces,
and these make it difficult to observe and control the user’s input.

The standard approach to reproducing user interaction is to use a capture/replay
tool. Such a tool comes in two modes (Figure 4.3):

4.3 Reproducing Program Execution 81

Input sources

Recording Input (a) Relaying Input (b)

FIGURE 4.3

Capturing and replaying program input. During a normal execution, the controlling layer
records the interaction (a). Later, it replays it (b).

1. Capturing interaction. The program executes normally, interacting with its
environment. However, the tool records all input from the environment to a
script before forwarding it to the program.

2. Replaying interaction. The program executes under control of the tool. The
tool redirects the program input such that it no longer gets its input from the
environment but rather from the previously recorded script. Obviously, this
makes the input controllable—and thus allows for reproducible runs.

Technically, a tool realizes capture/replay by intercepting calls to library or sys-
tem functions providing input. Capture takes place after the execution of the
input function. The tool records the returned input and passes it on to the pro-
gram. During replay, the tool no longer executes the input function. Instead, it
returns the previously recorded input.

What does the recorded information look like? In Chapter 3 we saw examples of
scripts that automate program interaction. Depending on the layer at which input
capturing occurs, the scripts simulate user input either

■ as a “low-level” stream of events (Section 3.3.1), or
■ as a“higher-level”sequence of interactions with user controls (Section 3.3.3).

Capturing user interaction can also take place at the following two layers:

1. As a stream of events, a captured user interaction looks like the one shown
in Example 3.4, except that there would be no comments and the script would
include real-time aspects (such as waiting for,say,376 milliseconds until releasing
a key).

2. As a sequence of interactions with user controls,a captured user interaction looks
like that shown in Example 3.6,except that (again) there would be no comments.

As discussed in Section 3.3, on testing at the presentation level, a script at the
“low level” is fragile. That is, the slightest change in user interface layout, font size,
or even interaction speed will make them unusable. Therefore, a low-level script
should not be used beyond a single short-term debugging session.

82 CHAPTER 4 Reproducing Problems

To make the test reusable,one should at least aim to automate input at the higher
level—or test at the functionality layer, as described in Section 3.4. Alas, few tools
are available that allow programmers to capture and replay interaction at these
layers. For a single testing or debugging session, though, it may already suffice to
capture and replay just the basic user interaction in terms of key presses and mouse
clicks.

4.3.3 Reproducing Communications
The techniques used for capturing and replaying user interaction (Section 4.3.2)
can be extended to any type of communication. For instance, specialized tools can
capture, inspect, reconstruct, and replay network traffic.

A general problem with such tools is that they may alter the performance of your
program and its communications, especially if there are much data to be captured
and replayed. (This is not the case with user interactions, which are typically low
bandwidth.) The fact that tools alter the performance is not so much a problem
in itself, but this change in the environment may mask problems that would occur
otherwise (see Section 4.3.9 for the effects of debugging tools).

Note that one does not necessarily have to capture the entire communication
since the start of the program. If the program goes into a reproducible state while

BUG STORY 5

Press Play on Tape
As a student, I worked in a computer store. This was in the mid-1980s, and we had
HP calculators,Commodore PETs, and Ataris. One day, a customer walked in and asked
for help. He was not able to enter a program on his Commodore 64 home computer.
Whenever he entered the first line, the computer would issue a syntax error message.
We asked him to show us the problem on a C-64 nearby. He entered the first line of the
program and got the message:

lO print "Hello World"
?syntax error
ready.

We were amazed, and tried to reproduce the problem. However, when one of us
would enter the same line it would work properly. Only if the customer entered the
line did the error occur. Finally,one of us asked the customer to enter just the number 10.
He did so, and got:

lO
press play on tape

Now we understood. We asked the customer, “How do you type ones and zeros?”
He replied, “I use a lowercase l and a capital letter O, as on my old typewriter.”The
customer had just entered lowercase l and capital O instead of ten, and the C-64 inter-
preted this as an abbreviation for the LOAD command. “Oh, you mean I should use the
digit keys instead?”“Yes,”we said, and off went another happy customer.

4.3 Reproducing Program Execution 83

operating, it suffices to capture (and replay) only the communication since that
reproducible state. Databases, for instance, reach such a reproducible state after
each transaction.

Failure causes are likelier to be found in the later communications than in earlier
communications.Thus, it may frequently suffice to capture just the latest communi-
cation (say, the database transactions that are not yet completed). This saves space,
does not hamper performance too much, and still may be helpful for reproducing
the problem.

4.3.4 Reproducing Time
Many programs require the current time of day for executing correctly. Problems
that depend on the time of day are difficult to reproduce and difficult to trace (see
Bug Story 6, for example).

If the program is supposed to depend on the time of day, or if there is some
indication that the problem depends on the time of day,one must be able to execute
the program under an arbitrary time of day. One way to do so is to change the system
time before each execution—but this is cumbersome and error prone.A much more
comfortable option, though, is to make time a configurable item: the program is set
up such that it can be executed with an arbitrary time of day. This is useful for
reproducing problems and very helpful for creating automatic tests (Chapter 3).

As in Section 4.3.2, on reproducing user input, the basic idea here is to obtain
control over input sources such that they can be reproduced at will. The time of
day is just a specific instance of how to obtain such control.

4.3.5 Reproducing Randomness
Specific programs, notably games and cryptographic applications, depend on ran-
domness.That is, they are supposed to behave differently in every single execution.
Here, nondeterminism is part of the design. That is, the program is set up in such a
way as to prohibit reproduction of individual runs.

BUG STORY 6

Program Only Works on Wednesday
I once had a program that worked properly only on Wednesdays. The documentation
claimed the day of the week was returned in a double word (8 bytes). In fact,Wednesday
is nine characters long, and the system routine actually expected 12 bytes of space for
the day of the week. Because I was supplying only 8 bytes, it was writing 4 bytes on
top of the storage area intended for another purpose. As it turned out, that space was
where a y was supposed to be stored for comparison with the user’s answer. Six days
a week the system would wipe out the y with blanks,but on Wednesdays a y would be
stored in its correct place.

Source: Eisenstadt (1997).

84 CHAPTER 4 Reproducing Problems

When testing such applications, such randomness must also be controlled and
made reproducible. The most efficient way to do so depends on the source of
randomness. If randomness is obtained from a series of pseudorandom numbers, it
may suffice to capture (and replay) the initial seed of the random number generator.
Many games allow one to explicitly specify a seed such that individual executions
can be reproduced.

Cryptographic applications typically depend on more than just a pseudoran-
dom number generator.They obtain randomness from several sources (such as user
input, network events, thermal noise, or others). These sources must be captured
and replayed like input, as discussed in Section 4.3.2. If needed, organize your
program such that developers can replace the source of randomness by a deter-
ministic source. (Be cautious about enabling end users to turn randomness off,
though—especially in cryptographic applications!)

4.3.6 Reproducing Operating Environments
User interaction,communications, time,and randomness all have one thing in com-
mon: a program interacts with its environment, using services provided by this
environment. Such an operating environment typically consists of further libraries,
maybe a virtual machine, an operating system, and eventually the entire world to
which the particular machine may be connected.

The entire interaction between a program and its environment is typically han-
dled by the operating system. More precisely, the operating system controls all
inputs and outputs of a program. Thus, the boundary between program and oper-
ating system comes as a natural place at which to monitor, control, and possibly
record and replay program executions.

As an example, consider the simple C++ program shown in Example 4.1. When
executed, it reads in a password from standard inputs and outputs “access granted”
if the correct password is entered. (A real application would at least care not to
echo the input.)

What does the interaction between this program and its environment look like?
On a Linux box, the STRACE tool monitors the interaction of a program with
the operating system by printing out all system calls, their arguments, and their
return values. (Similar tools are available on all UNIX-like systems.) After compil-
ing password.C, we run STRACE on the resulting password binary, diverting the
STRACE output into a file named LOG.

$ c++ -o password password.C
$ strace ./password 2> LOG
Please enter your password: secret
Access granted.
$ _

What does the STRACE output look like? Example 4.2 shows an excerpt from
the LOG file. The LOG file lists the system calls—function invocations by which

4.3 Reproducing Program Execution 85

EXAMPLE 4.1: password.C—a simple C++ password requester

#include <string>
#include <iostream>

using namespace std;

string secret_password = "secret";

int main()
{

string given_password;

cout « "Please enter your password: ";
cin » given_password;
if (given_password == secret_password)

cout « "Access granted." « endl;
else

cout « "Access denied." « endl;
}

EXAMPLE 4.2: The STRACE log from password.C (excerpt)

〈Clutter produced by shared libraries …〉
write(1, "Please enter your password: ", 28) = 28
read(0, "secret\n", 1024) = 7
write(1, "Access granted.\n", 16) = 16
exit_group(0) = ?

the program requests services from the operating system.The write() system call,
for instance, writes a string to stream number 1, the standard output stream on
Linux (and other POSIX environments). STRACE also logs the data returned by the
system calls. For instance, it reports the return value of write() (the number of
written characters). For the following read() call, it reports the actual characters
("secret\n") read. Obviously, a tool such as STRACE is great for monitoring the
interaction between a program and its operating system.

STRACE basically works by diverting the calls to the operating system to wrap-
per functions that log the incoming and outgoing data. There are various ways of
achieving this. For instance, STRACE could link the program with its own “faked”
versions of read(), write(), and so on that would all do the logging before and
after invoking the “real”read() and write() functions. STRACE goes a more gen-
eral way, which does not require relinking. On a Linux system, all system calls use
one single functionality—a specific interrupt routine that transfers control from
the program to the system kernel. STRACE diverts this interrupt routine to do the
logging.

86 CHAPTER 4 Reproducing Problems

The same mechanism that STRACE and like tools use for reporting the interaction
can also be used for recording and replaying the interaction (actually, this is how
recording and replaying input works). For instance, a log as generated by STRACE
could be processed by a replay tool. Such a replay tool would no longer invoke the
“real”functions but simply have its“fake”functions return the values as found in the
STRACE log file.

In Chapter 8 we learn more about obtaining such logs. In particular, aspect-
oriented programming (see Section 8.2.3) offers elegant and system-independent
ways of adding monitoring code to large sets of functions.

However, the true technical problem is less the capturing (or even replaying)
of logs than the sheer amount of data we have to cope with. As an example,
consider a Web server that serves 10 requests per second. Say that each of these
requests results in a trace log of about 10 kilobytes. Every hour will thus result
in 10�3,600�10 KB�360 MB of trace. A single day will result in 8,640 MB of
trace. Given the advances in storage capacity, this may sound feasible. However,
you should also consider that whenever you have to reproduce a problem you also
have to replay all of this interaction.

An alternative to tracing all of the interaction from scratch is to use checkpoints.
A checkpoint basically records the entire state of a program such that it can be
restored later. This is typically done when the program has reached some stable
state. In the case of the Web server, for instance, this may be a pause between two
requests or transactions.To reproduce a problem,it then suffices to restore the latest
checkpoint, and then to replay the interaction since that checkpoint.

There is an obvious trade-off here. States are huge (see Figure 1.3, for instance)
and capturing states into checkpoints may take time, and thus one must decide
when to prefer checkpoints over recorded interaction. Chapter 14 discusses how
to capture program states into checkpoints and how to restore them.

4.3.7 Reproducing Schedules
Modern programs typically consist of several concurrent threads or processes. In
general, the schedule in which these individual parts are executed is defined by the
runtime or operating system, thus abstracting away details that would otherwise
burden the programmer. Indeed,a program is supposed to behave identically,what-
ever the schedule is. Consequently, although the schedule is nondeterministic the
program execution should stay deterministic and the programmer need not care
about parallelism and nondeterminism (if the program is correct, that is).

Nondeterminism introduced by thread or process schedules is among the worst
problems to face in debugging. The following is a simple example. The APACHE
Web server provides a number of authentication mechanisms to make sure that
only authorized clients can access specific Web pages. One of these authentication
mechanisms is the htaccess mechanism. If a directory contains a .htaccess file,
the access to this directory is restricted—typically to a set of users with passwords
stored in a separate .htpasswd file.

4.3 Reproducing Program Execution 87

To maintain .htpasswd files, APACHE provides a helper program named
htpasswd. For instance, the invocation

$ htpasswd .htpasswd jsmith
New password: _

adds or modifies the password for user jsmith. The htpasswd program prompts
the user for the password and stores the user name and the encrypted password in
the file .htpasswd.

How can htpasswd ever be nondeterministic? The trouble occurs when mul-
tiple users (or processes or threads) are invoking htpasswd at the same time.
Normally, each invocation of htpasswd reads the .htpasswd file, modifies it,
writes it, and closes it again. Multiple sequential invocations cause no problem, as
illustrated in Figure 4.4(a).

However, if two htpasswd processes are running in parallel, bad things can
happen,as illustrated in Figure 4.4(b). Some htpasswd process A begins and opens
the .htpasswd file. Another process B does so at the same time and reads in the
content. Now, process A modifies the content and writes back the .htpasswd file.
However, process B does so, too, effectively overwriting and undoing the changes
made by A.As long as write accesses to .htpasswd are scarce,it is unlikely that such
a schedule would ever occur,but if it does it will be difficult to reproduce the failure.

There are several solutions to the htpasswd problem (none of which the
htpasswd program implements at the time of this writing). The htpasswd could
lock the .htpasswd file and thus protect it against multiple concurrent updates. It
may also retrieve the last update time when reading the file, and check it again

Schedule Process A

Process
Switch

open (“.htpasswd”)

read (...)

modify (...)

write (...)

close (...)

open (“.htpasswd”)

read (...)

modify (...)

write (...)

close (...)

open (“.htpasswd”)

read (...)

open (“.htpasswd”)

read (...)

modify (...)

write (...)

close (...)
modify (...)

write (...)

close (...)

Passing Schedule (a) Failing Schedule (b)

Process B Schedule Process A

A’s updates
get lost!

Process B

FIGURE 4.4

Differences in schedules may cause problems. If a process switch occurs in the middle of
processing a file the second process (b) may undo updates made by the first process (a).

88 CHAPTER 4 Reproducing Problems

before writing. If the update time has changed in between,the file has changed and
must be reread again.

Similar problems (with similar solutions) exist for all resources shared across
multiple threads or processes. If multiple threads all write into a shared variable,
the thread that writes last wins. Again, the solution would be to introduce locks or
language-specific synchronization mechanisms, as described in any good textbook
on operating systems or parallel processes.

However, all of these are solutions to a known problem, but to identify a prob-
lem we must first reproduce it. The general solution is to treat a schedule just like
another input source,recording it and replaying it at will. However,as with commu-
nications (see Section 4.3.3,on reproducing communication),the amount of data to
collect can greatly affect the performance of a system. Another issue is scalability:
recording and replaying the thread schedule of a single program has been shown
to be practically feasible. However,recording and replaying an entire set of commu-
nicating processes, including the schedules as imposed by the operating system, is
still a challenge for today’s tools.

As programs should behave identically under all possible thread and process
schedules, one may attempt to uncover differences in execution as induced by
schedule differences. Such differences may be uncovered by program analysis (see
Chapter 7). For instance, one can verify that all access to shared variables happens
in a synchronized fashion. Likewise, massive random testing (see Chapter 3) can
uncover problems due to differing schedules.

4.3.8 Physical Influences
Nondeterminism, as induced by thread or process schedules, is just one of the
aspects of the real world that programmers deliberately abstract away. Why do
they abstract these aspects away? Because they are not supposed to influence the
execution of the program.

However, there are many ways to influence the machine on which our program
executes. Energy impulses,for instance,can cause bits to flip. Such energy impulses
can come over power lines or network communications, but also from alpha par-
ticles emitted from the Earth’s crust. (Cosmic rays, on the other side, have been
shown to not influence programs in any way—except maybe in space-borne com-
puters.) Quantum effects may also account for a certain amount of unpredictability.
Real-life bugs can also cause failures (recall the tale of the moth caught in a relay, as
told in Bug Story 1).

Although computers are typically designed to withstand physical influence,there
is a very small chance that such influences may actually cause the program to
fail—and as they are extremely rare, physical influences are difficult to reproduce.
However, physical influences are also so rare that they can hardly be blamed for
a nonreproducible problem. Yet it is common among programmers to blame, say,
cosmic rays for an inexplicable problem, to shrug the shoulders, and go away.

Professional programmers should take such physical influences into account
only if all other alternatives have been proven to be irrelevant—and if the physical

4.3 Reproducing Program Execution 89

influences can actually be proven. One exception remains, though: If physical influ-
ences are likelier than expected,because the physical environment is different from
average,then (and only then) are you allowed to take such causes into account.Thus,
if the problem occurs in the hot chamber of some nuclear research facility feel free
to have someone check for sources of strong magnetic fields or alpha particles.

4.3.9 Effects of Debugging Tools
Another source that can alter a program’s behavior is the debugging process itself.
In fact, simply observing or examining the problem can cause the problem to
disappear—or to be replaced by another problem. Problems that behave in this
manner are known as Heisenbugs—in analogy to Heisenberg’s famous uncertainty
principle,which states that you cannot observe position and momentum of a particle
at the same time with arbitrary precision (the observation itself alters the situation
to be observed).

One major source for Heisenbugs are differences between the debugging (i.e.,
observation) environment and the production environment, combined with unde-
fined behavior of the program. As a simple example, consider the following short
C program.

int f() {
int i;
return i;

}

Note that i is not initialized.Thus,the value of i as returned by f() is undefined.
“Undefined”means“undefined by the C standard,”which again means that whatever
f() returns it all conforms to the C standard. In practice, though, f() will return
a definite value on many systems. Multiuser operating systems take care to start
processes only with initialized memory (typically zeroed), such that a process may
not examine the leftovers of other processes. Thus, in such an environment if f()
is the first function being called it is likely to always return zero.

Now consider f() being executed within an interactive debugger (see Chap-
ter 8). The debugger has no need to clear the leftovers of earlier processes. In
particular, if you run the program multiple times,f() may return a random leftover
from a previous run of the program, which may or may not be zero. Thus, running
the program in a debugger alters the program’s behavior—which may result in the
original problem being masked by another problem, or (worse) the problem not
occurring anymore at all.

If you experience a Heisenbug,think about undefined behavior in your program.
Undefined behavior is almost always caused by a defect. In particular, consider the
following:

■ Check the data flow of your program to identify uninitialized variables (see
Section 7.5 in Chapter 7, on code smells).

■ Use system assertions to identify memory that is read before being written
(see Section 10.8 in Chapter 10, on system assertions).

90 CHAPTER 4 Reproducing Problems

BUG STORY 7

A print Statement Introduces a Heisenbug
In the midst of a debugging session, I inserted a print statement such that I could
observe what was going on.To my great surprise, the problem no longer occurred after
I had inserted the print statement. Even more puzzling, after I removed the print
statement the problem was still gone, although the program had been reverted to its
original state. Well, the problem was gone, but I remained suspicious.

When the problem resurfaced on our production machine, I went on investigating
what had gone on. It turned out that there was a difference between the original and
the reverted program: the executables were different. The problem was caused by a
bug in the initial linker: a symbol had been resolved to a bad address. To insert the
print statement, though, an alternate incremental linker had been used—and using
this incremental linker fixed the problem.

Some languages are more prone to Heisenbugs than others (in particular, lan-
guages where undefined behavior is part of the semantics, such as C and C++).
In more modern languages, such as JAVA and C#, almost every single aspect of
the program execution is well defined, including forced initialization of variables.
Furthermore, these languages come with managed memory, giving every memory
access a predictable outcome.

You do not necessarily need a debugger to trigger a Heisenbug (any of the debug-
ging techniques discussed in this book can trigger differences in behavior). Among
the most obvious issues is that examining a program (interactively or not) can intro-
duce timing issues, as discussed in Section 4.3.4. Recompilation for debugging
might trigger bugs in the tool chain. Even something as innocuous as a print state-
ment can alter the behavior of a program (Bug Story 7). The debugging tools, of
course, may themselves be buggy, and this can lead programmers far astray from
the actual problem cause.

For these reasons, whenever there is the least suspicion the problem may be
a Heisenbug it is always useful to double check and to observe the program by
at least two independent means. In addition to Heisenbugs, computer jargon also
introduced Schroedinbugs, Bohr bugs, and others (List 4.1 lists them all).

4.4 REPRODUCING SYSTEM INTERACTION
As seen in the previous section,the interface between a program and its environment
becomes more and more difficult to control the tighter the program is coupled to its
environment. In other words, the more information the program and environment
exchange and the more the program depends on this information,the more difficult
it will be to reproduce a given problem.

4.5 Focusing on Units 91

LIST 4.1: Jargon about Reproducible and Less-Reproducible Problems

Bohr bug (from quantum physics): A repeatable bug—one that manifests reliably under a
possibly unknown but well-defined set of conditions.

Heisenbug (from Heisenberg’s Uncertainty Principle in quantum physics): A bug that
disappears or alters its behavior when one attempts to probe or isolate it.

Mandelbug (from the Mandelbrot set): A bug the underlying causes of which are so complex
and obscure as to make its behavior appear chaotic or even nondeterministic. This term
implies that the speaker thinks it is a Bohr bug, rather than a Heisenbug.

Schroedinbug (MIT: from the Schrödinger’s cat thought experiment in quantum physics):
A design or implementation bug in a program that does not manifest until someone reading
source code or using the program in an unusual way notices that it never should have
worked, at which point the program promptly stops working for everybody until fixed.

Source: Raymond (1996).

One way to overcome this issue is to replay not only the program but its
environment—in fact, to record and replay every single aspect of the physical
machine executing the program. To do so, virtual machines (as discussed in
Section 3.3.2 in Chapter 3) come in handy.

The REVIRT system uses a virtual machine called UMLinux (not to be con-
founded with the similarly named User-Mode-Linux) to record and replay all
interaction of a virtual machine. It uses a specially modified guest operating system
to reduce the overhead of virtualization. Compared to the computation directly on
the host,UMLinux virtualization adds an overhead of 58 percent to execution time.
REVIRT recording adds another overhead of 8 percent. This indicates that virtual
machines are feasible one-size-fits-all solutions when it comes to control, record,
and replay program executions—if such a machine is available for the problem at
hand. The single major drawback is that the recorded scripts are difficult to read,
let alone maintain.

4.5 FOCUSING ON UNITS
Another way of dealing with the coupling between program and environment is to
search for alternative interfaces that may be controlled, recorded, and replayed. In
Section 3.5 in Chapter 3 we saw how to control individual units of the program—
that is,subprograms,functions,libraries,modules,abstract data types,objects,classes,
packages, components, beans, or whatever decomposition the design and the
language provide.

The idea now is not to reproduce the execution of the entire program but only
the execution of a specific unit. This has the advantage that controlling the unit
in isolation may be easier than controlling the entire program. The disadvantage,

92 CHAPTER 4 Reproducing Problems

FIGURE 4.5

Controlling a unit’s interaction. Setting up a layer for a single unit controls its interaction with
the other units.

of course, is that you can only reproduce the behavior of the given unit—and thus
must count on the unit producing the problem in isolation.

4.5.1 Setting Up a Control Layer
The basic scheme for controlling a single unit is sketched in Figure 4.5. Again, we
set up a layer that isolates the unit from its other units. This unit control layer can
be used to monitor, record, and replay the input.

A control layer is a generalization of the STRACE tool (discussed in Section 4.3.6).
Rather than setting up a layer between program and environment (operating sys-
tem), we attempt to isolate arbitrary program units from their environment (the
remainder of the program). This technique is typically used to isolate bottom-level
units—that is, units

■ with services that are being used frequently by higher-level units, and
■ that do not rely on services provided by other units.

Most such bottom-level units are concerned with elementary services such as
storage and communication. To reproduce a problem in such a bottom-level unit, it
is usually easier to record and replay the interaction at the unit boundary rather than
reproducing the entire behavior of the application that uses the unit.The following
are some examples:

■ Databases: To reproduce a problem in a database, record and replay the SQL
transactions as issued by an application—rather than reexecuting the entire
application.

■ Compilers: To reproduce a problem in a compiler, record and restore the
intermediate data structures—rather than reexecuting the entire front end.

■ Networking: To reproduce a networking problem, record and replay the basic
communication calls as issued by the application—rather than reexecuting the
entire application.

4.5.2 A Control Example
As an example of a unit control layer, imagine a simple C++ class that realizes a
mapping from strings to integers, as follows.

4.5 Focusing on Units 93

class Map {
public:

virtual void add(string key, int value);
virtual void del(string key);
virtual int lookup(string key);

};

Our aim is to create a control layer that logs all input and output of such a map.
We also want to use the log to reproduce the interaction between the map and the
other units.That is,we need a means of reading the log and invoking the appropriate
Map methods.

A very simple way of creating such means is to create the log as a stand-alone
program file. If, for instance, first add("onions", 4) and then del("truffels")
is called,and finally lookup("onions") is called,the log file should read as follows.

#include "Map.h"
#include <assert>

int main() {
Map map;
map.add("onions", 4);
map.del("truffels");
assert(map.lookup("onions") == 4);
return 0;

}

This does not look like the log files you are used to, right? This log file can be
compiled and executed—and thus reproduces the interaction of a Map object with
its environment. Note that we use an assertion both to log and to verify the output
of the lookup() method.This way, the resulting log can also be used for regression
testing.

To implement the logging functions,we have to overwrite the original Map meth-
ods. In an object-oriented language such as C++, a simple way of doing so is to
create a subclass of Map with redefined methods. (A more elegant alternative would
be aspects, discussed in Section 8.2.3 in Chapter 8.)

class ControlledMap: public Map {
public:

typedef Map super;

virtual void add(string key, int value);
virtual void del(string key);
virtual int lookup(string key);

ControlledMap(); // Constructor
ControlledMap(); // Destructor

};

Each of the ControlledMap() methods actually invokes the method of the Map
superclass,but also logs the invocation to the clog stream. As an example,consider
the add() method, as follows.

94 CHAPTER 4 Reproducing Problems

void ControlledMap::add(string key, int value)
{

clog « "map.add(\"" « key « "\", "
« value « ");" « endl;

Map::add(key, value);
}

We do the same for the deletion method:

void ControlledMap::del(string key)
{

clog « "map.del(\"" « key « "\");" « endl;
Map::del(key);

}

For the lookup() methods, we also log the return value and enclose the whole
into an assertion.

virtual int ControlledMap::lookup(string key)
{

clog « "assert(map.lookup(\"" « key « "\") == ";
int ret = Map::lookup(key);
clog « ret « ");" « endl;
return ret;

}

All three methods have a slight problem: If the key contains a character that
cannot be enclosed literally in a C++ string, the resulting program will not compile.
A better implementation would thus take care to translate such characters properly.

The constructor and destructors of ControlledMap(), called when a
ControlledMap() object is created and deleted,respectively,add some framework
to the clog stream such that the output becomes a stand-alone compilation unit.

ControlledMap::ControlledMap()
{

clog « "#include \"Map.h\"" « endl
« "#include <assert>" « endl
« "" « endl
« "int main() {" « endl
« " Map map;" « endl;

}

ControlledMap:: ∼ControlledMap()
{

clog « " return 0;" « endl;
« "}" « endl;

}

How do we use this layer? We simply replace Map with ControlledMap() for
some object in the program and thus have all interaction logged to clog. By diverting
the log into a program file, we can always reproduce all Map interaction simply by
compiling and executing the program file.As a side effect,the resulting program files

4.5 Focusing on Units 95

can also be used as test cases and thus protect against regression. Such recorded
test cases are more abstract than recorded user interaction (see Section 4.3.2 on
reproducing input), and are thus more valuable for long-term use (integrating them
into unit test tools such as JUNIT is straightforward).

4.5.3 Mock Objects
In the ControlledMap() example, we have seen how to set up an object such
that it records all of its interaction. In addition to recording, though, we could
also set up an object such that it replays a previously recorded interaction. This
way, we could replace an original object with a mock object—an object that does
nothing but simulate the original object by replaying previously recorded inter-
action. This basic idea is illustrated in Figure 4.6. During capture, a special tool
logs all interactions between the original object and its clients. On replay, a mock
object replaces the original object,expecting and replaying the previously recorded
interaction.

Capture

Replay

Client

Client Mock object

Original object

get()

42

get()

get()=42
...

get()

42

Log

h()
g()

f()

42

FIGURE 4.6

Replaying unit interaction with mock objects. On replay, the mock object replays the behavior
of the original object.

96 CHAPTER 4 Reproducing Problems

Assume we have a MockMap available, which is able to replay interactions
recorded earlier byControlledMap(). Replaying the interaction from Section 4.5.2,
such a MockMap object would:

■ Expect a call add("onions", 4) and do nothing
■ Expect a call del("truffels") and do nothing
■ Expect a call lookup("onions") and return 4

Note that the MockMap does not actually store items; it simply faithfully replays
the earlier behavior. For a simple container such as a map, this does not make that
much of a difference. For complex items that are difficult to move from one setting
to another, however, a mock object can make a huge difference. As an example,
consider a database installed at a user’s site.To reproduce a problem,you normally
need to install and replicate the user’s database.

This problem can be addressed by turning the database into a capture/replay
mock object, as follows:

1. We record the database interaction at the user’s site.
2. We then forward the mock object (rather than the database) to the developer.
3. Using the mock object,the developer can reproduce and examine the original

run—without going into the hassle of reproducing the entire environment.

Creating mock objects manually can be a large amount of programming work,
especially for objects with complex interfaces. Recently, though, tools have begun
to emerge that allow us to turn arbitrary objects into mock objects.These tools auto-
matically examine the object interfaces and add recording and playback facilities.
The tools also take care of the following issues:

■ Return values.The tool must generate mock objects for returned values.A query
to a database typically returns a query result, which comes as an object. If
the database is turned into a mock object, the query must also return a mock
result.

■ Outgoing calls. The tool must capture and replay outgoing calls as well—
that is, the mock object calls other objects using previously recorded calls.
A mock object for a database, for instance, may call back methods of other
objects as soon as a query result is available. Such outgoing calls must also be
recorded.

■ Arguments. The tool must provide mock objects for arguments of outgoing
calls. In the previous example, a method called back by a mock database must
be provided with (mock) arguments.

■ Variables. The tool must monitor direct read and write access to object variables,
such that these accesses can also be mocked.

At the time of this writing, such capture/replay mock objects are still research
prototypes. However,the approach can be applied to arbitrary objects (or units) and
thus nicely generalizes to all problems recording and reproducing unit behavior.

4.6 Reproducing Crashes 97

4.5.4 Controlling More Unit Interaction
Layers as sketched in the previous examples monitor and reproduce only function
calls. However, there may be more ways in which the unit depends on its environ-
ment. If a unit works in isolation,but not within the application,there must be some
interaction that is not yet adequately monitored.

■ Variables. Some units provide variables the application can access to alter the
unit’s behavior, or to retrieve query results. Such implicit communication via
variables must also be monitored and controlled, which requires a lot of work
unless you use a capture/replay mock tool (as discussed in Section 4.5.3).

■ Other units. Some units depend on other units,which may also be controlled by
the application. Be sure to capture and restore the state of these units as well. If
needed,break the dependence (see Section 3.6 in Chapter 3,on isolating units).

■ Time. Some units (or more precisely, some problems within units) depend on a
specific amount of time that must elapse between function calls. If needed, you
may wish to record and replay these time intervals.

Obviously,the more possibilities there are for an application to alter the behavior
of a unit the more difficult it becomes to isolate the unit from the application.At this
point, it becomes clear how a good program design (as discussed in Section 3.7 in
Chapter 3) has a positive impact on debugging efforts. The less information being
exchanged between units, and the less dependences there are between units, the
easier it becomes to control and reproduce unit behavior. Thus, a good design not
only makes a program easier to understand, maintain, restructure, and reuse, but
also to debug.

4.6 REPRODUCING CRASHES
While recording and replaying arbitrary runs remains a technical challenge, there is
a special case in which recording and replaying has shown to be both efficient and
effective. When a program crashes, its state at the moment of the crash is available
for analysis—including all currently active functions,all arguments,and all variables.
Could one leverage this state to reproduce the failure? This is the aim of test case
extraction, which takes a crashing program run and automatically generates a test
case that reproduces the crash.

To illustrate the concept of test case extraction,consider the BankAccount class
in Example 4.3. When the main() method is executed with assertions enabled,we
obtain the following error message.

$ javac BankAccount.java
$ java -ea BankAccount
Exception in thread "main" java.lang.AssertionError: negative
balance

at BankAccount.withdraw(BankAccount.java:22)
at BankAccount.main(BankAccount.java:31)

$ _

98 CHAPTER 4 Reproducing Problems

EXAMPLE 4.3: BankAccount.java—a simple bank account with assertions

class BankAccount {
public int balance;

BankAccount(int initial_balance) {
balance = initial_balance;

}

public void deposit(int amount) {
int old_balance = balance;
balance = balance + amount;

assert balance > old_balance: "negative amount";
assert balance >= 0: "negative balance";

}

public void withdraw(int amount) {
int old_balance = balance;
balance = balance --- amount;

assert balance < old_balance: "negative amount";
assert balance >= 0: "negative balance";

}

public int balance() {
return this.balance;

}

public static void main(String[] args) {
BankAccount account = new BankAccount(100);
account.withdraw(1000);

System.out.println(account.balance());
}

}

The error message reports the stack of functions that were active at the
moment of the crash: main() invoked withdraw(), which in turn threw an
AssertionError as the "negative balance" assertion was violated.

How would we reproduce this failure? While the program state is still available,
we can call arbitrary methods on arbitrary objects. In particular, we can repeat the
method calls that just failed, and see whether this would reproduce the failure.
Suppose we repeat the failing method call account.withdraw(1000): We will
experience the same failure again and again. All we need is a snapshot of the state
(or, more precisely, of the account object) at the moment of invocation—and we
can easily reproduce calls again and again.

Unfortunately,when the program has crashed,the original state at the moment of
invocation is already lost. In the BankAccount example,when the error is detected,

4.6 Reproducing Crashes 99

the balance already is altered. (This is a defect:The BankAccount assertions should
not only check their postconditions, but also check the arguments as part of the
precondition. See Chapter 10 for details.) We therefore must monitor the original
calls and the state of the moment of the call—a technique that can quickly get
expensive. Such monitoring techniques have been explored by two research groups,
one at ETH Zurich for the Eiffel programming language in a tool called Cdd,and one
at MIT for Java programs in a tool called ReCrash. They came up with the following
three alternatives:

Keep a copy of the calling stack. This technique keeps a shadow copy of the call
stack and all arguments at invocation time. In our example, the shadow stack
would contain the call account.withdraw(1000), keeping a copy of both the
argument (1000) as well as the account object with its original balance of 100.
With this copied information, one can always reproduce the original call.

The advantage of this approach is that it allows for faithful reproduction of
arbitrary method calls. Its disadvantage is that keeping a shadow copy induces
overhead—with the overhead being the lowest if just references are copied,and
getting higher the deeper the shadow copy is. In our example, just keeping a
reference to account would not suffice, as account changes its state.

In their experiments, the MIT team experienced overheads between 11 and
42 percent (for just references) and 12,000 and 638,000 percent (for deep state
copies). The best compromise was achieved by a used fields mode, perform-
ing deeper copying on fields that are read or written in the method—as the
account.balance field in our example—and a shallow copying for all other
objects.The used fields mode had a overhead of 13–50 percent, and was able to
reproduce all crashes faithfully.

Use the failing state instead of the invocation state. To reduce the monitoring
overhead, the ETH team explored another technique:Rather than trying to mon-
itor (and later reproduce) the original state, they explored whether one could
reproduce the failure in the (possibly modified) state at the moment of the
crash.

The advantage of this “failing state” approach is that no monitoring at all is
required;the only overhead occurs at the time of the crash,when the entire state
is copied for later reproduction. The disadvantage is that the failing state may
not be a surrogate for the invocation state. In the BankAccount example, this
would mean to invoke account.withdraw(1000) on an account in the failing
state—that is, on an account that already has an invalid balance of �900:

account = new BankAccount(-900);
account.withdraw(1000);

If we execute this extracted test case,the program fails on the same assertion
as the original failure; although the state is different, the essential features of
the crash are preserved. However, the example also illustrates how brittle the
technique can be:Any assertion against an illegal state in the BankAccount()

100 CHAPTER 4 Reproducing Problems

constructor would yield the approach unusable. Yet, in their experiments, the
ETH team was able to reproduce 90 percent of the failures using the state at
failure time.

Wait for a second chance. As another alternative to reduce the monitoring over-
head, the MIT team suggested a so-called second chance mode. In this setting,
the original program is not monitored at all; only after the crash, monitoring is
activated only for those very locations involved in the crash. Thus, when the
failure occurs a second time, it will be monitored. In our example, for instance,
the withdraw() method would be monitored as soon as it fails once.

The obvious disadvantage of second chance mode is that it can only reproduce
a failure the second time it occurred; also, activating monitoring in an already
deployed program may be complicated.The advantage of this approach is that it
has zero monitoring overhead in the original (failing) run. Even after monitoring
is activated,the overhead stays low,as it focuses only on specific parts of program
and state. In their experiments, the MIT team observed an overhead of around
1 percent, which is very tolerable in practice.

A possible synthesis of these three approaches looks as follows. First, try to
reproduce the failure with just the failing state, which provides a high chance of
reproducing the failure without any monitoring. In case reproduction is not possible,
deploy a light weight monitoring and wait for the failure to occur for a second time.

Overall, though,one should keep in mind that these techniques work better the
sooner an infection is detected. If an infection is not detected for a long time, the
crash may be reproduced, but the origin of the infection is lost. As an example,
consider the following code.

Record record = getDatabaseRecord("1234");
processRecord(record);

Now assume that the record returned by getDatabaseRecord() is invalid (say,
a null reference). If we pass it to processRecord(), we will experience a crash.
ReCrash and Cdd will be able to reproduce this crash, by rebuilding the invalid
record, and passing it to processRecord(). For the developer, though, the crucial
point is not to be able to reproduce just the crash—it is to reproduce the entire
chain of events that led to the creation of the invalid record. In the remainder of
the book (and particularly in Chapter 13), we explore how to identify such event
chains.

On the other hand, if the infection is detected soon enough (say, as a runtime
check in getDatabaseRecord()), the reproduced crash will point developers
directly to the place the defect occurred. It is therefore no surprise that the
original concept of reproducing crashes was developed as part of design by con-
tract, meaning that every single function of the program is checked for its pre-
and postconditions—an approach with several benefits for debugging, and, as we
see here, also for reproducing errors. Design by contract is covered further in
Chapter 10.

4.8 Tools 101

4.7 CONCEPTS
Once a problem is tracked, the next step is to reproduce it in your environment.

To reproduce a problem: How To
■ Reproduce its environment (Section 4.2)
■ Reproduce the execution (Section 4.3 and later)

To reproduce the problem environment:

■ Start with your environment
■ Adopt one circumstance of the problem environment after the other

For details, see Section 4.2.

To reproduce the problem execution, place a control layer between the program’s
input and the input as perceived by the program (Figure 4.2). Such a control
layer can be used to monitor, control, capture, and replay the program’s input.

Technically, one realizes a control layer by intercepting calls to input functions.

Inputs that can be (and frequently must be) controlled include:

■ Data (Section 4.3.1)
■ User inputs (Section 4.3.2)
■ Communications (Section 4.3.3)
■ Time (Section 4.3.4)
■ Randomness (Section 4.3.5)
■ Operating environment (Section 4.3.6)
■ Process schedules (Section 4.3.7)

Physics (Section 4.3.8) and debugging tools (Section 4.3.9) can influence a pro-
gram’s behavior in unintended ways.

Executing on a virtual machine gives the best possibilities for recording and
replaying interaction.

To reproduce unit behavior,place a control layer between the unit’s input and the
input as perceived by the unit (Figure 4.5).

Mock objects can provide a general means of recording and replaying the interaction
of arbitrary units.

To reproduce a crash, record the program state at the moment of the crash and
attempt to replay the failing methods.

4.8 TOOLS
Winrunner. Tools that record and replay user input are commonly used for

testing. HP provides the Quick Test Professional testing tool that provides
record/replay facilities for Windows. An introduction can be found at http://
mercuryquicktestprofessional.blogspot.com/.

102 CHAPTER 4 Reproducing Problems

Android. The ANDROID package, unfortunately, is no longer available for down-
load; an Internet search may help you out.

Revirt. The REVIRT system by Dunlap et al. (2002) allows you to record and
replay the interaction of an entire machine. This is found at http://www.
eecs.umich.edu/virtual/.

Checkpointing Tools
Regarding checkpointing, a variety of research tools are available. Such tools allow
“freezing” a running process such that it can be resumed later, even on a different
machine. For details, see http://www.checkpointing.org/.

ReCrash. The ReCrash tool for Java, allowing for recording and replaying of
crashes, is available at http://pag.csail.mit.edu/ReCrash.

Cdd. The Cdd prototype, providing automatic test extraction for crashing EIFFEL
programs, is now part of the EIFFEL studio development environment, freely
available at http://www.eiffel.com/.

4.9 FURTHER READING
When it comes to capturing and replaying more than just user interaction, tools
are less in a product than in a research prototype stage. Ronsse et al. (2003) give
an excellent introduction to the field of making program executions deterministic
by recording and replaying their interaction with the environment. They also give
pointers on how to replay message passing and shared memory.

Choi and Srinivasan (1998) and Konuru et al. (2000) describe the DEJAVU tool
that allows for deterministic replay of multithreaded and even distributed JAVA
applications. Among others, DEJAVU records and replays input as well as thread
schedules. Mock objects for capturing and replaying object interaction are dis-
cussed by Saff and Ernst (2004a).The Cdd tool is described in Leitner et al. (2007).
Artzi et al. (2008) describe ReCrash and their experiments with it.

EXERCISES
4.1 Use ANDROID (or a similar tool) to record and replay a user session with a

Web browser. Can you use the script on a different machine or a different
window manager?

4.2 A recorded user interaction script typically simply records the delays between
events, rather than synchronizing with the program output. An example
of synchronization might be waiting for a dialog window to appear before
continuing to simulate input. Discuss the advantages and disadvantages of
synchronization.

4.9 Further Reading 103

4.3 Use STRACE (or a similar tool) to monitor the interaction of ls (or a similar
simple command). For each of the calls reported:

(a) Look it up in the manual.
(b) Estimate the effort for recording and replaying the information passed.

Start with calls you know (say,open,close,read, and write) and proceed to
lesser-known calls.

4.4 Extend the unit capture scheme of Section 4.5.2 such that the generated log
becomes a test case for a unit test framework such as CPPUNIT or JUNIT.

4.5 Which events should be recorded to create a capture/replay tool for:

(a) Random numbers and time events?
(b) Kernel interaction?

How can program design support use this capture/replay tool?

4.6 “If I cannot reproduce a problem,it must be the user’s fault.”Discuss this state-
ment, given a program with nondeterministic behavior and an environment
that is difficult to reproduce.

4.7 “Not every infection of a program state needs to stem from a defect. There
could be a bit flip in a memory cell,due to an energy impulse, that caused the
infection.”Discuss.

4.8 If one uses a tool like Cdd or ReCrash to reproduce crashes,one can choose an
arbitrary function on the call stack to be replayed.What are the advantages and
disadvantages of replaying the most recently called functions versus replaying
older functions (say, the original invocation to main())?

Here also are huge men having horns four feet long,
and there are serpents also of such magnitude
that they can eat an ox whole.

– MAP INSCRIPTION

Biblioteca Apostolica Vaticana (1430)

For every fact, there is an infinity of hypotheses.

– ROBERT PIRSIG

Zen and the Art of Motorcycle Maintenance (1974)

CHAPTER

5Simplifying Problems

Once we have reproduced a problem, we must simplify it—that is, we must find
out which circumstances are not relevant for the problem and can thus be omitted.
This process results in a test case that contains only the relevant circumstances.
In the best case, a simplified test case report immediately pinpoints the defect. In
this chapter, we introduce delta debugging, an automated debugging method that
simplifies test cases automatically.

5.1 SIMPLIFYING THE PROBLEM
After one has reproduced a problem, the next step in debugging is to find out what
is relevant and what is not. Does the problem really depend on the entire 10,000
lines of input? Is it really necessary to replay all of these interaction steps? Does the
failure occur only if this exact schedule of events takes place? Do I really need this
long sequence of recorded method calls?

This stage of debugging is known as simplifying, meaning to turn a detailed
problem report into a simple test case. A test case contains the relevant details only.
A detail of the problem report is relevant if it is required to make the problem occur.
It is irrelevant if the problem occurs whether the detail is present or not.

Why is simplification important? As an analogy, consider a simple flight test. An
airplane crashes a few seconds after taking off.To find out what happened,we repeat
the flight in a simulator.

Even if we do not have a clue about how planes work,we can still find out what is
relevant and what is not,by repeating the flight over and over again under changed
circumstances.For instance,we might take out the passenger seats and find that the
plane still crashes.We might take out the coffee machine and the plane still crashes.
We might take out the engines and—oops, the plane does not move off the runway.
Obviously, the engines are important!

Eventually,only the relevant“simplified”skeleton remains,including a (simulated)
test pilot, the wings, the runway,the fuel,and the engines. Each part of this skeleton
is relevant for reproducing the crash.

To explain how the crash came to be,we need every single part of this skeleton.
However, the value of simplification is less in the remaining parts but rather in all 105

106 CHAPTER 5 Simplifying Problems

parts that have been taken away—all of the irrelevant details (such as the coffee,
machine that did not contribute to the crash. The general process for simplifying a
problem report follows a simple rule:

For every circumstance of the problem, check whether it is relevant for the
problem to occur. If it is not, remove it from the problem report or the test case
in question.

A circumstance is any aspect that may influence the problem—in short,the same
circumstances one needs to reproduce the problem (see Chapter 4). In particular,
these are:

■ Aspects of the problem environment
■ Individual steps in the problem history

How does one check whether a circumstance is relevant? You do this by exper-
imenting. That is, you omit the circumstance and try to reproduce the problem.
If the problem no longer occurs, the circumstance is relevant. If the problem still
occurs, the circumstance is irrelevant. As McConnell (1993) puts it: “The goal of
simplifying the test case is to make it so simple that changing any aspect of it
changes the behavior of the error.”

This is exactly our key question:

HOW DO WE SIMPLIFY TEST CASES SYSTEMATICALLY AND AUTOMATICALLY?

5.2 THE GECKO BUGATHON
Simplification of test cases is not an academic problem. Consider a real-world exam-
ple, related to the MOZILLA Web browser—or more specifically, its HTML layout
engine Gecko. In July 1999, two years before the final completion of MOZILLA 1.0,
BUGZILLA (the MOZILLA problem database) listed database) listed more than
370 open problem reports—problem reports that were not even reproduced.

In Example 3.1 we have already seen one of these open problem reports,reported
by a MOZILLA user in 1999. This problem report is already close to perfection: it
is short, reproducible, and precise. It can also easily be automated, as discussed
in Chapter 3. The problem, though, is that the Web page in question—the page at
http://bugzilla.mozilla.org—was 896 lines of quite obfuscated HTML code (shown
in Example 5.1). Loading this HTML code into Gecko HTML input made MOZILLA
fail—but what? made MOZILLA fail—but what?

Obviously, reading this HTML code does not give us any hints about possible
failure causes. If we were MOZILLA programmers,what we want here is the simplest
HTML input that still produces the failure—and hopefully pinpoints the failure
cause.

5.2 The Gecko BugAThon 107

EXAMPLE 5.1: Printing this HTML page (excerpt) makes MOZILLA crash

<td align=left valign=top>
<SELECT NAME="op_sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION
VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows
2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7">Mac
System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System
8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac
System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System
9.x<OPTION VALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION
VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION
VALUE="NetBSD">NetBSD<OPTION VALUE="OpenBSD">OpenBSD<OPTION
VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="-">-<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug_severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION
VALUE="major">major<OPTION VALUE="normal">normal<OPTION
VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION
VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

A simplified test case not only helps in finding failure causes, though. There are
at least three further good reasons for simplifying:

1. A simplified test case is easier to communicate.The simpler a test case, the
less time it takes to write it down, to read its description, and to reproduce it.
In addition, you know that the remaining details are all relevant because the
irrelevant details have been taken away. In our example, is it relevant that the
margins be set to .50? If the failure occurs nonetheless, we can leave out this
detail.

2. A simplified test case facilitates debugging. Typically, a simplified test case
means less input (and thus smaller program states to examine) and less interaction

108 CHAPTER 5 Simplifying Problems

with the environment (and thus shorter program runs to understand). Obviously,
if the HTML code in Example 5.1 can be simplified to a small number of HTML
tags, the state of Gecko would be much easier to examine. In the best case,
the HTML tag could even directly lead to the error.

3. Simplified test cases identify duplicate problem reports. As discussed in
Section 2.8 in Chapter 2, duplicate problem reports can fill up your problem
database. Simplified test cases typically subsume several duplicate problem
reports that differ only in irrelevant details. If we know that some specific HTML
tag causes printing to fail, we can search for this HTML tag in other problem
reports, marking them as duplicates.

Despite these benefits, new problem reports came in quicker than MOZILLA
programmers could possibly simplify them or even look at them. With this queue
growing further, the MOZILLA engineers “faced imminent doom.”

But then, Eric Krock, MOZILLA product manager, had a clever idea: Why not
have volunteers simplify test cases? Thus, Krock started what became the Gecko
BugAThon: Volunteers would help the MOZILLA programmers by creating simpli-
fied test cases. To simplify test cases, you do not have to be a programmer. All you
need is a text editor (as shown in List 5.1).The entire process boils down to remov-
ing parts of the page and periodically rerunning MOZILLA until all remaining input
is relevant.

As an incentive, Krock offered rewards for simplified test cases. For 5 problem
reports turned into simplified test cases,a volunteer would be invited to the launch
party. For 10 test cases,he or she would also get an attractive Gecko stuffed animal,
and 20 test cases would earn him or her aT-shirt signed by the grateful engineers.This
simple scheme worked out very well; because of the large number of enthusiastic
volunteers on the Web the very first night a number of volunteers earned their
stuffed animal by staying up late and simplifying test cases.

LIST 5.1: Instructions for Simplifying HTML Pages Manually

■ Download the Web page that shows the bug to your local machine.

■ Using a text editor (such as Notepad on Windows, SimpleText on the Mac, or vi or emacs
on UNIX), start removing HTML markup, CSS rules, and lines of JavaScript from the page.
Start by commenting out parts of the page (using <!-- -->) that seem unrelated to the
bug. Every few minutes, check the page to make sure it still reproduces the bug. Code
not required to reproduce the bug can be safely removed.

■ You will do well if you use an editor supporting multiple levels of Undo, and better if you
use an HTML-editing tool that supports preview to an external browser.

■ When you have cut away as much HTML, CSS, and JavaScript as you can—and cutting
away any more causes the bug to disappear—you are done.

Source: mozilla.org.

5.3 Manual Simplification 109

5.3 MANUAL SIMPLIFICATION
How would a MOZILLA volunteer proceed in an actual example? Let’s apply the
instructions in List 5.1 on the HTML input in Example 5.1.We use a method sketched
by Kernighan and Pike (1999):

Proceed by binary search.Throw away half the input and see if the output is
still wrong; if not, go back to the previous state and discard the other half of
the input.

This divide-and-conquer process is sketched in Figure 5.1.

1. The gray bar stands for the HTML input—initially 896 lines that cause
MOZILLA to fail (�).

2. Using a text editor, we cut away the second half of the input (shown in light
gray), leaving only the first half (dark gray), and repeat the test with this
418-line input. MOZILLA still crashes (�).

3. Again, we cut away the second half, leaving only 224 lines. Still, MOZILLA
crashes.

4. When we again cut away the second half, leaving only 112 lines, MOZILLA
just works (�).

5. We undo the earlier cut and cut away the first half instead. When being fed
with these 112 lines, MOZILLA again crashes.

6. We continue simplifying the input.
7. After 12 tests, one single line with a <SELECT> tag is left:

<SELECT NAME="priority" MULTIPLE SIZE=7>

(This HTML line in http://bugzilla.mozilla.org/ is used to have users input
the problem priority of a report.)

We have now simplified the problem report from 896 lines to 1 single line.
Further testing shows that the tag attributes are irrelevant, too,and thus all we need
to cause the problem is an input of <SELECT>.

1 (896 lines)

(448 lines)

(224 lines)

(112 lines)

(112 lines)

(56 lines)

2

3

4

5

6
...

12 <SELECT_NAME="priority"_MULTIPLE_SIZE=7> (40 characters)

FIGURE 5.1

Simplifying the HTML input from Example 5.1.

110 CHAPTER 5 Simplifying Problems

Having simplified this problem is very beneficial. In particular, it helps in:

■ Communication: All one needs is the three-word summary “Printing
<SELECT> crashes.”

■ Debugging:A MOZILLA programmer can immediately focus to the piece of
code that handles printing of <SELECT> tags.

■ Duplicates: A Bugzilla maintainer can scan the database for other problems
with printing, and if <SELECT> is part of the respective HTML input, chances
are that they are all duplicates of each other.

5.4 AUTOMATIC SIMPLIFICATION
Manual simplification, as demonstrated in Section 5.3, has important benefits.
However, these come at a price:

■ Simplification is tedious.You have to run tests manually all over again.
■ Simplification is boring. It is a rather mechanical activity without great intel-

lectual challenge.

As with so many other tedious and boring activities,one may wonder whether it
would not be possible to automate the simplification process. And indeed, it can.
Once again, we illustrate the basic idea using the MOZILLA example:

■ We set up an automatic test that determines whether MOZILLA fails to print
on some specific input.

■ We implement a strategy that realizes the binary search strategy mentioned
earlier, running the test on some subset of the HTML page.

Setting up an automatic test for MOZILLA is not too difficult, applying the basic
strategies from Chapter 4:We have MOZILLA read its input from file (rather than
from the network), and use record/replay to automate the user interaction from
Example 3.1. The test can thus be realized as follows:

1. Launch MOZILLA.

2. Use Capture and Replay to:
■ Load the HTML page into MOZILLA
■ Set printing settings as described in the problem report
■ Print the page

3. Wait for a certain amount of time to see whether:
■ MOZILLA crashes—that is, the test fails (�)
■ Whether it is still alive—that is, the test passes (�)

4. If MOZILLA should not start, or if it fails for some other reason, our test returns.

Let’s consider the second part: to design an automatic simplification strategy
using such an automatic test.As a starting point,we simply adapt the“binary search”
strategy from Section 5.3:

5.4 Automatic Simplification 111

1. Cut away half the input and check if the test returns �. If so, continue
the process with the remaining half.

2. Otherwise, go back to the previous state and discard the other half of
the input.

This simple description has a drawback: What do we do if neither half fails
the test—that is, testing the first half passes and testing the second half passes
as well? As an example, consider Example 5.2, where we attempt to simplify the
remaining HTML line by characters. Again,input that has been cut away is shown in
gray characters. Neither the first nor second half is valid HTML, and thus MOZILLA
interprets the input as text and the test does not fail.

A simple binary search does not suffice any longer, in that we are not searching
for a single character but for a subset of the input. In this example, the subset we
are searching for is the string <SELECT>, spread across the two input halves.

How do we deal with this situation?The answer is not to cut away halves of the
input, but smaller parts—quarters, for instance. Thus, instead of cutting away the
first half, we cut away the first quarter, the second quarter, and so on.

This process is illustrated in Example 5.3, continuing the example from
Example 5.2. Removing the first quarter (step 4, the first 10 characters) still
does not cause the problem to occur, but removing the second quarter (step 5,
characters 11–20) is successful. MOZILLA fails.

Now that we have a failure on a simplified input, should we go back to cutting
away halves or should we continue with quarters? One could argue that we should
at least test all subsets at the given granularity.Thus,we continue removing quarters
(Step 6) until the last one (Step 7).

If removing neither quarter makes the test fail, we continue with eighths, and
then sixteenths,and so on. Eventually,we will thus come down to a point where we
remove single characters—and end up in an input where removing any character
causes the problem to disappear (a single <SELECT> tag).Thus,our automatic simpli-
fication strategy has eventually cut away everything that is irrelevant for producing

EXAMPLE 5.2: Simplifying a single line

1 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 �
2 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 �
3 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 �

EXAMPLE 5.3: Simplifying by quarters

4 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 �
5 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 �
6 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 �
7 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 �

112 CHAPTER 5 Simplifying Problems

the problem—and has done so only by trial and error, without any knowledge of
the and error, without any knowledge of the program or the input.

5.5 A SIMPLIFICATION ALGORITHM
Let’s now write down a general algorithm that realizes the automatic strategy
sketched in Section 5.4. We have some test function test(c) that takes some input c
and determines whether the failure in question occurs (�,“fail”) or not (�,“pass”)
or whether something different happens (�,“unresolved”).

Assume we have some failure-inducing input c� that we can split into subsets. If
we split c� into two subsets c1 and c2, three things can happen:

■ Removing first half fails.If test (c� \c1)��,we can continue with c′
� �c� \c1.

(c′
� is the value for c� in the next iteration.)

■ Removing second half fails. Otherwise, if test (c� \c2)��, we can continue
with c′

� �c� \c2.
■ Increase granularity.Otherwise,we must increase the granularity and split c�

into four (eight, sixteen, and so on) subsets.

To accommodate the last case, we must generalize our description to an arbi-
trary number of subsets n. If we split c� into n subsets c1 to cn, we get:

■ Some removal fails. If test (c� \ci)�� holds for some i∈{1, . . . , n}, continue
with c′

� �c� \ci and n′ �max(n�1, 2).
■ Increase granularity. Otherwise, continue with c�

′ �c� and n′ �2n. If c�

cannot be split into more subsets, we are done.

Let’s generalize this further. Data input is just one way to determine a program’s
execution. In Chapter 4, we saw the influence of other circumstances such as
time, communications, or thread schedules. We call such a set of circumstances
that influence program behavior a configuration.

Our aim is now to find a minimal set of circumstances under which the failure
occurs. That is, we want to minimize a failure-inducing configuration (to mini-
mize the“failing”configuration c�). In the MOZILLA case, the HTML input is such a
configuration—a set of circumstances that determine MOZILLA’s execution—and
we want to minimize this far as possible.

This generalization ends up in the ddmin algorithm shown in List 5.2, as pro-
posed by Zeller and Hildebrandt (2002). Its core, the ddmin′ function, gets two
arguments: the configuration (input) to be simplified (denoted as c′

�) and the
granularity n. Depending on test results, ddmin′ invokes itself recursively with a
smaller c′

� (“some removal fails”), invokes itself recursively with double granularity
(“increase granularity”), or ends the recursion.

ddmin is an instance of delta debugging—a general approach to isolate fail-
ure causes by narrowing down differences (deltas) between runs. (More precisely,

5.5 A Simplification Algorithm 113

LIST 5.2: The ddmin Algorithm in a Nutshell

■ Let a program’s execution be determined by a set of circumstances called a configuration.
The set of all circumstances is denoted by C.

■ Let test : 2C →{�, �, �} be a testing function that determines for a configuration c ⊆C
whether some given failure occurs (�) or not (�) or whether the test is unresolved (�).

■ Let c� be a “failing” configuration with c� ⊆C such that test(c�)��, and let the test pass
if no circumstances are present [i.e., test (∅)��].

■ The minimizing delta debugging algorithm ddmin(c�) minimizes the failure-inducing con-
figuration c�. It returns a configuration c′

� �ddmin(c�) such that c′
� ⊆c� and test(c′

�)��

hold and c′
� is a relevant configuration—that is, no single circumstance of c′

� can be
removed from c′

� to make the failure disappear.

■ The ddmin algorithm is defined as ddmin(c�)�ddmin′(c′
�, 2) with

ddmin′(c′
�, n)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c′
� if |c′

�|�1

ddmin′(c′
� \ci, max(n�1, 2)) else if ∃i∈{1 ... n}� test (c′

� \ci)��

(“some removal fails”)
ddmin′(c′

�, min(2n, |c′
�|)) else if n � |c′

�| (“increase granularity”)
c′

� otherwise

where c′
� �c1 ∪c2 ∪· · ·∪cn such that �ci, cj �ci ∩cj �∅∧|ci |≈|cj | holds.

The recursion invariant (and thus precondition) for ddmin′ is test(c′
�)��∧n� |c′

�|.

ddmin is a “minimizing”variant of delta debugging.) Delta debugging again is is an
instance of adaptive testing—a series of tests in which each test depends on the
results of earlier tests.

Let’s turn the abstract ddmin algorithm into a concrete implementation.
Example 5.4 shows a PYTHON implementation of ddmin, in which ddmin’s tail
recursion and existential quantifiers have been changed into nested loops. The
implementation relies on a function split(l, n), which splits a list l into n sub-
lists of roughly equal size (Example 5.5).The function listminus(c1, c2) returns
a list of all elements that are in the list c1 but not in the list c2 (Example 5.6). The
constants PASS,FAIL, and UNRESOLVED �, and �, respectively.

The while and if constructions have the usual meaning (as in C-like languages,
the break statement leaves the enclosing loop). The assert statements document
the preconditions and loop invariants.

In addition to these functions, we need an implementation of the test() func-
tion. Example 5.7 shows a (simplified) version of the test() function used by
Zeller and Hildebrandt (2002) on a LINUX system. Essentially, it invokes a MOZILLA
process and checks its outcome. If it exited normally (indicated by a zero exit status),
test() returns � (PASS). If it crashed (in UNIX: “terminated by a signal 11”),test()
returns �(FAIL), and if anything else happens,test() returns �(UNRESOLVED).

114 CHAPTER 5 Simplifying Problems

EXAMPLE 5.4: A PYTHON implementation of the ddmin algorithm

def ddmin(circumstances, test):
"""Return a sublist of CIRCUMSTANCES that is a

relevant configuration with respect to TEST."""

assert test([]) == PASS
assert test(circumstances) == FAIL

n = 2 # Initial granularity

while len(circumstances) >= 2:
subsets = split(circumstances, n)
assert len(subsets) == n

some_complement_is_failing = 0
for subset in subsets:

complement = listminus(circumstances, subset)

if test(complement) == FAIL:
circumstances = complement
n = max(n --- 1, 2)
some_complement_is_failing = 1
break

if not some_complement_is_failing:
if n == len(circumstances):

break
n = min(n * 2, len(circumstances))

return circumstances

EXAMPLE 5.5: A PYTHON implementation of the split() function

def split(circumstances, n):
"""Split a configuration CIRCUMSTANCES into N subsets;

return the list of subsets"""

subsets = [] # Result
start = 0 # Start of next subset
for i in range(0, n):

len_subset = int((len(circumstances) - start) /
float(n --- i) + 0.5)

subset = circumstances[start:start + len_subset]
subsets.append(subset)
start = start + len(subset)

assert len(subsets) == n
for s in subsets:

assert len(s) > 0

return subsets

5.5 A Simplification Algorithm 115

EXAMPLE 5.6: A PYTHON implementation of the listminus() function

def listminus(c1, c2):
"""Return all elements of C1 that are not in C2.

Assumes elements of C1 are hashable."""

The hash map S2 has an entry for each element in C2
s2 = {}
for delta in c2:

s2[delta] = 1

Check elements in C1 whether they are in S2
c = []
for delta in c1:

if not s2.has_key(delta):
c.append(delta)

return c

EXAMPLE 5.7: A (simplified) PYTHON implementation of the test() function

def test(c):
Create Mozilla input file
write_html(c, "input.html")

parent = os.fork()
if parent < 0:

fork() failed - no more processes
sys.exit(1)

elif not parent:
Invoke Mozilla
TODO: Replay user interaction, too
os.execv("/usr/bin/mozilla",

["mozilla", "input.html"])

Wait for Mozilla to complete
childpid, status = os.waitpid(parent, 0)
if os.WIFEXITED(status):

exit_status = os.WEXITSTATUS(status)
if exit_status == 0:

return PASS # Exited normally

if os.WIFSIGNALED(status):
caught_signal = os.WTERMSIG(status)
if caught_signal == 11:

TODO: Check backtrace, too
return FAIL # Crashed w/ signal 11

return UNRESOLVED

116 CHAPTER 5 Simplifying Problems

The full-fledged implementation (not listed here) additionally replays recorded
user interaction to trigger the failure (see Chapter 4). It also instruments a debug-
ger (see Chapter 8) to check the backtrace—the stack of functions active at the
moment of the crash—and returns FAIL only if the found backtrace is identical to
the backtrace of of the original failure—that is, the program crashes at the same
place in the same way.

What happens if we actually run this PYTHON implementation? Example 5.8
shows all tests conducted by delta debugging. The initial tests are run as sketched
in Section 5.4—cutting away large chunks of input first, and smaller chunks later.
At test 33,ddmin has actually reached the relevant input <SELECT>. The remaining
tests demonstrate that every single character in <SELECT> is relevant for the failure
to occur.

EXAMPLE 5.8: Simplifying by characters

Input: <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 �
<SELECT NAME="priority" MULTIPLE SIZE=7> 〈0 characters〉 �

1 <SELECT NAME="priority" MULTIPLE SIZE=7>〈20〉�
2 <SELECT NAME="priority" MULTIPLE SIZE=7>〈20〉�
3 <SELECT NAME="priority" MULTIPLE SIZE=7>〈30〉�
4 <SELECT NAME="priority" MULTIPLE SIZE=7>〈30〉�
5 <SELECT NAME="priority" MULTIPLE SIZE=7>〈20〉�
6 <SELECT NAME="priority" MULTIPLE SIZE=7>〈20〉�
7 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
8 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
9 <SELECT NAME="priority" MULTIPLE SIZE=7>〈15〉�
10 <SELECT NAME="priority" MULTIPLE SIZE=7>〈15〉�
11 <SELECT NAME="priority" MULTIPLE SIZE=7>〈15〉�
12 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
13 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
14 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
15 <SELECT NAME="priority" MULTIPLE SIZE=7>〈12〉�
16 <SELECT NAME="priority" MULTIPLE SIZE=7>〈13〉�
17 <SELECT NAME="priority" MULTIPLE SIZE=7>〈12〉�
18 <SELECT NAME="priority" MULTIPLE SIZE=7>〈13〉�
19 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
20 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
21 <SELECT NAME="priority" MULTIPLE SIZE=7>〈11〉�
22 <SELECT NAME="priority" MULTIPLE SIZE=7>〈10〉�
23 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 7〉�
24 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 8〉�
25 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 7〉�
26 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 8〉�
27 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 9〉�
28 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 9〉�
29 <SELECT NAME="priority" MULTIPLE SIZE=7>〈 9〉�

5.6 Simplifying User Interaction 117

30 <SELECT NAME="priority" MULTIPLE SIZE=7>〈9〉�
31 <SELECT NAME="priority" MULTIPLE SIZE=7>〈8〉�
32 <SELECT NAME="priority" MULTIPLE SIZE=7>〈9〉�
33 <SELECT NAME="priority" MULTIPLE SIZE=7>〈8〉�
34 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
35 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
36 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
37 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
38 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
39 <SELECT NAME="priority" MULTIPLE SIZE=7>〈6〉�
40 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
41 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
42 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
43 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
44 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
45 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
46 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
47 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�
48 <SELECT NAME="priority" MULTIPLE SIZE=7>〈7〉�

Result: <SELECT>

This property—every remaining circumstance in c′
� �ddmin(c�) being

relevant—is a general property of ddmin. Such a configuration is called relevant
configuration or a 1-minimal configuration (see Definition A.11 in the Appendix
for details). It can be easily proven (see PropositionA.12 in theAppendix) that every
configuration returned by ddmin is relevant because ddmin can return c′

� only after
it tried removing every single element and the failure did not occur for any such
configuration.

One should note, though, that c′
� is not necessarily the minimal configuration

for which the failure still occurs. To find that out, an algorithm would have to test
every subset c′

�—that is, 2|c′
�| tests.

5.6 SIMPLIFYING USER INTERACTION
Delta debugging can be applied to all inputs,as described in Chapter 4. For instance,
one can use it to simplify user input—leaving only the relevant key strokes and
mouse movements in the script. This is especially useful if it is used anyway to
reproduce the failure, as in the case of the MOZILLA crash.

To reproduce the failure,Zeller and Hildebrandt (2002) recorded 95 user events,
such as pressing keys or buttons and moving moving the mouse. Replaying these
95 events reproduced the they all necessary?

Figure 5.2 shows the progress of ddmin applied to these 95 events.The (logarith-
mic)Y axis shows the number of events |c′

�| left to be simplified; the (linear) X axis

118 CHAPTER 5 Simplifying Problems

100

10

1
0 10 20 30 40

Tests executed

cfail

U
se

r
in

te
ra

ct
io

n
s

50 60 70 80 90

FIGURE 5.2

Simplifying MOZILLA user interactions. After 82 tests, ddmin has determined 3 events out of
95 that are required to produce the failure: pressing Alt+P, pressing the mouse button, and
releasing it again.

shows the number of tests executed so far. After 82 tests, ddmin has simplified the
user interaction to only three events:

1. Press the P key while the Alt modifier key is held. (Invoke the Print dialog.)
2. Press the left mouse button on the Print button without a modifier. (Arm the

Print button.)
3. Release the left mouse button. (Start printing.)

Irrelevant user actions include moving the mouse pointer, selecting the Print
to File option, altering the default file name, setting the print margins to .50, and
releasing the P key before clicking on Print (all of this is irrelevant in producing
the failure). (It is relevant, though, that the mouse button be pressed before it is
released.)

In addition to input in general, delta debugging can be applied to circum-
stances as they occur during the program run or during the program development.
Chapter 13 discusses how to generalize delta debugging to automatically find actual
causes in input, code changes, or schedules. Chapter 14 extends this to isolating
cause–effect chains within program runs.

5.7 RANDOM INPUT SIMPLIFIED
Another application of automated simplification is to use it in conjunction with
random testing.The basic idea is to generate large random inputs that trigger a
failure and then to simplify the input to reveal the relevant part.

In a classical experiment, Miller et al. (1990) examined the robustness of UNIX
utilities and services by sending them fuzz input—a large number of random

5.8 Simplifying Faster 119

characters. The studies showed that in the worst case 40 percent of the basic
programs crashed or went into infinite loops when being fed with fuzz input.

Zeller and Hildebrandt (2002) subjected a number of UNIX utilities to fuzz input
of up to a million characters until they until they showed a failure—and then used
ddmin to failure-inducing input.The first group of programs showed obvious buffer
overrun problems:

■ FLEX (fast lexical analyzer generator), the most robust utility, crashed on
sequences of 2,121 or more non–new line and non-NUL characters.

■ UL (underlining filter) crashed on sequences of 516 or more printable non–
new line characters.

■ UNITS (convert quantities) crashed on sequences of 77 or more 8-bit cha-
racters.

The second group of programs appeared vulnerable to random commands:

■ The document formatters NROFF and TROFF crashed on malformed com-
mands such as \DˆJ%0F and on 8-bit input such as Â (ASCII code 194).

■ CRTPLOT crashed on one-letter inputs t and f.

All of these simplified test cases can directly be associated to a piece piece of
code that handles these inputs—and thus to the question.

5.8 SIMPLIFYING FASTER
As Zeller and Hildebrandt (2002) report,the number of tests required increased with
the length of the simplified input. Whereas the NROFF and TROFF tests typically
required about 100 to 200 test runs, the FLEX tests required 11,000 to 17,960 test
runs. Although a single test run need not take more than a few hundredths of a
second, this raises the question on how to reduce the number of test cases and to
improve the speed.

As shown in Example 5.8, simplifying a configuration c� with ddmin requires
at least |c′

�| tests, as every single circumstance in the resulting c′
� must be tested

once. In the worst case, the number of tests can even be quadratic with respect
to |c�|, resulting in a maximum number of tests t �(|c�|2 �7|c�|)/2 (for details, see
Proposition A.13 in the Appendix). Although this is quite a pathological example,
we should strive to get simplification done as quickly as possible.

5.8.1 Caching
The ddmin algorithm does not guarantee that each configuration is tested only once.
Thus, our simple ddmin() implementation in Example 5.4 may invoke the test
function multiple times for the same configuration. In Example 5.8, for instance,
the six tests runs 41–45 and 48 have been executed before. By using a cache to
store test outcomes, one could return the earlier test outcome whenever a test
is repeated.

120 CHAPTER 5 Simplifying Problems

5.8.2 Stop Early
Why does it take so long to simplify the FLEX input? Figure 5.3 shows the first
500 steps of the ddmin algorithm.You can easily see that the size quickly decreases,
but after about 50 tests progress is very slow (and continues this way for the next
10,500 tests).

Normally, there is no need to try to squeeze the very last character out of an
input. One can simply stop the simplification process:

■ When a certain granularity has been reached (“We don’t care about removing
single characters”).

■ When no progress has been made (“In the last 100 iterations, the size of the
input has been reduced by 1 percent only”).

■ When a certain amount of time has elapsed (“One hour of automatic simpli-
fication suffices”).

In the case of FLEX, any of these heuristics could stop minimization early.

5.8.3 Syntactic Simplification
One effective way of speeding up simplification is to simplify not by characters
but by larger entities. As shown in Figure 5.1, simplifying the HTML input by lines
requires but 12 tests to get down to a single line. And indeed, if only one circum-
stance (i.e., one line) is failure-inducing it can be shown that ddmin is as efficient
as a binary search (see Proposition A.14 in the Appendix).

This idea of grouping circumstances can be taken further by simplifying input
not at the lexical level (i.e., characters, words, or lines) but at a syntactical level—
that is, simplifying while preserving the syntactic structure of the input. The basic
idea of syntactic simplification is to turn the input into a tree (formally, a syntax

1e+06

100,000

10,000

1000
0 50 100 150 200 250

In
p

u
t

si
ze

Tests executed

cfail

300 350 400 450 500

FIGURE 5.3

Simplifying FLEX input. Initially, ddmin quickly decreases the size of the input, but then
simplifying shows no significant progress.

5.8 Simplifying Faster 121

0

1

NAME

1.1 3.1

MULTIPLE SIZE

2 3

7"priority"

SELECT

FIGURE 5.4

An HTML tree. Simplifying such a tree structure rather than plain text yields better
performance.

tree) and to simplify the tree rather than the input string.An HTML or XML tree rep-
resenting our MOZILLA one-line example, for instance, would look like that shown
in Figure 5.4.

To simplify such a tree, we make every node a circumstance. Our initial failing
configuration thus contains six nodes rather than 40 characters. The test function
accepting a configuration would remove missing nodes from the HTML tree (rather
than cutting away chunks of the input string) and create an HTML input from the
remaining tree and feed it to MOZILLA.

However, what would test do if asked by ddmin to test an infeasible configu-
ration? In Figure 5.4, for instance, we cannot remove node 1, NAME, without also
removing its child node 1.1, "priority." Vice versa, HTML rules dictate that the
NAME attribute must have a value. The "priority" node is thus mandatory.

To cope with such syntactic and semantic constraints, the test function should
be set up to simply return �(“unresolved”) whenever a configuration is impossible
to achieve.That is, test does not run MOZILLA,but immediately returns �such that
ddmin selects the next alternative. Furthermore,the splitting of a configuration into
subsets can be set up to take constraints into account—for by also keeping nodes
that are in the same subtree in the same subset.

Figure 5.5 shows the tests actually carried out within the ddmin run. Our initial
configuration is c� �{0, 1, 1.1, 2, 3, 3.1}, standing for “all nodes are present.”

ddmin tries the configuration {2, 3, 3.1}, which is infeasible. Removing the sec-
ond half works and gets us c′

� �{0, 1, 1.1}. In the next iteration, the configuration
{1, 1.1} is infeasible, but {0} is fine. ddmin is done, having required just two actual
tests to simplify the HTML input.

5.8.4 Isolate Differences, Not Circumstances
Instead of simplifying all circumstances,one can also simplify a difference between a
configuration that works and a configuration that fails. Example 5.9,which illustrates
this idea again shows two MOZILLA inputs:one that makes MOZILLA fail and one that

122 CHAPTER 5 Simplifying Problems

Test 1

SELECT

NAME

"priority"

<SELECT NAME="priority"
MULTIPLE SIZE=7>

<SELECT NAME="priority"> <SELECT>

"priority"7

NAMEMULTIPLE SIZE

0

1 1

1.1 3.1 1.1

2 3

SELECT

0

SELECT

0

Test 2 Test 3

FIGURE 5.5

Simplifying an HTML tree in three steps.

EXAMPLE 5.9: A failure-inducing difference. The initial < sign is isolated as the
failure cause

<SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 �
<SELECT NAME="priority" MULTIPLE SIZE=7> 〈39 characters〉 �

makes it pass. Neither of these two inputs is simplified. However,their difference has
been simplified to just one character—the leading < sign. If the < sign is missing,
MOZILLA interprets the input as ordinary text instead of as an HTML tag. Thus,
whether the < is part of the input or not determines whether MOZILLA fails or not.

Why would one want to simplify differences? There are two answers:

1. Focusing. As we will see in Chapter 12,a difference between a configuration that
works and a configuration that fails is a failure cause—and this failure cause is
more precise the smaller the difference is. Thus, a small difference can pinpoint
the problem cause in a common context.

As an example of a common context, think about simplifying user interac-
tions. Minimizing user interaction may still end up in 1,000 interactions or so,all
required to set up the context in which the failure occurs. Isolating a difference,
though, will reveal a (minimal) difference that decides the final outcome:“If the
user had not selected this option, the test would have passed.”

2. Efficiency. Differences can be simplified faster than entire configurations. This
is so because each passing test can be exploited to reduce the difference. Using
minimization,only failing tests help in minimizing the configuration.As an exam-
ple of efficiency, an algorithm that isolates the single < difference requires only
5 tests (compared to the 48 tests in Example 5.8).

More on the isolation of failure causes automatically, as well as a discussion of
the involved algorithms and techniques, can be found in Chapter 13.

5.11 Further Reading 123

5.9 CONCEPTS
The aim of simplification is to create a simple test case from a detailed problem
report (Section 5.1).

Simplified test cases (Section 5.2):

■ Are easier to communicate
■ Facilitate debugging
■ Identify duplicate problem reports

To simplify a test case, remove all irrelevant circumstances. A circumstance is irrel- How To
evant if the problem occurs regardless of whether the circumstance is present
or not (Section 5.3).

To automate simplification, set up:
■ An automated test that checks whether the problem occurs
■ A strategy that determines the relevant circumstances

One such strategy is the ddmin delta debugging algorithm (Section 5.4).

Circumstances to be simplified include not only the program input as data, but
all circumstances that might affect the program’s outcome—for instance, user
interactions (Section 5.6).

Simplification can be combined with random testing to reveal the failure-inducing
parts of the input.

To speed up automatic simplification, employ one or more of the following:
■ Make use of caching
■ Stop early
■ Simplify at a syntactic or semantic level
■ Isolate failure-inducing differences rather than circumstances

These techniques are described in Section 5.8.

5.10 TOOLS
Delta Debugging. A full PYTHON implementation of ddmin is available at http://

www.st.cs.uni-saarland.de/dd/.

Simplification Library. Daniel S. Wilkerson of the University of California
at Berkeley has another implementation of ddmin. This is found at http://
freshmeat.net/projects/delta/.

5.11 FURTHER READING
Manual simplification of test cases is a long-known programming (or debug-
ging) technique. I recommend Kernighan and Pike (1999) for anyone who wants

124 CHAPTER 5 Simplifying Problems

further depth on the subject. McConnell (1993) also highlights the importance of
simplifying a test case as the first step in debugging.

The principle of divide-and-conquer is often attributed to the Romans (divide et
impera) as a governing principle. Its first explicit usage as a political maxime was by
the Florentine political philosopher Niccolò Machiavelli (1469–1527), denouncing
the motto of Louis XI of France in dealing with his nobles.

As far as I know, the work of Zeller and Hildebrandt (2002) was the first gen-
eral approach to automatic test case simplification. Details on delta debugging
applied to program input are listed. The article also includes a set of case studies,
including an in-depth examination of the MOZILLA example. Ralf Hildebrandt and
I had much fun conducting this research. I hope you’ll have some fun reading the
article.

Note that the ddmin algorithm as described in Zeller and Hildebrandt (2002)
slightly differs from the version presented here. The “old” ddmin algorithm had
an additional check whether one of the subsets ci would fail—that is, test(ci)��

holds—and if so would reduce c′
� to ci . This extra test has shown few benefits in

practice, which is why it is not included here.
The Gecko BugAThon is still going on, and you can still contribute—auto-

matically or manually.At the time of this writing,you would get a stuffed Firefox for
every 15 bugs simplified. For details, have a look at https://developer.mozilla.org/
en/Gecko_BugAThon.

EXERCISES
For some of the following exercises you need PYTHON or JAVA:

■ Using PYTHON, you can start immediately using the code examples in this
chapter. PYTHON interpreters are available at http://www.python.org/.

■ Using JAVA, you can use the JAVA class in Example 5.10 as a starting point.
All it needs are split() and listminus() functions as those defined for
PYTHON. The test() function is designed to be overloaded in a problem-
specific subclass.

■ If you know neither PYTHON nor JAVA, adapt the code to a language of your
choice.

5.1 The function bool geegg(string s) returns

■ true if the string s contains three g characters or more, or
■ true if s contains two e characters or more, and
■ false otherwise.

For instance,geegg("good eggs tomorrow") returns true,
geegg("no eggs today") returns false.

Apply the ddmin algorithm on the 16-character input

a-debugging-exam

5.11 Further Reading 125

EXAMPLE 5.10: A delta debugging class in JAVA

import java.util.LinkedList;
import java.util.List;
import java.util.Iterator;

public class DD {
// Outcome
public static final int FAIL = ---1;
public static final int PASS = +1;
public static final int UNRESOLVED = 0;

// Return a --- b
public static List minus(List a, List b) { ... }

// test function --- to be overloaded in subclasses
public int test(List config) { return UNRESOLVED; }

// Split C into N sublists
public static List split(List c, int n) { ... }

// ddmin algorithm
// Return a sublist of CIRCUMSTANCES that is a relevant
// configuration with respect to TEST.
public List ddmin(List circumstances_) {

List circumstances = circumstances_;

assert test(new LinkedList()) == PASS;
assert test(circumstances) == FAIL;

int n = 2;

while (circumstances.size() >= 2) {
List subsets = split(circumstances, n);
assert subsets.size() == n;

boolean some_complement_is_failing = false;
for (int i = 0; i < subsets.size(); i++) {

List subset = (List)subsets.get(i);
List complement = minus(circumstances, subset);

if (test(complement) == FAIL) {
circumstances = complement;
n = Math.max(n --- 1, 2);
some_complement_is_failing = true;
break;

}
}

if (!some_complement_is_failing) {
if (n == circumstances.size())

break;

126 CHAPTER 5 Simplifying Problems

n = Math.min(n * 2, circumstances.size());
}

}

return circumstances;
}

}

to find a 1-minimal input that still causes geegg() to return true. Record the
individual inputs and test outcomes.

5.2 As recent versions of MOZILLA tend to be much more stable,we shall simulate
the “old”MOZILLA behavior using a test() function (Example 5.10).

(a) Implement a PYTHON or JAVA test() function that accepts a list of char-
acters. If the list contains the string <SELECT>, have it return FAIL, and
PASS otherwise.

(b) The version of test() in question (a) does not take extra attributes of
SELECT into account. Have it return FAIL if the character list contains a
substring that matches the regular expression <SELECT *[ˆ>]*> (that is,
<SELECT followed by zero or more blank characters, followed by zero or
more characters other than >, and finally followed by >).

5.3 Use your test() function to minimize the problem report in Figure 3.1
manually and systematically. How many executions of test() do you
need?

5.4 Usingtest(),split(),andlistminus(),use your implementation of ddmin
to simplify the problem report in Figure 3.1 automatically. If you simplify by
lines, how many tests do you need?

5.5 Repeat Exercise 5.4, simplifying the remaining line by characters.

5.6 Repeat Exercise 5.4,simplifying syntactically. Use an XML parser to read in the
HTML input. Use syntactic simplification as sketched in Section 5.8.3.

5.7 Design an input and a test() function such that ddmin requires a maximum
of test runs. (Hint: See Zeller and Hildebrandt (2002) for the discussion of
worst-case behavior.)

5.8 Design a split() function for plain text that attempts to keep paragraphs,
lines, and words together as long as possible.

5.9 The ddmin algorithm only finds one possible 1-minimal input (i.e., an input
where removing any single character makes the failure disappear). Sketch

5.11 Further Reading 127

an extension of ddmin() that finds all possible 1-minimal inputs. Sketch its
complexity.

5.10 Isolating a minimal failure-inducing difference using only a test() function
has exponential complexity. Prove this claim.

Perfection is achieved not when you have nothing more to add, but when
there is nothing left to take away.

– (attributed to) ANTOINE DE SAINT-EXUPÉRY

CHAPTER

6Scientific Debugging

Once we have reproduced and simplified the problem, we must understand how
the failure came to be.The process of obtaining a theory that explains some aspect
of the universe is known as scientific method. It is also the appropriate process
for obtaining problem diagnostics. We introduce the basic techniques for creating
and verifying hypotheses, for making experiments, for conducting the process in a
systematic fashion, and for making the debugging process explicit.

6.1 HOW TO BECOME A DEBUGGING GURU
Some people are true debugging gurus. They look at the code and point their
finger at the screen and tell you: “Did you try X?” You try X and, voilà!, the failure is
gone. Such intuition comes from experience with earlier errors—one’s own errors
or other people’s errors—and the more experience you have the easier it is to
identify potential error causes and set up accurate hypotheses.Thus,the good news
is that you too will eventually become a debugging guru—if you live long enough
to suffer through all of the failures it takes to gather this experience.

We can speed up this process by training our reasoning. How can we systemati-
cally find out why a program fails? And how can we do so without vague concepts
of “intuition,”“sharp thinking,” and so on? What we want is a method of finding an
explanation for the failure—a method that:

■ Does not require a priori knowledge (that is, we need no experience from
earlier errors).

■ Works in a systematic and reproducible fashion such that we can be sure to
eventually find the cause and reproduce it at will.

The key question for this chapter is thus:

HOW DO WE SYSTEMATICALLY FIND AN EXPLANATION FOR A FAILURE?

129

130 CHAPTER 6 Scientific Debugging

6.2 THE SCIENTIFIC METHOD
If a program fails, this behavior is initially just as surprising and inexplicable as any
newly discovered aspect of the universe. Having a program fail also means that our
abstraction fails. We can no longer rely on our model of the program, but rather
must explore the program independently from the model. In other words,we must
approach the failing program as if it were a natural phenomenon.

In the natural sciences, there is an established method for developing or exam-
ining a theory that explains (and eventually predicts) such an aspect. It is called
scientific method because it is supposed to summarize the way (natural) scientists
work when establishing some theory about the universe. In this very general form,
the scientific method proceeds roughly as follows:

1. Observe (or have someone else observe) some aspect of the universe.
2. Invent a tentative description, called a hypothesis, that is consistent with the

observation.
3. Use the hypothesis to make predictions.
4. Test those predictions by experiments or further observations and modify

the hypothesis based on your results.
5. Repeat steps 3 and 4 until there are no discrepancies between hypothesis and

experiment and/or observation.

When all discrepancies are gone, the hypothesis becomes a theory. In popular
usage, a theory is just a synonym for a vague guess. For an experimental scientist,
though, a theory is a conceptual framework that explains earlier observations and
predicts future observations—for instance, a relativity theory or plate tectonics.

In our context, we do not need the scientific method in its full glory, nor do we
want to end up with grand unified theories for everything. We should be perfectly
happy if we have a specific instance for finding the causes of program failures. In
this debugging context, the scientific method operates as follows:

1. Observe a failure (i.e., as described in the problem description).

2. Invent a hypothesis as to the failure cause that is consistent with the observations.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments and further observations:
■ If the experiment satisfies the predictions, refine the hypothesis.
■ If the experiment does not satisfy the predictions, create an alternate hypo-

thesis.

5. Repeat steps 3 and 4 until the hypothesis can no longer be refined.

The entire process is illustrated in Figure 6.1. Again,what you eventually get is a
theory about how the failure came to be:

■ It explains earlier observations (including the failure).

6.2 The Scientific Method 131

Hypothesis

Refine
hypothesis

Create new
hypothesis

Hypothesis
is supported

Hypothesis
is rejected

<select>
tag?

Prediction

Experiment

Observation 1
conclusion

MOZILLA crashes

Printing
<select>

should fail!

1. load <select>.
2. click on “print”

Problem
description

Program
code

Failing
run

Alternate
runs

MOZILLA 1.3
crashes when
printing

int main (){
 ...
}

Diagnosis Fix

Line 397
in print.c:
pointer must
not be NULL

Line 392:
change p[i]
to p[i21]

FIGURE 6.1

The scientific method of debugging.

132 CHAPTER 6 Scientific Debugging

■ It predicts future observations (for instance, that the failure no longer appears
after applying a fix).

In our context, such a theory is called a diagnosis.

6.3 APPLYING THE SCIENTIFIC METHOD
How is the scientific method used in practice?As an example in this chapter,consider
the sample program as discussed in Chapter 1. The sample program is supposed
to sort its command-line arguments, but some defect causes it to fail under certain
circumstances.

$ sample 11 14
Output: 0 11
$ _

In Section 1.4 we saw how to find the defect in the sample program—but in a
rather ad hoc or unsystematic way. Let’s now retell this debugging story using the
concepts of scientific method.

6.3.1 Debugging sample—Preparation
We start with writing down the problem:what happened in the failing run and how
it failed to meet our expectations.This easily fits within the scientific method scheme
by setting up an initial hypothesis,“the program works,” which is then rejected.This
way, we have observed the failure, which is the first step in the scientific method.

■ Hypothesis: The sample program works.
■ Prediction: The output of sample 11 14 is "11 14."
■ Experiment: We run sample as previously.
■ Observation: The output of sample 11 14 is "0 11."
■ Conclusion: The hypothesis is rejected.

6.3.2 Debugging sample—Hypothesis 1
We begin with a little verification step: Is the zero value reported by sample caused
by a zero value in the program state? Looking at Example 1.1, lines 38–41, it should
be obvious that the first value printed (0) should be the value of a[0]. It is unlikely
that this output code has a defect. Nonetheless, if it does we can spend hours and
hours on the wrong trail. Therefore, we set up the hypothesis that a[0] is actually
zero:

■ Hypothesis: The execution causes a[0] to be zero.
■ Prediction:a[0] = 0 should hold at line 37.
■ Experiment: Using a debugger, observe a[0] at line 37.
■ Observation:a[0] = 0 holds as predicted.
■ Conclusion: The hypothesis is confirmed.

(What does “using a debugger”mean in practice? See Section 8.3.1 to find out.)

6.3 Applying the Scientific Method 133

6.3.3 Debugging sample—Hypothesis 2
Now we must determine where the infection in a[0] comes from. We assume that
shell_sort() causes the infection:

■ Hypothesis: The infection does not take place until shell_sort().
■ Prediction: The state should be sane at the beginning of shell_sort()—that

is,a[] = [11, 14] and size = 2 should hold at line 6.
■ Experiment: Observe a[] and size.
■ Observation: We find that a[] = [11, 14, 0],size = 3 holds.
■ Conclusion: The hypothesis is rejected.

6.3.4 Debugging sample—Hypothesis 3
Assuming we have only one infection site, the infection does not take place within
shell_sort(). Instead,shell_sort() gets bad arguments. We assume that these
arguments cause the failure:

■ Hypothesis: Invocation of shell_sort() with size = 3 causes the failure.
■ Prediction: If we correct size manually, the run should be successful—the

output should be "11 14."
■ Experiment: Using a debugger, we:

1. Stop execution at shell_sort() (line 6).
2. Set size from 3 to 2.
3. Resume execution.

■ Observation: As predicted.
■ Conclusion: The hypothesis is confirmed.

6.3.5 Debugging sample—Hypothesis 4
The value of size can only come from the invocation of shell_sort() in line 36—
that is, the argc argument. As argc is the size of the array plus 1, we change the
invocation.

■ Hypothesis: Invocation of shell_sort() with size = argc (instead of
size = argc — 1) causes the failure.

■ Prediction: If we change argc to argc — 1, the “Changing argc to argc �1”
run should be successful. That is, the output should be "11 14."

■ Experiment: In line 36, change argc to argc — 1 and recompile.
■ Observation: As predicted.
■ Conclusion: The hypothesis is confirmed.

After four iterations of the scientific method,we have finally refined our hypoth-
esis to a theory; the diagnosis “Invocation of shell_sort() with argc causes the
failure.” We have proven this by showing the two alternatives:

■ With the invocation argc, the failure occurs.
■ With the invocation argc — 1, the failure no longer occurs.

134 CHAPTER 6 Scientific Debugging

Thus, we have shown that the invocation with argc caused the failure. As a side
effect, we have generated a fix—namely, replacing argc with argc — 1 in line 36.

Note that we have not yet shown that the change induces correctness—that is,
sample may still contain other defects. In particular, in programs more complex
than sample we would now have to validate that this fix does not introduce new
problems (Chapter 15 has more on this issue). In the case of sample, though, you
can do such a validation by referring to a higher authority: Being the author of
this book, I claim that with the fix applied there is no way sample could ever sort
incorrectly. Take my word.

6.4 EXPLICIT DEBUGGING
In Section 6.3 we saw how to use the scientific method to establish the failure cause.
You may have noticed that the process steps were quite explicit : We explicitly
stated the hypotheses we were examining, and we explicitly set up experiments
that supported or rejected the hypotheses.

Being explicit is an important means toward understanding the problem at hand,
starting with the problem statement. Every time you encounter a problem, write
it down or tell it to a friend. Just stating the problem in whatever way makes you
rethink your assumptions—and often reveals the essential clues to the solution.The
following is an amusing implementation,as reported by Kernighan and Pike (1999):

One university center kept a Teddy bear near the help desk. Students with
mysterious bugs were required to explain them to the bear before they could
speak to a human counselor.

Unfortunately,most programmers are implicit about the problem statement,and
even more so within the debugging process (they keep everything in their mind).
But this is a dangerous thing to do. As an analogy, consider a Mastermind-game
(Figure 6.2). Your opponent has chosen a secret code, and you have a number of
guesses. For each guess, your opponent tells you the number of tokens in your
guess that had the right color or were in the right position. If you have ever played
Mastermind and won, you have probably applied the scientific method.

However,as you may recall from your Mastermind experiences,you must remem-
ber all earlier experiments and their outcomes, in that this way you can keep track
of all confirmed and rejected hypotheses. In a Mastermind game, this is easy, as the
guesses and their outcomes are recorded on the board. In debugging, though,many
programmers do not explicitly keep track of experiments and outcomes, which is
equivalent to playing Mastermind in memory. In fact, forcing yourself to remem-
ber all experiments and outcomes prevents you from going to sleep until the bug is
eventually fixed. Debugging this way,a“mastermind”is not enough—you also need
a “master memory.”

6.5 Keeping a Logbook 135

FIGURE 6.2

A Mastermind game.

6.5 KEEPING A LOGBOOK
A straightforward way of making debugging explicit and relieving memory stress
is to write down all hypotheses and observations—that is, keep a logbook. Such a
logbook can be either on paper or in some electronic form. Keeping a logbook may
appear cumbersome at first, but with a well-kept logbook you do not have to keep
all experiments and outcomes in memory. You can always quit work and resume
the next day.

In Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig writes about
the virtue of a logbook in cycle maintenance:

Everything gets written down, formally, so that you know at all times where
you are, where you’ve been, where you’re going, and where you want to get. In
scientific work and electronics technology this is necessary because otherwise
the problems get so complex you get lost in them and confused and forget what
you know and what you don’t know and have to give up.

And beware—this quote applies to motorcycle maintenance. Real programs
are typically much more complex than motorcycles. For a motorcycle maintainer,
it would probably appear amazing that people would debug programs without
keeping logbooks.

And how should a logbook be kept? Unless you want to share your logbook
with someone else, feel free to use any format you like. However,your notes should
include the following points, as applied in Section 6.3:

136 CHAPTER 6 Scientific Debugging

■ Statement of the problem (a problem report, as in Chapter 2, or, easier,
a report identifier)

■ Hypotheses as to the cause of the problem
■ Predictions of the hypotheses
■ Experiments designed to test the predictions
■ Observed results of the experiments
■ Conclusions from the results of the experiments

An example of such a logbook is shown in Figure 6.3, recapitulating hypo-
theses 2 and 3 from Section 6.3. Again, quoting Robert Pirsig:

This is similar to the formal arrangement of many college and high-school lab
notebooks, but the purpose here is no longer just busywork.The purpose now
is precise guidance of thoughts that will fail if they are not accurate.

Hypothesis Prediction Experiment Observation Conclusion

Infection in
shell_sort()

At shell_sort()
(Line 6), expect
a[] = [11, 14]
and size = 2

Observe a[]
and size[]

a[] = [11,14,0]
and size = 3

rejected

Invocation of
shell_sort()
with size = 3
causes failure

Setting size = 2
should make
sample work

Set size = 2
using
debugger

As predicted confirmed

FIGURE 6.3

A debugging logbook (excerpt).

6.6 DEBUGGING QUICK-AND-DIRTY
Not every problem needs the full strength of the scientific method or the formal
content of a logbook. Simple problems should be solved in a simple manner—
without going through the explicit process. If we find a problem we suppose to
be simple, the gambler in us will head for the lighter process. Why bother with
formalities? Just think hard and solve the problem.

The problem with such an implicit “quick-and-dirty” process is to know when
to use it. It is not always easy to tell in advance whether a problem is simple or
not. Therefore, it is useful to set up a time limit. If after 10 minutes of quick-and-
dirty debugging you still have not found the defect, go for the scientific method
instead and write down the problem statement in the logbook.Then,straighten out

6.7 Algorithmic Debugging 137

your head by making everything formal and exact—and feel free to take a break
whenever necessary.

6.7 ALGORITHMIC DEBUGGING
Another way of organizing the debugging process is to automate it—at least par-
tially. The idea of algorithmic debugging (also called declarative debugging) is to
have a tool that guides the user along the debugging process interactively. It does
so by asking the user about possible infection sources:

1. Assume an incorrect result R has the origins O1, O2, . . . , On.
2. For each of the origins Oi , algorithmic debugging inquires whether the

origin Oi is correct or not.
3. If one of the origins Oi is incorrect, algorithmic debugging restarts at step 1

with R�Oi .
4. Otherwise, all origins Oi are correct. Then, the infection must have origi-

nated at the place where R was computed from the origins. The process
terminates.

Let’s illustrate algorithmic debugging via an example. Example 6.1 shows a
PYTHON sorting function: sort(L) is supposed to return a sorted copy of the
list L. Unfortunately, sort() does not work properly: sort([2, 1, 3]) returns
[3, 1, 2] rather than [1, 2, 3].

EXAMPLE 6.1: A buggy insertion sort program

def insert(elem, list):
"""Return a copy of LIST with ELEM sorted in"""
if len(list) == 0:

return [elem]

head = list[0]
tail = list[1:]
if elem <= head:

return list + [elem]

return [head] + insert(elem, tail)

def sort(list):
"""Return a sorted copy of LIST"""
if len(list) <= 1:

return list

head = list[0]
tail = list[1:]
return insert(head, sort(tail))

138 CHAPTER 6 Scientific Debugging

Sort([2, 1, 3])=[3 ,1, 2]

Sort([1, 3])=[3, 1]

Sort([3])=[3]

Insert(2, [3, 1])=[3, 1, 2]

Insert(1, [3])=[3, 1]

FIGURE 6.4
Execution tree of the sorting function in Example 6.1. Each computation of a function (top)
relies on further function calls (bottom).

Our sort() function is based on insertion sort. It thus relies on a function
insert(X, L), which returns a list where X is inserted between the elements of L:
insert(2, [1, 3]) should return [1, 2, 3].

Figure 6.4 summarizes the execution of sort([2, 1, 3]) (a line stands for
functions being invoked). Each invocation of sort(L) first calls itself for the tail of L
and then calls insert() to insert the first element of L into the freshly sorted list.

The execution tree shown in Figure 6.4 now becomes the base for the algorithmic
debugging process. Assume we have a tool that implements algorithmic debugging
for PYTHON, working on the console. Such a tool would first ask us whether the
end result is correct, which we decline.

sort([2, 1, 3]) = [3, 1, 2]? no

The error can originate either from sort([1, 3]) or the subsequent insert()
call. Algorithmic debugging starts querying about the first origin.

sort([1, 3]) = [3, 1]? no

Again, the error could originate from the earlier sort([3]) call. Is the result
correct?

sort([3]) = [3]? yes

Because the call sort([3]) = [3] was fine but sort([1, 3]) = [3, 1] is
wrong,the error could have originated in the insert() call. It actually does,because
insert(1, [3]) should return [1, 3], and not [3, 1].

insert(1, [3]) = [3, 1]? no

Because insert(1, [3]) invokes no further functions, we have isolated the
defect. The infection originates at the call insert(1, [3]) = [3, 1] (shown in
gray in the figure). Our algorithmic debugging tool reports:

An error has been localized in the body of insert().

We can even narrow down the infection to the code executing in the call
insert(1, [3]). This leaves us with the return statement:

6.7 Algorithmic Debugging 139

if elem <= head:
return list + [elem]

This statement is wrong. If the element to be inserted is smaller than the head of
the list, it should be inserted at the beginning rather than at the end.The statement
thus must read:

if elem <= head:
return [elem] + list

This fixes the sort() function from Example 6.1. With this fix applied, it sorts just
fine.

The general idea of having an algorithm drive the debugging process is applicable
to arbitrary debugging techniques. Wherever we search an error—and need to rely
on human input to decide what is correct, right, or true—algorithmic debugging
can drive the search in a systematic way. Unfortunately, algorithmic debugging has
not been demonstrated to be effective for real-world applications:

The process does not scale. In a large imperative program, there are millions and
millions of functions being executed. Many of these functions communicate via
shared data structures, rather than simple arguments and returned values. Worse
yet, the data structures being accessed are far too huge to be checked manually.
Imagine debugging a compiler:“Are these 4 megabytes of executable code correct
(yes/no)?”

For these reasons,algorithmic debugging works best for functional and logical
programming languages. Functional and logical programs have few or no side
effects—that is, there is no shared state that is updated, and the user does not
have to check the entire program state. For logical languages such as PROLOG,an
execution tree (Figure 6.4) becomes a proof tree,which is part of every program
execution.

Programmers prefer driving to being driven. The algorithmic debugging process,
as implemented in early tools, is extremely rigid. Many programmers do not like
being instrumented in such a mechanical way. Making the process user friendly
in the sense that it provides assistance to programmers (rather than having the
programmer assist the tool) is an open research issue.

It is conceivable that future tools, combined with the analysis techniques
defined in this book, will provide guidance to the programmer by asking the
right questions. In particular, one can think of programmers providing specifica-
tions of particular function properties—specifications that can then be reused for
narrowing down the incorrect part.

All of these problems disappear if we replace the programmer being queried
by an oracle—an automatic device that tells correctness from noncorrectness. To
determine its result, such an oracle would use an external specification. In this
book,however,we assume that there is no such specification (except from the final

140 CHAPTER 6 Scientific Debugging

test outcome)—at least not in a form a mechanical device could make use of it.
Therefore, scientific method still needs human interaction.

6.8 DERIVING A HYPOTHESIS
Scientific method gives us a general process for turning a hypothesis into a theory—
or,more specifically,an initial guess into a diagnosis. But still,within each iteration of
the scientific method we must come up with a new hypothesis.This is the creative
part of debugging: thinking about the many ways a failure could have come to be.
This creative part is more than just mechanically enumerating possible origins,as in
algorithmic debugging.

Unfortunately, being creative is not enough: We must also be effective. The
better our hypotheses, the less iterations we need, and the faster the diagnosis is
done. To be effective, we need to leverage as many knowledge sources as possible.
These are the ingredients of debugging, as shown in Figure 6.1.

6.8.1 The Description of the Problem
Without a concise description of the problem, you will not be able to tell whether
the problem is solved or not.A simplified problem report also helps. In Chapter 2 we
saw examples of such descriptions, and discussed the issues of tracking problems.
Chapter 5 provided details on the simplification of problem reports.

6.8.2 The Program Code
The program code is the common abstraction across all possible program runs,
including the failing run. It is the basis for almost all debugging techniques.

Without knowledge about the internals of the program, you can only observe
concrete runs (if any) without ever referring to the common abstraction. Lack of
program code makes understanding (and thus debugging) much more difficult. As
you cannot recreate the program from code,you must work around defects, which
is far less satisfactory than fixing the code itself.

As an example, consider the sort() algorithmic debugging session in
Section 6.7. In principle,we (as users) could have run the session without knowing
the source code. To determine whether a result is correct or not, all we need is a
specification. However,the tool itself must have access to the code (Example 6.1) in
order to trace and instrument the individual function calls. Chapter 7 discusses tech-
niques for reasoning from the (abstract) program code to the (concrete) program
run—including the failing run.

6.8.3 The Failing Run
The program code allows you to speculate about what may be going on in a concrete
failing run. If you actually execute the program such that the problem is reproduced,

6.8 Deriving a Hypothesis 141

you can observe actual facts about the concrete run. Such facts include the code
being executed and the program state as it evolves. These observation techniques
are the bread and butter of debugging.

Again, debugging the sort() code in Example 6.1 becomes much easier once
one can talk about a concrete (failing) run. In principle,one could do without obser-
vation. This is fine for proving abstract properties but bad for debugging concrete
problems.

Chapter 8 discusses techniques with which programmers can observe concrete
runs. Chapter 10 extends these techniques to have the computer detect violations
automatically.

6.8.4 Alternate Runs
A single run of a nontrivial program contains a great deal of information, and thus
we need a means of focusing on specific aspects of the execution. In debugging,we
are most interested in anomalies—those aspects of the failing run that differ from
“normal” passing runs. For this purpose, we must know which “normal” runs exist,
what their common features are, and how these differ in the failing run.

In the sort() example, algorithmic debugging has used alternate runs of indi-
vidual functions to narrow down the defect. From the fact that sort([3]) worked,
and sort([1, 3]) failed,algorithmic debugging could deduce that the error must
have originated in the insert() call taking place between the two sort() calls.

In practice, we seldom have a specification available to tell us whether some
aspect of a run is correct or not. Yet, with a sufficient number of alternate runs we
can classify what is“normal”or not. Chapter 11 discusses automated techniques for
detecting and expressing commonalities and anomalies across multiple runs.

6.8.5 Earlier Hypotheses
Depending on the outcome of a scientific method experiment, one must either
refine or reject a hypothesis. In fact, every new hypothesis must

■ include all earlier hypotheses that passed (the predictions of which were
satisfied), and

■ exclude all hypotheses that failed (the predictions of which were not satisfied).

Any new hypothesis must also explain all earlier observations, regardless of whether
the experiment succeeded or failed—and it should be different enough from earlier
hypotheses to quickly advance toward the target. Again, the algorithmic debugging
session is a straightforward example of how the results of earlier tests (i.e., answers
given by the user) drive the scientific method and thus the debugging process.The
final diagnosis of insert() having a defect fits all passed hypotheses and explains
all earlier observations.

To automate the process, we would like to reuse earlier hypotheses without
asking the user for assistance. If a hypothesis is about a cause (such as a failure

142 CHAPTER 6 Scientific Debugging

cause),the search for the actual cause can be conducted systematically by narrowing
the difference between a passing and a failing scenario. These techniques can
be automated and applied to program runs. Chapter 13 discusses automating the
search for failure-inducing circumstances. Chapter 14 does the same for program
states.

6.9 REASONING ABOUT PROGRAMS
Depending on the ingredients that come into play, humans use different reasoning
techniques to learn about programs. These techniques form a hierarchy, as shown
in Figure 6.5.

Deduction. Deduction is reasoning from the general to the particular. It lies at the
core of all reasoning techniques. In program analysis, deduction is used for
reasoning from the program code (or other abstractions) to concrete runs—
especially for deducing what can or cannot happen. These deductions take the
form of mathematical proofs. If the abstraction is true, so are the deduced

Experimentation
n controlled runs

Induction
n runs

Observation
1 run

Deduction
0 runs

Uses

Uses

Uses

FIGURE 6.5
A hierarchy of program analysis techniques.

6.9 Reasoning About Programs 143

properties. Because deduction does not require any knowledge about the
concrete, it is not required that the program in question actually be executed.

In this book,we call any technique static analysis if it infers findings without
executing the program—that is, the technique is based on deduction alone. In
contrast, dynamic analysis techniques use actual executions.

As Nethercote (2004) points out, this distinction of whether a program is
executed or not may be misleading. In particular, this raises the issue of what
exactly is meant by “execution.” Instead, he suggests that static techniques
predict approximations of a program’s future; dynamic analysis remembers
approximations of a program’s past. Because in debugging we are typically
concerned about the past, most interesting debugging techniques fall into the
“dynamic”categories, which we discuss next.

Observation. Observation allows the programmer to inspect arbitrary aspects of
an individual program run. Because an actual run is required, the associated
techniques are called dynamic. Observation brings in actual facts of a pro-
gram execution. Unless the observation process is flawed, these facts cannot be
denied.

In this book, we call a technique observational if it generates findings or
approximations from a single execution of the program. Most observational
techniques make use of the program code in some form or another and thus also
rely on deduction.

Induction. Induction is reasoning from the particular to the general. In program
analysis, induction is used to summarize multiple program runs (e.g.,a test suite
or random testing) to some abstraction that holds for all considered program
runs. In this context, a “program” may also be a piece of code that is invoked
multiple times from within a program—that is, some function or loop body.

In this book, we call a technique inductive if it generates findings from mul-
tiple executions of the program. By definition,every inductive technique makes
use of observation.

Experimentation. Searching for the cause of a failure using scientific method
requires a series of experiments,refining and rejecting hypotheses until a precise
diagnosis is isolated. This implies multiple program runs that are controlled by
the reasoning process.

In this book, we call a technique experimental if it generates findings from
multiple executions of the program that are controlled by the technique. By
definition, every experimental technique uses induction and thus observation.

In the following chapters, we examine the most important of these techniques.
We start with Chapter 7, deducing hypotheses from the program code without
actually executing the program. Chapters 8–10 focus on observational techniques.
Chapter 11 discusses inductive techniques. Finally, Chapters 13 and 14 introduce
experimental techniques.

144 CHAPTER 6 Scientific Debugging

6.10 CONCEPTS
To isolate a failure cause, use scientific method (Section 6.2):How To

1. Observe a failure (i.e., as described in the problem description).
2. Invent a hypothesis as to the failure cause that is consistent with the obser-

vations.
3. Use the hypothesis to make predictions.
4. Test the hypothesis by experiments and further observations:

■ If the experiment satisfies the predictions, refine the hypothesis.
■ If the experiment does not satisfy the predictions, create an alternate

hypothesis.

5. Repeat steps 3 and 4 until the hypothesis can no longer be refined.

To understand the problem at hand, make it explicit. Write it down or talk to a
friend (Section 6.4).

To avoid endless debugging sessions, make the individual steps explicit. Keep a
logbook (Section 6.5).

To locate an error in a functional or logical program, consider algorithmic
debugging.

Algorithmic debugging drives the debugging process by proposing hypotheses
about error origins, which the user (or some oracle) must individually judge.

To debug quick-and-dirty, think hard and solve the problem—but as soon you
exceed some time limit go the formal way (Section 6.6).

To derive a hypothesis, consider:
■ The problem description
■ The program code
■ The failing run
■ Alternate runs
■ Earlier hypotheses

See Section 6.8 for details.

To reason about programs, one can use four different techniques:
■ Deduction (zero runs)
■ Observation (one single run)
■ Induction (multiple runs)
■ Experimentation (multiple controlled runs)

All of these are discussed in further chapters.

6.11 FURTHER READING
Algorithmic debugging as a semiautomation of scientific method was conceived
by Shapiro (1982) for logical programming languages such as PROLOG. In 1992,

6.11 Further Reading 145

Fritzson et al. extended the approach to imperative languages,using program slicing
(see Section 7.4 in Chapter 7) to determine data dependences, and demonstrated
the feasibility on a subset of PASCAL. The algorithmic debugging example session
is based on Fritzson et al. (1992). In 1997,Naish generalized algorithmic debugging
to the more general concept of declarative debugging.

Whereas the scientific method is the basis of all experimental science, it is
rarely discussed or used in computer science. The reason is that computer sci-
ence is concerned with artifacts, which are supposed to be fully under control
and fully understood. However, as an unexpected failure occurs the artifact must
be explored just like some natural phenomenon. For an early but still excellent
book on experimental and statistical methods for data reduction, see An Intro-
duction to Scientific Research by Wilson (1952). A more general book from the
same period that remains useful today is The Art of Scientific Investigation by
Beveridge (1957).

For philosophy of science, the undisputed classic is the work of Popper (1959),
who coined the term falsifiability as the characteristic method of scientific inves-
tigation and inference. For Popper, any theory is scientific only if it is refutable
by a conceivable event, which is why experiments play such a role in obtaining
diagnoses.

The definitions of cause and effect in this book are called based on counterfac-
tuals, because they rely on assumptions about nonfacts. The first counterfactual
definition of causes and effects is attributed to Hume (1748): “If the first object
[the cause] had not been, the second [the effect] never had existed.” The best-
known counterfactual theory of causation was elaborated by Lewis (1973), refined
in 1986.

Causality is a vividly discussed philosophical field. Other than the counterfactual
definitions, the most important alternatives are definitions based on regularity and
probabilism. I recommend Zalta (2002) for a survey.

EXERCISES
6.1 “We have reached a state where many programs are just as unpredictable as

natural phenomena.”Discuss.

6.2 Using the logbook format (Section 6.5), describe the individual steps of the
algorithmic debugging run in Section 6.7. Which are the hypotheses, predic-
tions, and experiments?

6.3 Simplification of tests,as discussed in Chapter 5,can be seen as an application
of the scientific method.What are the hypotheses,predictions,and tests being
used?

6.4 Set up a logbook form sheet with entries such as “Prediction,”“Observation,”
and so on such that programmers only need to fill in the gaps. Give them to
piers and collect their opinions.

146 CHAPTER 6 Scientific Debugging

6.5 “I want to archive logbook entries, such that in case a similar problem occurs
I may find hints on which hypotheses to use and which experiments to
conduct.”Discuss.

How do they know the load limit on bridges, Dad?
They drive bigger and bigger trucks over the bridge until it breaks.
Then they weigh the last truck and rebuild the bridge.

– BILL WATTERSON

Calvin and Hobbes (1997)

CHAPTER

7Deducing Errors

In this chapter, we begin exploring the techniques for creating hypotheses intro-
duced in Chapter 6. We start with deduction techniques—reasoning from the
abstract program code to the concrete program run. In particular, we present pro-
gram slicing,an automated means of determing possible origins of a variable value.
Using program slicing, one can effectively narrow down the number of possible
infection sites.

7.1 ISOLATING VALUE ORIGINS
Oops! We have observed something that should not happen—the program has
reached some state it never should have reached. How did it get into this state?
Kernighan and Pike (1999) give a hint:

Something impossible occurred, and the only solid information is that it really
did occur. So we must think backwards from the result to discover the reasons.

What does “thinking backwards” mean here? One of the main applications of
program code during debugging is to identify relevant statements that could have
caused the failure—and, in the same step, to identify the irrelevant statements that
could not have caused the failure in any way.This allows the programmer to neglect
the irrelevant statements—and to focus on the relevant ones instead.These relevant
statements are found by following back the possible origins of the result—that is,
“thinking backward.”As an example of relevant and irrelevant statements, consider
the following piece of BASIC code.

10 INPUT X
20 Y = 0
30 X = Y
40 PRINT "X = ", X

This piece of code outputs the value of X,which is always a zero value. Where does
this value come from? We can trace our way backward from the printing statement
in line 40 and find that X’s value was assigned from Y (line 30), which in turn got
its zero value in line 20. The input to X in line 10 (and anything else that might be
inserted before line 20) is irrelevant for the value of X in line 40. 147

148 CHAPTER 7 Deducing Errors

Applying this relevant/irrelevant scheme, we can effectively narrow down our
search space—simply by focusing on the relevant values and neglecting the irrele-
vant ones. This is shown in Figure 1.5. During the execution of a program, only a
few values (marked with �) can possibly influence the failing state. Knowing these
relevant values can be crucial for effective debugging.

How does one determine whether a value (or a statement that generates this
value) is relevant for a failure or not? To do so, we need not execute the program.
We can do so by pure deduction—that is, reasoning from the abstract (program
code) to what might happen in the concrete (run). By deducing from the code,we
can abstract over all (or at least several) runs to determine properties that hold
for all runs (for instance, properties about relevant and irrelevant values). The key
question is:

WHAT GENERAL ERRORS CAN WE DEDUCE FROM CODE ALONE?

7.2 UNDERSTANDING CONTROL FLOW
Deducing from program code is more than just sitting in front of the code and trying
to understand it. A few basic principles can effectively guide the search for relevant
values—and incidentally, these principles are the same for seasoned programmers
as for automated analysis tools.

As an ongoing example, consider the fibo.c program shown in Example 7.1.
This program displays the first nine members of the Fibonacci sequence 1, 1, 2,

3, 5, 8, . . . , in which each element is the sum of its two predecessors. Formally, the
nth element of the Fibonacci sequence is defined as

fib(n)�

{
1 for n�0∨n�1

fib(n�1)�fib(n�2) otherwise.

Unfortunately, the implementation in Example 7.1 has a defect. Its output is:

$ gcc -o fibo fibo.c
$./fibo
fib(9)=55
fib(8)=34
fib(7)=21
fib(6)=13
fib(5)=8
fib(4)=5
fib(3)=3
fib(2)=2
fib(1)=134513905
$ _

As we see, the value of fib(1) is wrong. fib(1) should be 1 instead of the
arbitrary value reported here.

7.2 Understanding Control Flow 149

EXAMPLE 7.1: fibo.c prints out Fibonacci numbers—except for 1

1 /* fibo.c -- Fibonacci C program to be debugged */
2
3 #include <stdio.h>
4
5 int fib(int n)
6 {
7 int f, f0 = 1, f1 = 1;
8
9 while (n > 1) {
10 n = n --- 1;
11 f = f0 + f1;
12 f0 = f1;
13 f1 = f;
14 }
15
16 return f;
17 }
18
19 int main()
20 {
21 int n = 9;
22
23 while (n > 0)
24 {
25 printf("fib(%d)=%dN", n, fib(n));
26 n = n --- 1;
27 }
28
29 return 0;
30 }

How does the bad return value of fib(1) come to be? As an experienced pro-
grammer, you can probably identify the problem in half a minute or less (just read
the source code in Example 7.1). Let’s try, though, to do this in a little more sys-
tematic fashion—after all, we want our process to scale and we eventually want to
automate parts of it.

The first thing to reason about when tracking value origins through source code
is to identify those regions of code that could have influenced the value simply
because they were executed. In our example, this is particularly easy. We only need
to consider the code of the fib() function, as the defect occurs between its call
and its return.

Because earlier statements may influence later statements (but not vice versa),
we must now examine the order in which the statements were executed. We end
up in a control flow graph, as shown in Figure 7.1. Such a graph is built as follows:

■ Each statement of a program is mapped to a node. (In compiler construction—
the origin of control flow graphs—statements that must follow each other are

150 CHAPTER 7 Deducing Errors

Entry: fib(n) 0

1int f

2int f0 = 1

3int f1 = 1

4while (n > 1)

5n = n — 1

6f = f0 + f1

7f0 = f1

8f1 = f

9return f

10Exit

A B

Control flow:
A precedes B;
B follows A

FIGURE 7.1

The fib() control flow graph.

7.2 Understanding Control Flow 151

combined into nodes called basic blocks. In Figure 7.1, for instance, nodes 1–3
and 5–8 would form basic blocks.)

■ Edges connecting the nodes represent the possible control flow between the
statements—a possible execution sequence of statements. An edge from a
statement A to a statement B means that during execution statement B may
immediately be executed after statement A.

■ An entry and exit node represent the beginning and the end of the program or
function.

In Figure 7.1, for instance, you can see that after f1 = f (statement 8); we
always have to check the loop condition (statement 4) before possibly returning
from fib() (statements 9 and 10).

For structured programming languages such as C, a control flow graph (such as
that shown in Figure 7.1) is straightforward to produce. All one needs is a pattern
for each control structure, as sketched in Figure 7.2. The actual control flow graph
for a program is composed from such patterns.

There are situations, though,where the control flow cannot be determined from
such patterns.All of these impose difficult situations for debugging. List 7.1 outlines
the most important caveats you should be aware of.

if (COND)

for (INIT; COND; INCR)
 BODY;

THEN-BLOCK;

ELSE-BLOCK;

THEN-BLOCK ELSE-BLOCK

if (COND)

while (COND)

BODY

do

BODY

while (COND)

else

while (COND)
BODY;

 BODY
}while (COND);

do {

COND

for

INIT

INCR

BODY

FIGURE 7.2

Some common control flow patterns.

152 CHAPTER 7 Deducing Errors

LIST 7.1: Control Flow Caveats

Jumps and gotos. A jump or goto is an unconditional transfer of control; goto 50 means
to resume execution at line or label 50. Unconstrained gotos can make reasoning about
programs much more difficult—in particular, if they involve jumps into loop or function
bodies. (In technical terms, this may make the control flow graph unstructured or irre-
ducible.) Fortunately, most programmers (and languages) avoid goto statements as a
whole or use them only to jump to the end of a block.

Indirect jumps. Even more complicated than a goto to a specific line is a computed goto,
also known as an indirect jump. A statement such as goto X transfers control to the
statement or address as stored in the variable X.

Unconstrained indirect jumps make reasoning about control flow very difficult because
in principle they can be followed by an arbitrary statement. Fortunately, indirect jumps are
almost exclusively used for dynamic function dispatch. The address of a function is taken
from some table and then used for invocation. Languages such as C and C++ provide
such mechanisms as function pointers.

Dynamic dispatch. A very constrained form of indirect jumps is found in object-oriented
languages. A call such as shape.draw() invokes the draw() method of the object
referenced by shape. The actual destination of the call is resolved at runtime, depending
on the class of the object. If the object is a rectangle, then Rectangle.draw() is called.
If it is a circle, then Circle.draw() is called.

Dynamic dispatch is a powerful tool, but also a frequent source of misunderstanding
when reasoning about program code. For every method call, one must be aware of the
possible destinations.

Exceptions. By throwing an exception, a function can transfer control back to its caller, which
either must handle the exception or rethrow it to its respective caller. (Instead of the caller,
a surrounding block may also handle or rethrow the exception.)

In the presence of exceptions, one must be aware that control may never reach the
“official” end of a function but be transferred directly to the caller. Be sure that an exception
does not go by unnoticed, such that you know that it has occurred.

7.3 TRACKING DEPENDENCES
The control flow graph is the basis for all deduction about programs, as it shows
how information propagates along the sequence of statements. Let’s go a little more
into detail here. Exactly how do individual statements affect the information flow?
And how are statements affected by the information flow?

7.3.1 Effects of Statements
To contribute to the computation, every statement of the program must (at least
potentially) affect the information flow in some way. We distinguish the following
two types of effects.

7.3 Tracking Dependences 153

Write
A statement can change the program state (i.e., assign a value to a variable). For
example, the statement v1 = 1 writes a value to the variable v1.

The“program state”considered here is a very general term. For instance,printing
some text on an output device changes the state of the device. Sending a message
across the network changes the state of attached devices. To some extent, the “pro-
gram state” thus becomes the state of the world. Therefore, it is useful to limit the
considered state—for instance, to the hardware boundaries.

Control
A statement may change the program counter—that is,determine which statement
is to be executed next. In Figure 7.1, the while statement determines whether
the next statement is either 5 or 9. Obviously, we are only talking about con-
ditional changes to the program counter here—that is, statements that have at
least two possible successors in the control flow graph,dependent on the program
state.

In principle,one may consider the program counter as part of the program state.
In practice, though, locations in the program state, and locations in the program
code,are treated conceptually as separate dimensions of space and time. Figure 1.1
uses this distinction to represent the intuition about what is happening in a pro-
gram run.

7.3.2 Affected Statements
Affecting the information flow by writing state or controlling execution represents
the active side of how a statement affects the information flow. However,statements
are also passively affected by other statements. For example:

■ Read. A statement can read the program state (i.e.,read a value from a variable).
For example, the statement v2 = v1 + 1 reads a value from the variable v1.
Consequently, the effect of the statement is affected by the state of v1.

Just as in the writing state, the “program state” considered here is a very
general term. For instance, reading some text from an input device reads the
state of the device. Reading a message across the network reads the state of
attached devices.

■ Execution. To have any effect, a statement must be executed. Consequently,
if the execution of a statement B is potentially controlled by another statement A,
then B is affected by A.

For each statement S of a program, we can determine what part of the state is
being read or written by S (as deduced from the actual program code), and which
other statements are controlled by S (as deduced from the control flow graph).As an
example, consider Table 7.1, which lists the actions of the statements in the fib()
program.

154 CHAPTER 7 Deducing Errors

Table 7.1 Effects of the fib() Statements

Statement Reads Writes Controls

0 fib(n) n 1–10

1 int f f

2 f0 = 1 f0

3 f1 = 1 f1

4 while (n > 1) n 5–8

5 n = n – 1 n n

6 f = f0 + f1 f0, f1 f

7 f0 = f1 f1 f0

8 f1 = f f f1

9 return f f 〈return value〉
Note: Each statement reads or writes a variable, or controls
whether other statements are executed.

7.3.3 Statement Dependences
Given the effects of statements, as well as the statements thereby affected, we
can construct dependences between statements, showing how they influence each
other. We distinguish the following two types of dependences.

Data dependence
A statement B is data dependent on a statement A if

■ A writes some variable V (or more generally, part of the program state) that
is being read by B, and

■ there is at least one path in the control flow graph from A to B in which V
is not being written by some other statement.

In other words, the outcome of A can influence the data read by B.
Figure 7.3 shows the data dependences in the fib() program. By following the

dashed arrows on the right side, one can determine where the data being written
by some statement are being read by another statement. For instance, the variable
f0 being written by statement 2,f0 = 1, is read in statement 6,f = f0 + f1.

Control dependence
A statement B is control dependent on a statement A if B’s execution is poten-
tially controlled by A. In other words, the outcome of A determines whether B is
executed.

The dotted arrows on the left side of Figure 7.3 show the control dependences
in fib(). Each statement of the body of the while loop is dependent on entering

7.3 Tracking Dependences 155

A B

Control dependency:
A controls B

,
s execution;

B is control dependent on A

Entry: fib(n) 0

int f 1

int f0 = 1 2

int f1 = 1 3

while (n > 1)

n = n — 1

f = f0 + f1

f0 = f1 7

f1 = f 8

return f

Exit 10

A B

Data dependency:
A’s data is used in B;
B is data dependent on A

9

6

4

5

FIGURE 7.3

fib() dependence graph.

156 CHAPTER 7 Deducing Errors

the loop (and thus dependent on the head of the while loop). All other statements
are dependent on the entry of the function (as it determines whether the body is
actually executed).

The control and data dependences of a program, as shown in Figure 7.3, form
a graph—the program-dependence graph.This graph is the basis for a number of
program-analysis techniques, as it reflects all influences within a program.

7.3.4 Following Dependences
Following the control and data dependences in the program-dependence graph,
one can determine which statements influence which other statements—in terms
of data or control, or both. In particular, one can answer two important questions:

1. Where does this value go to? Given a statement S writing a variable V , we can
determine the impact of S by checking which other statements are dependent
on S—and which other statements are dependent on these. Let’s follow the
dependences to see what happens when we call fib(). In Figure 7.3, the value
of n is being used in the while head (statement 4) as well as in the while body
(statement 5). Because the while head also controls the assignments to f, f0,
and f1 (statements 6–8), the value of n also determines the values of f, f0, and
f1—and eventually,the returned value f.This is how fib() is supposed to work.

2. Where does this value come from? Given a statement S reading a variable V ,we
can determine the statements that possibly influenced V by following back the
dependences of S. Let’s now follow the dependences to see where the arbitrary
value returned by fib(1) comes from. In Figure 7.3,consider the return value f
in statement 9.The value of f can come from two sources. It can be computed in
statement 6 from f0 and f1 (and,following their control dependences,eventually
n). However, it also can come from statement 1,which is the declaration of f. In
the C language, a local variable is not initialized and thus may hold an arbitrary
value. It is exactly this value that is returned if the while body is not executed.
In other words, this is the arbitrary value returned by fib(1).

7.3.5 Leveraging Dependences
Following dependences through programs is a common technique for finding out
the origins of values. But from where does one get the dependences?

Typically, programmers implicitly determine dependences while reading the
code. Assessing the effect of each statement is part of understanding the program.
Studies have shown that programmers effectively follow dependences while debug-
ging,either in a forward fashion to assess the impact of a statement or in a backward
fashion to find out which other parts of the program might have influenced a state-
ment. As Weiser (1982) puts it: “When debugging, programmers view programs
in ways that need not conform to the programs’ textual or modular structures.”
Thus, dependences become an important guide for navigating through the code.

7.4 Slicing Programs 157

FIGURE 7.4

Following dependences in CODESURFER. For each variable, one can query the predecessors
and successors along the dependence graph.

Obtaining explicit dependences such that they can be leveraged in tools is also
feasible and is part of several advanced program-analysis tools. Figure 7.4 shows a
screenshot of the CODESURFER tool, one of the most advanced program-analysis
tools available. Rather than visualizing dependences as in Figure 7.3,CODESURFER
allows programmers to explore the dependences interactively by navigating to
predecessors and successors according to data and control dependences.

7.4 SLICING PROGRAMS
Using dependences,one can check for specific defect patterns and focus on specific
subsets of the program being debugged (the subset that may have influenced a
specific statement or the subset that may be influenced by a specific statement).
Such a subset is called a slice, and the corresponding operation is called slicing.

7.4.1 Forward Slices
By following all dependences from a given statement A, one eventually reaches all
statements of which the read variables or execution could ever be influenced byA.
This set of statements is called a program slice,or more specifically the forward slice
of SF (A). Formally, it consists of all statements that (transitively) depend on A:

SF (A)� {B|A→� B}
In a slice SF (A), the originating statement A is called the slicing criterion.

As an example for a forward slice, consider Figure 7.3. The forward slice origi-
nating at statement 2, f0 = 1, first includes statement 6, f = f0 + f1. Via f, the

158 CHAPTER 7 Deducing Errors

slice also includes statement 8,f1 = f, and statement 9,return f.Via f1, the slice
finally also includes statement 7, f0 = f1. Overall, the forward slice SF (2) is thus
SF (2)�{2, 6, 7, 8, 9}.

More important than the statements included in a slice are the statements not
included in a slice, in that these can be in no way affected by the original statement.
In our case, the statements excluded are not just the statements 0 and 1 (hardly
surprising,as they are always executed before statement 2) but statements 4 and 5—
the head of the while loop. In other words, the execution of the while loop is
independent of the initial value of f0.

7.4.2 Backward Slices
The term forward slice implies that there is also a backward slice. To compute the
backward slice of B, one proceeds backward along the dependences. Thus, we
can determine all statements that could have influenced B. This is most useful in
determining where the program state at execution of B could have come from.
Formally, the backward slice SB(B) is computed as

SB(B)�{A|A→∗ B}
Again, B is called the slicing criterion of SB(B).

As an example for a backward slice, again consider Figure 7.3. The backward
slice of statement 9, return f, first includes statement 1, int f, and statement 6,
f = f0 + f1. Because statement 6 is control dependent on the while loop, the
slice also includes statement 4, while (n > 1), and statement 5, n = n + 1, on
which statement 4 is data dependent. Because f0 and f1 are computed in statements
7 and 8 and are initialized in statements 2 and 3,all of these statements also become
part of the backward slice—which means that the slice includes all statements of
fib(), or SB(9)�{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Having all statements being included in the backward slice of a returned value is
quite typical. After all, if some statement would not contribute to the computation
this would be a code smell, as discussed in Section 7.5. However, if a function
computes multiple values, a backward slice for one of these values may well result
in a true subset. As an example, consider the program in Example 7.2(a), which
computes the sum and the product of the range of integers [a, b].The backward slice
of write(mul), shown in Example 7.2(b) slices away all those parts that compute
sum and cannot influence the computation or output of mul in any way.

7.4.3 Slice Operations
To further focus on specific behavior, one can combine several slices. Typical
operations on slices include the following:

Chops. The intersection between a forward and a backward slice is called a chop.
Chops are useful for finding out how some statement A (originating the forward
slice) influences another statement B (originating the backward slice).

7.4 Slicing Programs 159

EXAMPLE 7.2: Slicing away irrelevant program parts: (a) entire program,
(b)backward slice SB(13), (c) backbone SB(12)∩SB(13), and (d) dice SB �SB(12)

1 int main() {
2 int a, b, sum, mul;
3 sum = 0;
4 mul = 1;
5 a = read();
6 b = read();
7 while (a <= b) {
8 sum = sum + a;
9 mul = mul * a;
10 a = a + 1;
11 }
12 write(sum);
13 write(mul);
14 }

1 int main() {
2
3
4 mul = 1;
5 a = read();
6 b = read();
7 while (a <= b) {
8
9 mul = mul * a;
10 a = a + 1;
11 }
12
13 write(mul);
14 }

(a) (b)

1 int main() {
2
3
4
5 a = read();
6 b = read();
7 while (a <= b) {
8
9
10 a = a + 1;
11 }
12
13
14 }

1 int main() {
2
3
4 mul = 1;
5
6
7
8
9 mul = mul * a;
10
11
12
13 write(mul);
14 }

(c) (d)

In the fib() program from Figure 7.3, for instance, a chop from statements
3–7 also includes statements 6 and 8, thus denoting all possible paths by which
the initial value of f1 could have influenced f0.

Backbones. The intersection between two slices is called a backbone slice, or
backbone for short. A backbone is useful for finding out those parts of an
application that contribute to the computation of several values.

As an example, consider the program shown in Example 7.2. The back-
bone of the two backward slices of write(sum) and write(mul) consists of
those statements included in both slices—namely, a = read(), b = read(),
while (a <= b), and a = a + 1.

160 CHAPTER 7 Deducing Errors

As the name suggests, backbones are central parts of the computation. In
debugging,finding a backbone is most useful if one has multiple infected values
at different places and wants to determine a possible common origin.

Dices. The difference between two slices is called a dice. A dice is useful for finding
out how the backward slice of some variable differs from the backward slice of
some other variable.

Again, consider the program shown in Example 7.2. If we subtract the back-
ward slice of write(sum) from the backward slice of write(mul) (shown in
the figure), all that remains is the initialization mul = 1 and the assignment
mul = mul * a.

Dices are most useful if one knows that a program is“largely correct”—that is,
most of the values it computes are correct but some are not. By subtracting the
backward slices of the correct variables from the backward slices of the infected
variables one can focus on those statements that only contribute to the infected
values—that is, those statements likely to cause the failure.

7.4.4 Leveraging Slices
Just like dependences,slices can be leveraged in programming environments,allow-
ing programmers to explore slices and to explicitly ignore those parts of a program
that are irrelevant for a specific behavior.As an example,consider the CODESURFER
screenshot shown in Figure 7.5, showing the program from Example 7.2(a). The
programmer has selected statement 13, write(mul), as the slicing criterion and
has chosen to view its backward slice. CODESURFER highlights all statements that
are part of the backward slice.As in Example 7.2(b),it turns out that the computation
of sum has no influence whatsoever on the computation of mul.

In addition to displaying slices, CODESURFER can perform slice operations (as
discussed in Section 7.4.3).This allows the programmer to further focus on possible
failure origins.

7.4.5 Executable Slices
Comparing the backward slice as determined by CODESURFER with the slice as
shown in Example 7.2(b), you may notice a small difference: the CODESURFER
slice also includes the declarations of a, b, and mul, whereas Example 7.2(b) does
not. Could it be that CODESURFER determines dependences we do not know
about?

The reason CODESURFER (Figure 7.5) includes the declarations in the slice is
not that anything would depend on these declarations. (If something would, this
would be an error, as discussed in Section 7.5.) CODESURFER includes these decla-
rations because it attempts to make the slice executable. That is, the slice should be
an “independent program guaranteed to represent faithfully the original program
within the domain of the specified subset of behavior”(i.e., the state of the program
as read by the slicing criterion). Because the program needs to be executable, all

7.5 Deducing Code Smells 161

FIGURE 7.5

A program slice in CODESURFER. All statements that are part of the slice are highlighted.

variables have to be declared, regardless of whether the declarations are actually
part of some dependence or not. In our examples, though, we do not require the
slice to be executable. Thus, we omit declarations if they are not involved in any
dependence.

7.5 DEDUCING CODE SMELLS
In Section 7.3.4 we saw how a data dependence from the uninitialized variable f
caused the fib() program to fail. In general,we can assume that any read from an
uninitialized variable is a bad idea, and we may thus easily qualify any such attempt
as an error. In fact, a number of common errors can be directly detected from
the dependence graph—that is, deduced from the program code alone. Examples
include the following.

7.5.1 Reading Uninitialized Variables
Uninitialized variables, such as f in fib(), are a common source of errors. In terms
of dependences,declarations such as int f should have no influence on any other
statement. If they do, this should be considered an error.

162 CHAPTER 7 Deducing Errors

Compilers routinely determine variable usage and dependences when they
optimize the generated code. Thus, they can easily report if some variable appears
to be used although not initialized:

$ gcc -Wall -O fibo.c
fibo.c: In function ‘fib’:
fibo.c:7: warning: ‘f’ might be used uninitialized

in this function
$ _

(The -O option turns on optimization, and the -Wall option turns on almost all
warnings.) As the wording suggests, the compiler may err in reporting a variable as
being used. This is illustrated by the following example.

int go;
switch (color) {

case RED:
case AMBER:

go = 0;
break;

case GREEN:
go = 1;
break;

}
if (go) { ... }

Here,go is initialized if color is one of RED,AMBER, or GREEN. If color has another
value, though, go will remain uninitialized. The compiler is unable to determine
automatically whether color may take another value. Nonetheless, the compiler
emits a warning such that the programmer can take a look at the code.

7.5.2 Unused Values
If some variable is written,but never read, this is likely to be an error. In the depen-
dence graph, a write into such a variable translates into a statement on which
no other statement is data dependent—in other words, a statement without any
effect.

Compilers (and derived program-analysis tools) can also warn against unused
values. However,as there are many ways to access a variable that may go unnoticed
by the compiler (including access of other modules to global variables, access via
pointers, and so on) the feature is typically limited to local variables.

7.5.3 Unreachable Code
If some code is never executed, this is likely to be an error. In the dependence
graph, this translates into a statement that is not control dependent on any other
statement.

In many simple cases, compilers can warn against unreachable code. Consider
the following example.

7.5 Deducing Code Smells 163

if (w >= 0)
printf("w is non-negative\n");

else if (w > 0)
printf("w is positive\n");

The second printf() will never be executed because its condition is sub-
sumed by the first condition. Its execution is dependent on no other statement.
The compiler, being smart enough to notice the subsumption, issues a warning
such as:

$ gcc -Wunreachable-code -O noop.c
noop.c:4: warning: will never be executed
$ _

Why do we have to enable warnings about unreachable code explicitly?The rea-
son is that during debugging programmers frequently insert statements to observe
the behavior (see Chapter 8) or to check their expectations (see Chapter 10). Such
statements may be written in such a way that executing them would show the
presence of a failure. The following is an example.

switch (color) {
case RED:
case AMBER:

go = 0;
break;

case GREEN:
go = 1;
break;

default:
printf("This can’t happen\n");
exit(1);

}

If the compiler reports that the printf() statement is unreachable,this is actually a
good sign. (At the same time,the warning about go used before initialization should
also go away.)

If one of the preceding conditions occurs,this typically is an error in the program
in question. At the least it is a code smell that should be verified before the code
goes into production.

So far, the code smells we have seen are all related to dependences concerning
the usage of variables. In addition to these general dependences there are depen-
dences that are specific to some language feature or runtime library—and again,
such dependences can be leveraged to detect errors.

Memory leaks. In languages without garbage collection, such as C or C++, the pro-
grammer is responsible for deallocating dynamic memory. If the last reference
to a chunk of dynamic memory is lost, the chunk can no longer be deallo-
cated (a memory leak occurs). Example 7.3 shows a C function that has a
memory leak at return 0. The reference p to the memory allocated in line 4
is lost.

164 CHAPTER 7 Deducing Errors

EXAMPLE 7.3: A potential memory leak. On premature return, memory pointed
to by p is not deallocated

1 /* Allocate and read in SIZE integers */
2 int *readbuf(int size)
3 {
4 int *p = malloc(size * sizeof(int));
5 for (int i = 0; i < size; i++)
6 {
7 p[i] = readint();
8 if (p[i] == 0)
9 return 0; // end-of-file
10 }
11
12 return p;
13 }

Just as we tracked the effects of statements on variables in Table 7.1, we can
track the effects of statements on dynamic memory. For each statement,we check
whether it allocates, uses, or deallocates a chunk. We also check whether the
reference to the chunk is still live—that is, accessible by other statements—and
we can identify statements where a reference becomes lost, such as overwriting
an existing reference or returning from a function in which the reference was
declared a local variable. If there is a path in the control flow graph from an
allocation to a statement where a chunk becomes dead without going through
a deallocation first, this is a memory leak. In Example 7.3, such a path goes from
line 4 to line 9.

Interface misuse. In addition to memory,one can think of other resources that must
be explicitly deallocated when they are no longer in use.As an example,consider
streams. An input/output stream is first opened, but must be closed when it is
no longer used. Checking for such conditions uses the same mechanisms as
memory leaks. If there is a path in the control flow graph from a stream opening
to a statement where the stream reference becomes dead without going through
a closing first,this is an error. Similar techniques apply to resources such as locks,
sockets, devices, and so on.

Null pointers. In the same style as memory leaks, we can check whether a pointer
being null may be accidentally referenced.This happens if there is a path from a
statement in which a null pointer p is being initialized to a statement in which
p is dereferenced without going through some assignment to p.

In Example 7.3,for instance,the malloc() function may return a null pointer
if no more memory is available. Consequently,in the expression p[i] the pointer
p may be null, resulting in a potential runtime failure. Therefore, this error can
be detected automatically. The code should be changed such that malloc()
returning a null pointer ends in a user-friendly diagnosis.

7.5 Deducing Code Smells 165

Given a control flow graph, and basic data and control dependences, a tool
that checks for such common errors is not too difficult to build. Some advanced
compilers even have such built-in functionality. However, there are also external
tools that are especially built for detecting code smells. As an example, consider
the FINDBUGS tool for JAVA programs. FINDBUGS scans JAVA bytecode for defect
patterns—that is, common programming errors (as those listed previously)—and
highlights potential problems, as shown in Figure 7.6. Table 7.2 lists some of the
most common defect patterns detected by FINDBUGS.

Tools such as FINDBUGS are highly useful in detecting code smells before
they end up in production code. One should keep in mind, though, that these
tools can report false positives—that is, they can report possible influences where
indeed there are not. The FINDBUGS authors, for instance, list a false positive rate
of 50 percent, meaning that only every second smell reported by FINDBUGS is
indeed an error. Programmers are well advised,though,to rewrite even those smells
that are not errors—simply because this way they will not shown up in the next
diagnostic.

In general, whenever a failure occurs it is good practice to use a static checker
such as FINDBUGS (or the compiler with all warnings enabled) to rule out common

FIGURE 7.6

Detecting defect patterns with FINDBUGS.

166 CHAPTER 7 Deducing Errors

Table 7.2 Some Defect Patterns Detected by FINDBUGS

Class implements Cloneable but does not define or use clone method

Method might ignore exception

Null pointer dereference in method

Class defines equal(); should it be equals()?

Method may fail to close database resource

Method may fail to close stream

Method ignores return value

Unread field

Unused field

Unwritten field

Private method is never called

defect patterns as a failure cause. In addition,if one has a concrete failure to deal with
one can also apply checking tools that search for common issues in this particular
run—such as memory issues or violation of invariants. These dynamic tools are
discussed in Chapter 10.

7.6 LIMITS OF STATIC ANALYSIS
As discussed in Section 7.5, a tool such as FINDBUGS has a false positive rate of
50 percent.Why can’t we rewrite tools such as FINDBUGS to have no false positives
at all?

The reason for the imprecision of FINDBUGS (or CODESURFER, or any tool
using static analysis) is that there are a number of language constructs that make
computing precise data dependences difficult, if not impossible. For instance,given
a statement A that writes a[i], and a following statement B that reads a[j], how
can one know whether A may influence B?To answer this question requires finding
out whether i = j can ever hold. Although it may be possible to answer a specific
question such as this, in general such questions are instances of Turing’s halting
problem and thus undecidable.

Note that this limitation is not necessarily prone to machines. Humans suffer
the very same problem. The following is an example showing the limits of static
analysis. In the following piece of code, is x being used uninitialized or not?

int x;
for(i=j=k=1;--j||k;k=j?i%j?k:k---j:(j=i+=2));
write(x);

7.6 Limits of Static Analysis 167

The answer is: nobody knows. The for loop terminates if and only if i holds an
odd perfect number, an integer that is the sum of its proper positive divisors (28 is
a perfect number because 28�1�2�4�7�14). In that nobody knows today
whether odd perfect numbers exist,it is unknown whether the write(x) statement
will ever be executed—and neither humans nor machines have a straightforward
way of deciding this.

In practice,though,we may well treat write(x) as unreachable. It is known that
an odd perfect number must be greater than 10300, and thus (assuming sufficiently
long integers i, j, and k), we must prepare for at least 10600 loop iterations. In
addition,write(x) is either unreachable or uses an uninitialized variable, and thus
an error anyway—and this ambiguity is something a tool could determine.

As a consequence, static analysis tools must resort to conservative approxi-
mations—for instance, an approximation saying that any write to the array a[]
may influence any read from the array a[]. Although this approximation may
result in more data dependences than strictly necessary, it at least ensures that no
data dependence is falsely omitted. List 7.2 outlines the most important language
constructs that require approximations.

LIST 7.2: Data Flow Caveats

Indirect access. To determine that a write to a variable V influences a later read of this variable
requires that V be precisely determined. If V is a location that is determined at runtime,
however, one has to resort to approximations.

As a typical example, consider array accesses. If some statement writes into a[i], one
has to determine the possible values of i in order to track precise dependences. These
possible values can be approximated by following back the dependences of i (assuming
they all lead to constants) or by symbolic evaluation of i. (Humans, of course, may have
better means of abstracting possible values of i.)

Pointers. Writing to a location referenced by a pointer or reference P requires that one know the
locations P may point to or reference. This type of analysis is known as points-to analysis,
which is a common part of optimizing compilers. A simple and common automated strategy
is to assume that a pointer P may point to all objects the addresses of which have been
taken in the program code (again, human reasoning is usually more precise).

Functions. Including function calls in the analysis results in dependences between the argu-
ments at the call sites (the context) and the formal parameters at the function entries. If a
function is called from multiple sites in a program, one can choose to inline the function
body at each call site, resulting in precise dependences. This approach fails, though, for
large numbers of functions. It is also infeasible for recursive functions.

A viable alternative is to introduce summary edges at call sites that represent the
transitive dependences of the function in question. Such summaries also introduce
imprecision.

More features. Other features that make computing dependences difficult include object
orientation and concurrency.

168 CHAPTER 7 Deducing Errors

The drawback of such approximations is that dependences are difficult to track.
In the sample program discussed in Chapters 1 and 6, tracking the origins of a[0]
stops short at the shell_sort() function,which writes into every element of a[].
Therefore,all one can deduce at this point is that the content of a[] was responsible
for the value of a[0]. Consequently, any member of a[] may influence a[0].

If one is really paranoid about conservative approximation,static analysis results
in virtually no results for many real-life programs. If a stray pointer may access
noninitialized memory, and if an array index may go out of bounds, anything can
happen—meaning that conservative approximation returns “I don’t know” for any
program property. Likewise, if a function is unavailable to analysis (due to lack of
source code, for instance), calling such a function also stops static analysis on the
spot. Anything can happen after the function is done. However, even if there were

LIST 7.3: Source Code Caveats

Source mismatch. Whenever processing source code, one must make sure that the source
code being read actually corresponds to the program being executed. For released pro-
grams, this means to use version control, as discussed in Section 2.9 in Chapter 2.
For a local program, be sure not to confound the locations (Bug Story 8). Using incre-
mental construction (using tools such as make), be sure that all compilations are up
to date.

Macros and preprocessors. A preprocessor is a program that manipulates program text before
it is being fed to the compiler. In Example 7.1, for instance, the #include statement in
line 3 makes the C preprocessor insert the contents of the stdio.h header.

Preprocessors can be tricky because they may introduce uncommon behavior. For
instance, a macro definition such as #define int long causes all subsequent
int types to be read in as long types. Programmers typically make macros explicit
to ease understanding. Modern programming languages avoid the usage of prepro-
cessors.

Undefined behavior. Some programming languages deliberately do not specify the semantics
of some constructs. Instead, each compiler can choose its own implementation. In C, for
instance, the value range of a char is not defined. It may be anything from an 8-bit to a
128-bit value or even larger.

Issues with undefined behavior typically arise when a program is ported to a new envi-
ronment or a new compiler. Being aware of undefined behavior helps to identify errors
quickly.

Aspects. An aspect is a piece of code that is added (or woven) to specific parts of a program—
for instance, an aspect that prints out “set() has been called” at the beginning of every
set() method.

Aspects are great tools for logging and debugging. We will cover these uses in
Section 8.2.3 in Chapter 8. However, as adding an aspect to a program can cause arbitrary
changes in behavior, aspects can also seriously hamper our ability to understand the code.

7.6 Limits of Static Analysis 169

BUG STORY 8

Stubborn Hello
In the beginning of my programming career, I was writing a simple program called
hello that would output Hello, world! to the UNIX console. My program worked
fine, but as I changed the text to Bonjour, monde! and compiled it,hello would
still output Hello, world! Regardless of what I did, the text would remain fixed.

A friend then explained to me that by typing hello at the prompt, I was invoking
the preinstalled GNU hello program instead of my own. He reported similar problems
with a program of his own called test—conflicting with the built-in test command.
I quickly learned to type ./test, ./sort, ./hello, and so on to start my own
programs from my directory.

no conservative approximation deduction brings a number of risks simply by being
based on abstraction, including the following.

■ Risk of code mismatch. Using source code to deduce facts in a concrete pro-
gram run requires that the run actually be created from this very source code.
Otherwise, bad mismatches can happen (see List 7.3).

■ Risk of abstracting away. To actually execute the source code, one requires a
compiler, an operating system, a runtime library, or other tools. When deducing
fromsourcecode,onecannottakeallof this“realworld”intoaccount.Oneassumes
that the environment of the source code operates properly. More precisely, one
assumessemanticsof theprogramcodethatholdregardlessof theenvironment. In
rare instances,though,failures can be caused by a defect in the environment—and
therefore,deducing an error from source code will be impossible.

■ Risk of imprecision. In Figure 7.3 we saw that an ordinary program already
has much data and many control dependences, such that any slice quickly
encompasses large parts of the program. In the presence of data flow caveats (see
List 7.2), slices become even larger, as conservative approximation is required
to make sure no dependence is lost. On average, a static slice encompasses
about 30 percent of the program code, which is a significant reduction but still
a huge amount of code.

The risk of code mismatch can be easily taken care of by establishing precise
configuration management. Abstracting away is a risk inherent to any type of pure
deduction. The risk of imprecision, though, can be addressed by two mechanisms:

1. Verification. If one can constrain the possible program states, it is possible to
increase the precision of deduction.As an example,consider the following code.

p = &y;
if (x > 0)

y = x;
if (y > 0)

p = &x;

170 CHAPTER 7 Deducing Errors

Where can the pointer p point to after this code? It is trivial to prove that the
condition x > 0 and the assignment y = x imply y > 0. Thus, if we know that
x > 0 holds we can ensure that p points to x. Such constraints can be com-
puted, accumulated, and resolved across the code, thereby increasing precision.
In Chapter 10, we see how such conditions can be expressed as assertions and
verified at runtime as well as deduced at compile time.

2. Observation.Rather than deducing facts from source code that hold for all runs,
one can combine deduction with facts observed from concrete program runs—
notably from the one run that fails. Not only does this give concrete findings
about the failure in question, as a side effect observation also removes the risk
of abstracting away.

7.7 CONCEPTS
To isolate value origins, follow back the dependences from the statement inHow To

question (Section 7.3).

Dependences can uncover code smells—in particular common errors such as use
of uninitialized variables, unused values, or unreachable code.

Before debugging, get rid of code smells reported by automated detection tools
(such as the compiler).

To slice a program, follow dependences from a statement S to determine all
statements that:
■ Could be influenced by S (forward slice)
■ Could influence S (backward slice)

Using deduction alone includes a number of risks, including the risk of code
mismatch, the risk of abstracting away relevant details, and the risk of imprecision.

Any type of deduction is limited by the halting problem and must thus resort to
conservative approximation.

7.8 TOOLS
CODESURFER. CODESURFER is considered among the most advanced static-

analysis tools available. It is available free of charge to faculty members (if you are
a student, ask your advisor). All others must purchase a license. CODESURFER is
available at http://www.codesurfer.com/ .

FINDBUGS. The FINDBUGS tool was developed by Hovemeyer and Pugh (2004).
It is open source. Its project page is found at http://findbugs.sourceforge.net/ .

7.9 Further Reading 171

7.9 FURTHER READING
Weiser (1982) was the first to discover that programmers mentally ignore state-
ments that cannot have an influence on a statement in which an erroneous state is
discovered. In this paper,Weiser also coined the term program slicing.

The original approach by Weiser (1984) was based on data flow equations.
The same year, Ottenstein and Ottenstein (1984) introduced the notion of the
program-dependence graph. Indeed,all later slicing approaches used a graph-based
representation of program dependences.

Since these pioneer works, several researchers have extended the concept.
Tip (1995) still summarizes today’s state of the art in slicing. Regarding the
usefulness of slices, Binkley and Harman (2003) examined slice sizes in 43 C pro-
grams and found that the average slice size was under 30 percent of the original
program.

Besides Hovemeyer and Pugh, several researchers have worked on using
static analysis to detect defect patterns. I specifically recommend the work of
Dawson Engler’s group on analyzing the Linux kernel. Chelf (2004) gives a
survey.

The basic techniques for analyzing source code—especially scanning, parsing,
and detecting the effects of statements—are all part of compiler construction. As
an introduction, I recommend Aho et al. (1986) as well as the series of Modern
Compiler Implementation by Andrew Appel. Advanced readers may like to look
at Muchnik (1997).

Christian Morgenstern’s poem“The Impossible Fact” is taken from Morgenstern
(1964).

EXERCISES
7.1 For the program shown in Example 7.2(a), write down:

(a) The control flow graph, as in Figure 7.1.
(b) The effects of the statements, as in Table 7.1.
(c) The control dependences, as in Figure 7.3.
(d) The data dependences, as in Figure 7.3.

7.2 Sketch a mechanism based on the control flow graph and dependences that
ensures that after a call to free(x) the value x is no longer used.

7.3 For the defect patterns in Table 7.2, explain what type of program represen-
tation (call flow graph, data-dependence graph, source code) is needed to
compute these smells.

172 CHAPTER 7 Deducing Errors

7.4 Xie and Engler (2002) describe an analysis technique for catching defects
in code. The idea is that redundant operations commonly flag correctness
errors. Xie and Engler applied their technique on the source code of the Linux
kernel and found errors such as the following:
■ Idempotent operations: Such as when a variable is assigned to itself—for

instance, in the following code, where the programmer makes a mistake
while copying the structure sa to the structure da.

/* 2.4.1/net/appletalk/aarp.c:aarp_rcv() */
/* We need to make a copy of the entry. */
da.s_node = sa.s_node;
da.s_net = da.s_net;

■ Redundant assignments: Where a value assigned to a variable is not
subsequently used—such as the value assigned to err in the following
code.

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run() */
do {

...
if (signal_pending(current)) {

err = -ERESTARTSYS;
break;

}
SOCK_SLEEP_PRE(sk);
if (scp->state != DN_RUN)

schedule();
SOCK_SLEEP_POST(sk);

} while (scp->state != DN_RUN);
return 0;

■ Dead code: Which is never executed—such as the following code, where
the insertion of a logging statement causes the function to always return
(note the misleading indentation).

/* 2.4.1/drivers/net/arcnet/arc-rimi.c:arcrimi_found() */
/* reserve the irq */
if (request_irq(dev->irq, &arcnet_interrupt ...))

BUGMSG(D_NORMAL,
"Can’t get IRQ %d!\n", dev->irq);

return -ENODEV;

〈Following code is never executed〉
(a) For each of the previous categories, sketch how dependences can be

used to detect them.
(b) Are these defects still present in the current Linux kernel? When were

they fixed?

7.5 What problems can you imagine that arise for users of deduction from code
mismatch?

7.9 Further Reading 173

7.6 A dice can highlight those program statements computing an infected variable
that cannot have an influence on a correct variable. How should a conservative
approximation of indirect access look for a slice of a correct and a slice of an
infected variable?

Palmström, old, an aimless rover,
walking in the wrong direction
at a busy intersection
is run over.

“How,” he says, his life restoring
and with pluck his death ignoring,
“can an accident like this
ever happen? What’s amiss?”

“Did the state administration
fail in motor transportation?
Did police ignore the need
for reducing driving speed?”

“Isn’t there a prohibition,
barring motorized transmission
of the living to the dead?
Was the driver right who sped …?”

Tightly swathed in dampened tissues
he explores the legal issues,
and it soon is clear as air:
Cars were not permitted there!

And he comes to the conclusion:
His mishap was an illusion,
for, he reasons pointedly,
that which must not, can not be.

– CHRISTIAN MORGENSTERN

The Impossible Fact (1905)

CHAPTER

8Observing Facts

Although deduction techniques do not take concrete runs into account,observation
determines facts about what has happened in a concrete run. In this chapter, we
look under the hood of the actual program execution and introduce widespread
techniques for examining program executions and program states.These techniques
include classical logging, interactive debuggers,and postmortem debugging,as well
as eye-opening visualization and summarization techniques.

8.1 OBSERVING STATE
Deduction alone, as discussed in Chapter 7 is good for telling what might happen.
To find out what is actually happening in a concrete failing run, though,we cannot
rely on deduction alone. We must take a look at the actual facts—that is, observe
what is going on—and judge whether the values are infected or not. The following
are some general principles of observation.

■ Do not interfere.Whatever you observe should be an effect of the original run—
rather than an effect of your observation. Otherwise,you will have a difficult time
reasoning about the original run.That is,you have a Heisenbug (see Section 4.3.9
in Chapter 4). Any observation technique should take care to alter the original
run as little as possible.

■ Know what and when to observe. As discussed in Section 1.3 in Chapter 1, a
program run is a long succession of huge program states, which is impossible
to observe and comprehend as a whole. Observation is effective only if you
know:
– Which part of the state to observe (what)
– At which moments during execution to observe (when)

■ Proceed systematically. Rather than observing values at random,let your search
be guided by scientific method (Chapter 6). Always be aware of the current
hypothesis, the observations predicted by the hypothesis, and how the actual
observations contribute to the hypothesis.

In the remainder of this chapter,we shall take a look at some common techniques
for observing what is going on in a run. These techniques can be used “as is” by 175

176 CHAPTER 8 Observing Facts

humans, but they can also be leveraged by automated debugging techniques. Here,
we ask:

HOW CAN WE OBSERVE A PROGRAM RUN?

8.2 LOGGING EXECUTION
To observe facts about a run,we must make the facts accessible to the programmer.
The simplest way of doing so is to have the program output the facts as desired—for
instance, by inserting appropriate logging statements in the code. For instance, if
a programmer wants to know the value of size in the function shell_sort(),
he or she simply inserts a logging statement at the beginning of shell_sort(), as
follows.

printf("size = %d\n", size);

Whenever this statement executes, a line such as

size = 3

will appear on the output device. Several outputs like this constitute a debugging
log—a list of events that took place during the execution.

This technique of observation is perhaps best known as printf debugging—
from printf(), the function that in C outputs strings and values. (Although C
and printf() slowly become obsolete, the term printf debugging lives on—and
JAVA-inspired alternatives such as system-err-println debugging are just not catchy
enough. Feel free to replace printf by the name of your favorite output function.)
It is always available in some form. Even if a program might not log on a consolelike
device,there always must be some effect that can be observed by the programmer—
even if it is just a blinking LED. Being always available (and extremely easy to teach),
it is also the most widespread debugging technique. In addition,requiring no infras-
tructure other than a means of making the log available to the programmer, it is also
the most basic technique. Although printf debugging is easy to use, it has several
drawbacks as an observation technique.

■ Cluttered code.Because logging statements serve no other purpose than debug-
ging,they do not help us in understanding the code.The main message a logging
statement conveys is that the procedure in question was in need of debug-
ging. Therefore, programmers frequently remove logging statements once the
observation is done.

■ Cluttered output.Logging statements can produce a great deal of output,depend-
ing on the number of events and variables traced. If the debugging log is
interleaved with the ordinary output, both can be difficult to separate properly.
(This problem is best solved by using a designated output channel for debugging
logs.)

8.2 Logging Execution 177

■ Slowdown.A huge amount of logging—in particular, to some slow device—can
slow down the program. In addition to the obvious performance problem, this
changes the program under test and introduces the risk of Heisenbugs (see
Section 4.3.9 in Chapter 4).

■ Loss of data.For performance reasons,output is typically buffered before actually
being written to the output device. In the event of a program crash,this buffered
output is lost. Using ordinary (buffered) output for logging thus hides what hap-
pened in the last few events before the crash. One can either use an unbuffered
channel for logging (introducing a slowdown, as described previously) or make
sure that the program flushes its buffered logs in case of a crash.

Taking care of all of these issues in a single output statement is quite a hassle.
Therefore, it is better to use dedicated logging techniques that allow far better
customization. In particular, we would like to do the following:

■ Use standard formats. Standard formats make it easy to search and filter logs
for:
– Specific code locations (“prefix each line with the current file or function”)
– Specific events (“prefix each line with time”)
– Specific data (“output all dates in Y-M-D format”)

■ Make logging optional.For performance reasons, logging is typically turned off
in production code as well as in code not under consideration for debugging.

■ Allow for variable granularity.Depending on the problem you are working on,
it may be helpful to focus on specific levels of detail. Focusing only on specific
events also improves performance.

■ Be persistent. One should be enabled to reuse or reenable logging even when
the debugging session is completed—just in case a similar problem resurfaces.

8.2.1 Logging Functions
The easiest way of customizing logging is to use or design a function that is built
for logging purposes only—a logging function. For instance,one could introduce a
function named dprintf() that would behave as printf(),but forward its output
to a debugging channel (rather than standard output) and allow the output to be
turned off. For instance, one could use

dprintf("size = %d", size);

to output the variable size to the debugging log, possibly prefixed with com-
mon information such as date or time, or a simple marker indicating the type of
output:

DEBUG: size = 3

In addition,a function such as dprintf() can be easily set up not to generate any
output at all,which is useful for production code. In practice,though,a programmer
would not want to rely exclusively on such a debugging function—particularly if the

178 CHAPTER 8 Observing Facts

logging code is to survive the current debugging session.The reason is performance.
Even if dprintf() does nothing at all, the mere cost of computing the arguments
and calling the function may be a penalty if it occurs often.

Languages with a preprocessor (such as C and C++) offer a more cost-effective
way of realizing logging. The idea is to use a logging macro—a piece of code that
expands to a logging statement or a no-op (a statement without any effect),depend-
ing on settings made at compilation. The following is a simple example of a LOG()
macro that takes printf() arguments in parentheses.

LOG(("size = %d", size));

The macro LOG() is easily defined as being based on dprintf() (or printf(), or
any other suitable logging function).

#define LOG(args) dprintf args

The effect of this macro definition is that LOG(args) is being replaced by
dprintf args in the subsequent code. Thus, the statement

LOG(("size = %d", size));

expands into

dprintf("size = %d", size);

The main benefit of writing LOG() rather than dprintf() is that a macro can be
set up to expand into nothing.

#define LOG(args) ((void) 0)

Thus,all LOG() statements get expanded to a no-op. Not even the arguments will be
evaluated. Therefore, LOG() statements may even contain calls to some expensive
function, as in

LOG(("number_of_files = %d", count_files(directory)));

If LOG() is defined to be a no-op, count_files() will not be called—in contrast
to the argument to a no-op function.

The choice between turning logging on or off is typically made at compile time.
For instance, defining a preprocessor variable (say, NDEBUG for “no debugging”)
during compilation may turn logging off.

#if !defined(NDEBUG)
#define LOG(args) dprintf args
#else
#define LOG(args) ((void) 0)
#endif

In addition to performance benefits,macros bring a second advantage over func-
tions: They can convey information about their own location. In C and C++, the
macros _ _FILE_ _ and _ _LINE_ _ expand to the name of the current source file
and the current source line,respectively.This can be used in a macro definition such
as the following.

8.2 Logging Execution 179

#define LOG(args) do { \
dprintf("%s:%d: ", _ _FILE_ _, _ _LINE_ _); \
dprintf args; \
dprintf("\n"); } while (0)

(The do … while loop makes the macro body a single statement, for having code
such as if (debug) LOG(var); work the intended way.) If we insert a LOG()
macro in line 8 of sample.c, its logging output will automatically be prefixed with
the location information, as in

sample.c:8: size = 3

This feature of reporting the location in a macro makes it easy to trace back
the log line to its origin (such as sample.c:8 in the previous example). It can
also be leveraged to filter logs at runtime. For instance,one could set up a function
named do_we_log_this(file) that returns true if file is to be logged (by looking
up some configuration resource such as an environment variable). Then, we could
introduce a conditional LOG() using:

#define LOG(args) do { \
if (do_we_log_this(__FILE__)) { \

dprintf("%s:%d: ", __FILE__, __LINE__); \
dprintf args; \
dprintf("\n"); \

} } while (0)

It is easy to see how these pieces fall into place to produce a set of macros and
functions that allow for easy logging of an arbitrary state—using standard formats,
with optional logging,and variable granularity. With a bit of discipline, such logging
code can even become persistent and remain in the source code. Thus, later pro-
grammers can observe the specified events just by turning on some configuration
option.

Logging functions are not just useful for making logging optional; they can also
help standardize the output of large data structures. Assume we have a very basic
linked list, defined as:

struct list {
int elem; // List element
struct list *next; // Next node, or NULL

};

We can create a variant of the LOG() macro to log the content of a linked list:

#define LOG_LIST(list) do { \
if (do_we_log_this(__FILE__)) { \

dprintf("%s:%d: ", __FILE__, __LINE__); \
dprintf("%s = ", #list); \
print_list(list); \
dprintf("\n"); \

} } while (0)

180 CHAPTER 8 Observing Facts

In a C macro, the expression #VAR expands to a string containing the macro
argument VAR. We use this to log the variable name. If we invoke the macro as
LOG_LIST(my_list), then #list becomes "my_list" and the log starts with
"my_list = ." The print_list function invoked does a simple traversal of the
list, printing its elements:

void print_list(struct list *l)
{

int number_of_elems = 0;
printf("[");

while (l != NULL)
{

if (++number_of_elems > 1)
printf(", ");

printf("%d", l->elem);
l = l->next;

}
printf("]");

}

Overall,LOG_LIST(my_list) thus logs something such as:

list.c:47: my_list = [1, 10, 100, 1000, 10000]

Any large program contains functions to output central data structures in a
human-readable form. In C++, such functions typically overload the << operator
such that they can write to arbitrary output streams. In JAVA, the standard is to pro-
vide a toString() method, which returns a human-readable string for the object.

8.2.2 Logging Frameworks
Although many projects include their own home-grown logging facilities, there are
also standard libraries for logging, providing a wealth of functionality seldom
present in individual projects. As an example, consider the LOG4J framework, a
popular logging framework for JAVA programs (also available for C, C++, C#, PERL,
PYTHON, RUBY, and EIFFEL).

The core idea of LOG4J is to assign each class in an application an individual or
common logger. A logger is a component that takes a request for logging and logs it.
Each logger has a level, from DEBUG (messages of low importance) over INFO,WARN,
and ERROR, to FATAL (very important messages). Messages for each of these levels
are logged by invoking the corresponding logger methods (debug(), info(), …,
fatal()).

Example 8.1 shows how to use a logger, using the universal UGLI interface. The
TestLogging class initializes a logging category,named after the class in which it is
instantiated. Then, we can use the logger methods to log individual messages. The
TestLogging class, when executed, creates a log starting with:

Start of main()
A log message with level set to INFO
A log message with level set to WARN

8.2 Logging Execution 181

EXAMPLE 8.1: A sample test file using LOG4J

import org.apache.ugli.ULogger;
import org.apache.ugli.LoggerFactory;

// How to use log4j
public class TestLogging {

// Initialize a logger.
final ULogger logger = LoggerFactory.getLogger(TestLogging.class);

// Try a few logging methods
public static void main(String args[]) {

logger.debug("Start of main()");
logger.info ("A log message with level set to INFO");
logger.warn ("A log message with level set to WARN");
logger.error("A log message with level set to ERROR");
logger.fatal("A log message with level set to FATAL");

new TestLogging().init();
}

// Try some more logging methods
public void init() {

java.util.Properties prop = System.getProperties();
java.util.Enumeration enum = prop.propertyNames();

logger.info("*** System Environment As Seen By Java ***");
logger.debug("*** Format: PROPERTY = VALUE ***");

while (enum.hasMoreElements()) {
String key = (String) enum.nextElement();
logger.info(key + " = " + System.getProperty(key));

}
}

}

A log message with level set to ERROR
A log message with level set to FATAL
Calling init()
*** System Environment As Seen By Java ***
*** Format: PROPERTY = VALUE ***
java.runtime.name = Java(TM) 2 Runtime Environment, Standard
Edition
sun.boot.library.path = /System/Library/.../1.4.2/Libraries
java.vm.version = 1.4.2-38

.

.

.

The interesting thing about LOG4J is that one can customize every aspect of
the log. In particular, one can define specific logging levels for individual classes.

182 CHAPTER 8 Observing Facts

For instance, one can set up LOG4J such that for the application only messages of
level ERROR and higher are shown—except for a specific class, for which we want
all messages of DEBUG and higher. Furthermore, one can set up specific appenders,
which direct the log to a particular output (files, console, database, mail, servers).
This can be done in a particular layout.

All of this can be defined at runtime using configuration files. The following
configuration file defines a specific layout, where conversion patterns such as %d
or %t insert the current time of function before the actual message (%m).

Set root logger level to DEBUG and its only appender to A1.
log4j.rootLogger=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c %x - %m%n

This configuration pattern changes the format of the layout to:

2005-02-06 20:47:31,508 [main] DEBUG TestLogging - Start of main()
2005-02-06 20:47:31,529 [main] INFO TestLogging - A log message

with level set to INFO
.
.
.

Because such log files can become painfully long, LOG4J comes with an analysis
tool called CHAINSAW that helps to explore these logs. As seen in the screen-
shot in Figure 8.1, searching for specific events, levels, or messages is straight-
forward.

LOG4J is a very powerful logging package that includes everything but the
kitchen sink. Despite its functionality, it is easy to set up initially, and with a
little bit of planning, scales up to very large applications. There is every rea-
son to replace printf(), System.out.println(), and similar output methods
with the appropriate logger calls from LOG4J and like packages for other
languages.

8.2.3 Logging with Aspects
Despite their benefits, logging statements still clutter the source code. The con-
cern of logging is separate from the concern of computation—which is why most
programmers prefer to remove logging statements once the debugging session
is done. Some languages, though, offer an alternative: Rather than intertwining
actual computation and logging they treat these two concerns as separate enti-
ties called aspects. Each aspect holds only the code for its individual concern.
A logging aspect thus holds the logging code in one syntactical entity called an
advice.

8.2 Logging Execution 183

FIGURE 8.1

Exploring logs with CHAINSAW. Events can be sorted, filtered, and shown in detail.

The following is a small example. Suppose we have some Article class with a
buy() method.

class Article {
public void buy() {

// Code
}

}

We want to log the execution of buy(), but without actually changing the method.
We first write an advice—a simple piece of code logging that buy() was called.

{
System.out.println("Calling Article.buy()");

}

Alternatively, we do this as a LOG4J afficionado (Section 8.2.2).

{
logger.debug("Calling Article.buy()");

}

In the ASPECTJ language, we now have to specify the location at which this
advice is to be executed. This is done using a point cut—a set of locations (join

184 CHAPTER 8 Observing Facts

points) at which the previously cited advice is to be woven into the code.We name
this point cut buyMethod().

pointcut buyMethod():
call(public void Article.buy());

The advice and the point cut are combined in an aspect—for instance, an aspect
named LogBuy.

public aspect LogBuy {
pointcut buyMethod():

call(public void Article.buy());
before(): buyMethod() {

System.out.println ("Calling Article.buy()")
}

}

The word before() means that the advice is to be executed before the actual call.
We can also specify some advice to be executed after the call has completed.

public aspect LogBuy {
pointcut buyMethod():

call(public void Article.buy());
before(): buyMethod() {

System.out.println ("Entering Article.buy()")
}
after(): buyMethod() {

System.out.println ("Leaving Article.buy()")
}

}

Such an aspect can now be woven into the original code,resulting in an executable
that is roughly equivalent to:

class Article {
public void buy() {

System.out.println("Entering Article.buy()");
original_buy();
System.out.println("Leaving Article.buy()");

}
public void original_buy() {

// Original code of Article.buy()
}

}

Note, though, that this transformation takes place at the executable level (no
source code is ever produced or changed). This weaving is done by the ASPECTJ
compiler ajc, which substitutes the original JAVA compiler.

$ ajc LogBuy.aj Shop.java
$ java Shop
Entering Article.buy()
Leaving Article.buy()
Entering Article.buy()
Leaving Article.buy()
.
.
.

$ _

8.2 Logging Execution 185

Weaving in an aspect, though, is optional—that is, aspects such as LogBuy can also
be left away,effectively turning all logging off. Using theASPECTJ compiler without
any aspects is equivalent to using the JAVA compiler alone.

Nonetheless,you may wonder about whether specifying the aspect is worth the
hassle. After all, we need a lot of fixture just to insert small advices into the code.
The interesting thing about aspects,however, is that the same advice may be woven
in at multiple locations in the program. For instance, we can specify a point cut
that encompasses all methods of the Article class.

pointcut allMethods():
call(public * Article.*(..));

As usual, a star is a wildcard for arbitrary names and qualifiers. Such a point cut can
now be used to log multiple methods,all in one place.The variable thisJoinPoint
can be used to log the name of the current method:

public aspect LogArticle {
pointcut allMethods():

call(public * Article.*(..));
before(): allMethods() {

System.out.println ("Entering " + thisJoinPoint);
}
after(): allMethods() {

System.out.println ("Leaving " + thisJoinPoint);
}

}

Using wildcards and other pattern expressions for class and method names, such
aspects can be easily extended to log an even greater number of methods—or even
every single method of the entire program.

Just logging that some method was called is rarely enough. One also wants to
log the program state at the event. This is done by integrating the current object
and its parameters into the point cut such that they can be accessed in the advice.
As an example, imagine we want to log all moves of a Line object—that is, all
invocations of the Line.setPX() and Line.setPY() methods. We define a point
cut that encompasses these join points and assigns names to the object and the
argument. These names can then be used in the advice.

public aspect LogMoves {
pointcut setP(Line a_line, Point p):

call(void a_line.setP*(p));

after(Line a_line, Point p): setP(a_line, p) {
System.out.println(a_line +

" moved to " + p + ".");
}

}

These examples should suffice to demonstrate the power of aspects when it
comes to observing facts in the program run. Aspects do not clutter the code, and

186 CHAPTER 8 Observing Facts

they encourage standard formats,are optional,can be enabled at will, and can easily
be reused. The only concern is that logging aspects must not interfere with the
actual computation. (Note also that the general idea of having aspects not interfere
with each other may also be central for your future aspect-oriented designs.)

8.2.4 Logging at the Binary Level
Aspects, as discussed in Section 8.2.3, require the source code of the program to
be logged, and are not available for every language. An alternative is to add logging
code not at the source code level but at the binary level—that is, we instrument
binary code rather than source code.

The PIN framework provided by Intel is a tool for the instrumentation of Linux
binary executables for x86 and other Intel processors. PIN allows arbitrary C or
C++ code to be injected at arbitrary places in the executable. It provides a rich API
that allows us to access context information such as register content, symbol, and
debug information. Conceptionally, you can think of PIN as aspects at the binary
level.

In PIN, the actual analysis tools come as so-called PIN tools. They contain the
mechanism that decides where and what code to insert (in aspect terminology, a
join point), as well as the code to be executed at the insertion points (in aspect
terminology, the advice).

Example 8.2 shows the source code of a simple PIN tool. Running this tool on
a binary program creates a trace of all executed instructions—for instance, for the
directory listing program /bin/ls.

$ cd pin-2.0/ManualExamples
$ make itrace
$../Bin/pin -t itrace -- /bin/ls
atrace.C inscount0.C _insprofiler.C itrace.o staticcount.C...
$ _

The trace of all instructions is stored in the file itrace.out.

$ head itrace.out # output first 10 lines
0x40000c20
0x40000c22
0x40000c70
0x40000c71
0x40000c73
0x40000c74
0x40000c75
0x40000c76
0x40000c79
0x40011d9b
$ _

Overall, 501,585 instructions were executed:

$ wc -l itrace.out # count lines in itrace.out
501585
$ _

8.2 Logging Execution 187

EXAMPLE 8.2: Logging executed instructions

// itrace.C - generate an instruction trace

#include <stdio.h>
#include "pin.H"

FILE * trace;

// This function is called before every instruction
// is executed and prints the IP
VOID printip(VOID *ip) { fprintf(trace, "%p\n", ip); }

// Pin calls this function every time
// a new instruction is encountered
VOID Instruction(INS ins, VOID *v)
{

// Insert a call to printip before every instruction,
// and pass it the IP
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip,

IARG_INST_PTR, IARG_END);
}

// This function is called when the application exits
VOID Fini(INT32 code, VOID *v)
{

fprintf(trace, "#eof\n");
fclose(trace);

}

// argc, argv are the entire command line,
// including pin -t <toolname> -- ...
int main(int argc, char * argv[])
{

trace = fopen("itrace.out", "w");

// Initialize pin
PIN_Init(argc, argv);

// Register Instruction to be called to
// instrument instructions
INS_AddInstrumentFunction(Instruction, 0);

// Register Fini to be called when the
// application exits
PIN_AddFiniFunction(Fini, 0);

// Start the program, never returns
PIN_StartProgram();

return 0;
}

Source: Cohn and Muth, 2004.

188 CHAPTER 8 Observing Facts

How does this work? Let’s take a look at the code shown in Example 8.2. The
main work is done in three functions:

■ The advice to be executed for each instruction is stored in the function
printip(). The parameter ip holds the current instruction address.

■ The function Instruction() executes every time a new instruction I is
encountered. It inserts printip() as a function to be executed before I .

■ In main(), the Instruction() function is registered as a function to
instrument instructions.

In addition to operating at the instruction level, the PIN framework also offers
means of instrumenting functions (you can retrieve the address of a function, and
add advice code to function calls or returns). Thus, it is not too difficult to log a
trace of executed functions rather than instructions. Remember the STRACE tool
from Section 4.3.6 in Chapter 4, logging the interaction between a program and the
operating system? With PIN, you can set up your own logging tool.

8.3 USING DEBUGGERS
The logging techniques discussed in Section 8.2 all require writing and integrating
code into the program to be debugged, which takes some time—especially if you
consider that the program has to be rerun (and frequently rebuilt) to execute the
additional logging code. An alternative mechanism is to use an external observa-
tion tool that hooks into the execution of the program and observes (and possibly
manipulates) the state at specific moments in time—without changing the original
program code in any way. This approach has a number of benefits:

■ Getting started fast.An observation tool can be started right away,without any
change to the source code or recompilation.

■ Flexible observation.It is possible to observe arbitrary aspects of the program
execution. Typically, one can even change the aspect during execution.

■ Transient sessions. Observation tools are good for single shots at debugging,
with interaction leading to quick results.

The most important observation tools are known as debuggers—not because
they actually remove bugs but because they are being used almost exclusively for
debugging programs. Debuggers provide three functionalities to help you observe
actual executions:

■ Execute the program and make it stop on specified conditions
■ Observe the state of the stopped program
■ Change the state of the stopped program

An example is one of the most powerful debuggers, the GNU debugger (GDB).
GDB is an interactive program controlled via a command line.Although your favorite

8.3 Using Debuggers 189

debugger probably comes with a graphical user interface, GDB’s command line
allows you to focus on the bare debugger functionality—applied on the sample
program (see Example 1.1).

8.3.1 A Debugging Session
As discussed earlier, the sample program is supposed to sort its arguments. How-
ever, it has a defect. When invoked with arguments 11 and 14, the output contains
a zero.

$ sample 11 14
Output: 0 11
$ _

To examine this program run in a debugger,we must first prepare the program for
debugging (which seasoned programmers do by default). This means to have the
compiler include debugging information in the generated executable: locations,
names,and types of all variables and functions from the source code.The debugger
needs this information in order to find out where a particular item is stored. For
GDB, debugging information is included by compiling the program with the -g
option.

$ gcc -g -o sample sample.c
$ _

Next,we must load the program into the debugger. (Some debuggers also allow
you to attach them to an already-running process.) In the case of GDB, this is done
by invoking GDB with the executable as an argument.

$ gdb sample
GNU gdb 6.1, Copyright 2004 Free Software Foundation, Inc. ...
(gdb) _

The string (gdb) is GDB’s prompt, at which it accepts a number of commands.
At the time of writing,there were 135 different commands built into GDB. However,
a few suffice to get acquainted. At first,we must decide where to stop the program
such that its state can be examined. Following Hypothesis 1 from Section 6.3 in
Chapter 6, we first predict that a[0] = 0 should hold when line 38 is being exe-
cuted. Therefore, we set a breakpoint that will make sample’s execution stop at
line 38, using the GDB break command.

(gdb) break 37
Breakpoint 1 at 0x1d04: file sample.c, line 38.
(gdb) _

Technically,a breakpoint translates into an interrupt instruction that GDB inserts
into the executable at the breakpoint location. When execution reaches the break-
point, the interrupt instruction makes the program stop and returns control to
GDB. Now we can actually run the program with the failure-inducing arguments,
using GDB’s run command.

190 CHAPTER 8 Observing Facts

(gdb) run 11 14
Starting program: sample 11 14

Breakpoint 1, main (argc=3, argv=0xbffff9f0) at sample.c:38
37 printf("Output: ");
(gdb) _

The program has stopped at line 38. Now we can examine the values of individual
variables, using GDB’s print command.

(gdb) print a[0]
$1 = 0
(gdb) _

GDB reports that the value of a[0] is 0,which confirms the initial hypothesis. (As a
courtesy, GDB has saved the printed value in a pseudovariable $1 such that we can
reuse it later—if we run out of zeroes, that is.)

From here, we could now step through the execution, querying variables as we
like. GDB provides a step and a next command that both execute the current
line and then stop again. The difference between the two is when the current
line is a function call: step will go to the first line of the called function, whereas
next will execute the called function as a whole and remain within the current
function.

Instead of stepping through a program without any specific target, it is better to
formulate a hypothesis and to verify this hypothesis explicitly. Hypothesis 2 from
Section 6.3 in Chapter 6 was that at the beginning of shell_sort,a[] = [11, 14],
and size = 2 should hold. The following shows how we can verify this
in GDB.

(gdb) break shell_sort
Breakpoint 2 at 0x1b00: file sample.c, line 9.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: sample 11 14

Breakpoint 2, shell_sort (a=0x100140, size=3) at sample.c:9
9 int h = 1;
(gdb) print a[0]
$2 = 11
(gdb) p a[1]
$3 = 14
(gdb) p a[2]
$4 = 0
(gdb) _

(Note that we can simply type run without arguments to reuse the previous argu-
ments, and that we can abbreviate common commands such as print to their first
letter p.) It turns out that size = 3 holds. Therefore, Hypothesis 2 is rejected.

8.3 Using Debuggers 191

Hypothesis 3 from Section 6.3 in Chapter 6 states that changing size from 3
to 2 should make the run successful. We do so using GDB’s set command and use
continue to resume execution.

(gdb) set size = 2
(gdb) continue
Continuing.

Breakpoint 1, main (argc=3, argv=0xbffff9f0) at sample.c:38
37 printf("Output: ");
(gdb) _

Oops—our first breakpoint is still active. We delete it and finally resume execution,
abbreviating continue to c.

(gdb) delete 1
(gdb) c
Continuing.
Output: 11 14

Program exited normally.
(gdb) _

Hypothesis 3 is confirmed. We have narrowed down the failure cause to one
single variable:size. Where does it get its value from? We restart the program and
use where to show the backtrace—the stack of functions that are currently active.

(gdb) run
Starting program: sample 11 14

Breakpoint 2, shell_sort (a=0x100140, size=3) at sample.c:9
9 int h = 1;
(gdb) where
#0 shell_sort (a=0x100140, size=3) at sample.c:9
#1 0x00001d04 in main (argc=3, argv=0xbffff9f0) at sample.c:36
(gdb) _

It turns out that shell_sort() (Frame #0) was invoked by main() (Frame #1). To
check the local variables of main(), we must select its stack frame—Frame #1—
using the frame command.

(gdb) frame 1
#1 0x00001d04 in main (argc=3, argv=0xbffff9f0) at sample.c:36
35 shell_sort(a, argc);
(gdb) _

This is the place from which shell_sort() was invoked, and this is the place
we have to fix—by changing argc to argc --- 1 (Hypothesis 4 from Section 6.3
in Chapter 6). Many debuggers are incorporated into an editor such that one can
change the code on the fly. GDB does not support this, though. Thus, we must fix
sample.c with an external editor, recompile it, and rerun it.

192 CHAPTER 8 Observing Facts

$ sample 11 14
Output: 11 14
$ _

Our hypothesis about the failure cause is now refined to a theory. At the same
time,we have fixed the defect—all in a five-minute debugger session. We have seen
how to:

■ Execute the program (run) and make it stop on specified conditions (break).
■ Observe the state of the stopped program (print), possibly selecting a frame

(where and frame).
■ Resume execution until the next stop (continue) or the next line (next,
step).

■ Change the state of the stopped program (set).

This is the basic debugger functionality,as realized in GDB and almost every other
debugger. In the remainder of this section, we discuss other useful functionality.

8.3.2 Controlling Execution
A debugger allows you to control almost every aspect of the environment in which
your program executes. This includes:

■ Setting of environment and configuration variables:

(gdb) set environment USER smith
(gdb) _

■ Setting of signals and interrupts:

(gdb) handle SIGINT ignore # ignore interrupt
(gdb) _

■ Hardware-specific settings such as register content:

(gdb) set $pc = main # resume execution at main
(gdb) _

8.3.3 Postmortem Debugging
Several operating systems can be set up such that when a program crashes they
dump its memory content to a special file.This memory dump (called a core dump
on UNIX or a Dr.Watson file on Windows) can be read in by a debugger such that
you may examine the state of the program at the moment it crashed.

The most important hint of a memory dump is the backtrace, as it records the
functions executing at the time of the crash. Suppose your fourierprogram crashes
on a bus error.The default message gives no clue about what might have happened.

$ fourier input.txt
Bus error (core dumped)
$ _

8.3 Using Debuggers 193

Loading the memory dump (called core on UNIX machines) into the debugger
reveals what has happened. Using where,we can take a look at the backtrace. print
reveals the null pointer a being dereferenced.

$ gdb fourier core
GNU gdb 6.1, Copyright 2004 Free Software Foundation, Inc. ...
Core was generated by ‘./fourier’.
0x00001d8c in init_fourier (a=0x0, x=0) at fourier.c:4
4 a[0] = x;
(gdb) where
#0 0x00001d8c in init_fourier (a=0x0, x=0) at fourier.c:4
#1 0x00001de8 in main (argc=2, argv=0xbffff9e8) at fourier.c:12
(gdb) print a
$1 = (int *)0x0
(gdb) _

Even if a program does not leave a memory dump, repeating the run from within
the debugger yields the same results—which is why seasoned programmers always
test their programs within a debugger.

8.3.4 Logging Data
Some debuggers allow us to execute commands automatically. In GDB,for instance,
when a breakpoint has been reached it can execute a prerecorded sequence of
commands.This can be useful for having breakpoints enable and disable each other,
and for realizing logging of variables from within the debugger.

In GDB,using the commands command we have a breakpoint print the value of a
variable (using the GDB printf command) and then continue execution. The first
command,silent, instructs GDB not to report a reached breakpoint.

(gdb) break 33
Breakpoint 1 at file sample.c, line 33.
(gdb) commands
Type commands for when breakpoint 1 is hit,
one per line. End with a line saying just "end".
>silent
>printf "a[%d] = %d\n", i, a[i]
>continue
>end
(gdb) _

When executing the program, the value of i is logged just as if we had entered an
appropriate printf command in the source code.

(gdb) run
Starting program: sample 7 8 9
a[0] = 7
a[1] = 8
a[2] = 9
...

194 CHAPTER 8 Observing Facts

8.3.5 Invoking Functions
Many debuggers allow us to invoke functions of the debugged program. This is
frequently used to invoke specific logging functions, as discussed in Section 8.2.1.

(gdb) call print_list(my_list)
[1, 10, 100, 1000, 10000]
(gdb) _

In GDB, functions can be invoked as parts of expressions, such as:

(gdb) print proc.wired_memory() + proc.active_memory()
2578438
(gdb) _

Invoking functions can interfere with normal execution of the program. For
instance,any side effect of an invoked function affects the program being debugged.

(gdb) call clear_list(my_list)
(gdb) call print_list(my_list)
[]
(gdb) _

Some side effects are quite confusing, though. For instance, if executing the
function reaches a breakpoint,execution will stop at the breakpoint. In such a case,
what has happened to the original execution? How do we finish execution of our
own invocation, and how do we resume the original execution? Even worse:What
happens if the invoked function causes a crash? How do we ensure the original
program is not affected? Because of such potential problems, it is wise to invoke
only simple functions that do not interfere with the original execution.

8.3.6 Fix and Continue
Some debuggers, integrated within a development environment, allow you to alter
the code of the program while it is executing. This way, you can verify whether a
fix is successful without having to alter the state explicitly, and without resuming
execution from scratch. Be aware, though, that such fixes should be limited to very
simple changes. Anything greater creates a mismatch between source code and
executable.

8.3.7 Embedded Debuggers
Traditionally, a debugger invokes the program to be debugged. However, one may
also set up a system such that it invokes a debugger (or similar interactive facility)
on itself. In an interpreted language such as PYTHON, for instance, you can have a
program invoke the interactive interpreter, which allows you to explore all of the
program’s state at will.The following is a very simple piece of code that invokes the
interpreter in the middle of a loop by invoking the PYTHON code.interact()
function with the local scope.

8.3 Using Debuggers 195

import code

for i in range(1, 10):
print i,
if i == 5:

print
code.interact("Mini Debugger - use Ctrl-D to exit",

None, locals())

If you execute this code, you obtain:

$ python embedded.py
1 2 3 4 5
Mini Debugger - use Ctrl-D to exit
»›X _

In the interpreter,you can enter arbitrary expressions,which are then evaluated.
You can also invoke and evaluate arbitrary functions.

»› print i
5
»› import math
»› math.sqrt(4)
2.0
»› _

Note,though,that changes to local variables may not affect the (cached) instances
in the remainder of the execution. Thus, if you enter i = 1, the i in the main
loop may remain unchanged. Once you are done exploring the state, leaving the
interpreter will resume execution of the program.

»› (Ctrl-D)
6 7 8 9
$ _

Such an embedded interactive debugging facility can be triggered by inserting
appropriate calls in the code, by enabling it from the outside, or upon specific
failure conditions. Be aware, though, that this facility is not enabled in produc-
tion code. Otherwise, bad guys will have fun gaining complete control over your
system.

8.3.8 Debugger Caveats
Despite the functionality provided by a debugger, one should keep in mind that
interactive debuggers have a certain toylike quality. That is, it is simply fascinating
for the creator to see his or her program in action and to exercise total control.This
can easily distract from solving the problem at hand. Even when working with an
interactive debugger, one should always be explicit about the current hypothesis,
and the steps required to validate it, as described in Chapter 6. Debuggers can be
excellent tools—but only when combined with good thinking.

196 CHAPTER 8 Observing Facts

8.4 QUERYING EVENTS
Most hypotheses about a program can be tied to a specific location within the
program, as in “at line 38, a[0] = 0 should hold.” This location is the place at
which logging code can be inserted, at which aspects can be woven in, and at
which a debugger user sets a breakpoint to stop execution.

However,some hypotheses cannot be attached to such a precise location. In fact,
the location may well be the subject of a query itself. Just imagine you find some
variable (say,Printer.errno) being set to a specific value at the end of a program
run. You could now follow back Printer.errno’s dependences, as discussed in
Chapter 7, and observe each of the locations in which Printer.errno may be set.
You will find, though, that in the presence of pointers there will probably be several
such locations, and checking them all is a tedious activity. What one needs in this
situation is a means of having the program stop at a location that is implied by a
condition (e.g.,“the location at which Printer.errno is set”).

Using an aspect (Section 8.2.3), this is a fairly easy task. All one needs to do is
to define a point cut set(Printer.errno) that includes all locations in which the
Printer.errno is set.

public aspect LogErrno {
pointcut setErrno():
set(Printer.errno);

before(): setErrno() {
System.out.println("Old value:" + Printer.errno);

}
after(): setErrno() {
System.out.println("New value:" + Printer.errno);

}
}

It is fairly easy to refine this aspect further—for instance, to log Printer.errno
only if it gets a specific value.

8.4.1 Watchpoints
Using languages without aspect support such as C,though,we must resort to debug-
gers to catch assignments to specific variables. GDB provides a feature called data
breakpoints or watchpoints to catch the specific moment in time in which a given
condition comes true. For instance, in the sample program to catch the moment in
which a[0] is assigned use:

(gdb) watch a[0]
Watchpoint 3: a[0]
(gdb) _

Having created this watchpoint (which must be done when a[0] actually exists),
GDB will check for each subsequent machine instruction whether the value of a[0]
has changed. If so, GDB will stop program execution.

8.4 Querying Events 197

(gdb) continue
Watchpoint 3: a[0]

Old value = 11
New value = 0
shell_sort (a=0x100140, size=3) at sample.c:15
15 for (i = h; i < size; i++)
(gdb) _

Execution has stopped at the statement after the value of a[0] has changed. The
most recent executed statement is at the end of the for loop, a[j] = v, this is
where a[0] got its zero value from.

Watchpoints are expensive. Because the debugger must verify the value of the
watched expression after each instruction, a watchpoint implies a switch between
the debugged processes and the debugger process for each instruction step. This
slows down program execution by a factor of 1,000 or more. Fortunately, some
processors provide hardware watchpoints that can automatically monitor a small
number of locations for changes without degrading performance. Debuggers such
as GDB can make use of such hardware facilities to provide a limited number of
hardware-assisted watchpoints.

If your program restricts access to specific data via accessor functions [such as
setX() and getX() methods in a class], it is much easier to set up a breakpoint in
these accessor functions. Languages with managed memory, such as JAVA, ensure
that no external piece of the program can modify or access data without going
through the public interface of the encapsulating class. In languages with unman-
aged memory,such as C or C++,protection is limited. It is conceivable that an exter-
nal piece of the program accesses data directly—either on purpose or by accident
(say,via a stray pointer).To catch the culprit,watchpoints can come in as a last resort.

In some cases, one might be interested in having a program stop on a specific
condition and at a specific location. In this case, a conditional breakpoint comes
in handy—a breakpoint that stops only under certain conditions.The following is a
simple example.

(gdb) break 37 if a[0] == 0
Breakpoint 4 at 0x1d04: file sample.c, line 37.
(gdb) _

Here, the breakpoint stops the program only if the given condition is met. This
is useful when checking for specific infections, such as a[0] being zero, in this
example.

8.4.2 Uniform Event Queries
The distinction among watchpoints, breakpoints, and conditional breakpoints is
purely motivated by the technique by which these concepts are implemented. One
might as well generalize these concepts to have a uniform query mechanism that
stops program execution as soon as a specific condition is met—a condition that
may involve the current execution position as arbitrary aspects of the program state.

198 CHAPTER 8 Observing Facts

Table 8.1 Attributes in COCA

Events Data
Attribute Meaning Attribute Meaning

type function/return . . . name Variable name

port enter/exit type Type

func Function name val Value

chrono Time stamp addr Address

cdepth Call stack size Size in memory

line Current line linedecl Declaration line

file Current file filedecl Declaration file

One such attempt was realized by the COCA debugger—a front end to GDB that
provides a uniform query for arbitrary events during execution.

In COCA,events and data are characterized by attributes (outlined inTable 8.1).
These attributes can be used in queries to obtain all events or data where the query
would be satisfied. A query typically consists of two parts:

■ Time: A query fget(attributes) denotes the subset of the execution time in
which the given attributes hold. The query fget(func=shell_sort), for
instance, denotes all events in which the current function is shell_sort.

■ Space: A query current_data(attributes) denotes the subset of the exe-
cution data in which the given attributes hold. For example, a query
current_data(type=int) denotes all data of which the type is int.

If time is not specified,the query refers to the data at the current execution position.
Within the specification of time and space, logical variables (starting with an

uppercase letter) can be used to match specific events. Any events that match will
then be returned as a result of the query. (Readers familiar with PROLOG may
recognize this style of query.) Thus, a full query at COCA’s prompt might look as
follows.

Which variable currently has a value of 42?

[coca] current_var(Name, val=42).
Name = x0
Name = x1
[coca] _

Which variables are zero during execution of shell_sort()?

[coca] fget(func=shell_sort and line=Ln),
current_var(Name, val=0).

Name = a[2] Ln = 〈int i, j;〉
Name = v Ln = 〈int v = a[i]〉
Name = a[0] Ln = 〈a[j] = v〉
[coca] _

8.5 Hooking into the Interpreter 199

When did a[2] become zero?

[coca] fget(line=Ln),
current_var(a, val=array(---,---,0,...)).

Ln = 〈a = malloc(...)〉
[coca] _

Internally,COCA translates all of these queries into appropriate GDB commands:

■ fget() sets appropriate breakpoints and executes the program.
■ current_var() queries the set of variables.

Although a single query can generate several GDB commands, the general
performance issues of data queries persist. A general query such as

fget(func=shell_sort), current_var(a[0], val=0)

still requires a watchpoint to capture the moments in which a[0] was zero.
Overall, event and data queries as realized in COCA provide a far more general

(and far more versatile) interface than the basic debugger breakpoint and watch-
point commands. One should keep in mind, though, that queries over a wide range
of events may take a surprisingly long time to execute, because they must rely on
slow watchpoints—a surprise that does not take place when programmers must
“manually” translate their experiment into appropriate breakpoint and watchpoint
commands.

8.5 HOOKING INTO THE INTERPRETER
If one programs in a language that is interpreted (rather than compiled), one can
easily hook into the interpreter to monitor the execution for specific conditions.
Such hooks, provided for the implementation of debuggers, can also be used to
implement arbitrary observation techniques.

In PYTHON,for instance, the embedded debugger (Section 8.3.7) is built on top
of such a hook. The PYTHON function sys.settrace(tracer) defines a tracing
function tracer that from now on will be called after every single line of execution.
It takes three arguments:

The frame. This is the stack frame of the currently executing function. The frame
object provides access to
■ the currently executed code (which in turn gives access to properties like

function name or file name),
■ the current line number, as well as
■ the local variables on the stack (which can be read and written).

The event can be call (a function is called),line (a line is executed),or return
(a function returns).

The argument is the returned value in case of return events.

200 CHAPTER 8 Observing Facts

The tracer function returns the next tracer function to be executed (typically
itself), or None, if tracing is to be turned off.

Here is an example of a PYTHON tracer function that outputs a program
trace.

def tracer(frame, event, arg):
code = frame.f_code
function = code.co_name
filename = code.co_filename
line = frame.f_lineno
print filename + ":" + ‘line‘ + ":" + function + "():", \

event, arg
return tracer

If this tracer is activated by calling

sys.settrace(tracer)

at the beginning of the program, it generates a trace like

./middle.py:13:middle(): call None

./middle.py:14:middle(): line None

./middle.py:15:middle(): line None

./middle.py:16:middle(): line None

./middle.py:18:middle(): line None

./middle.py:19:middle(): line None

./middle.py:26:middle(): line None

./middle.py:26:middle(): return 3

Such hooks are available in all interpreted languages that offer interactive debug-
ging facilities. The Java virtual machine (JVM), for instance, has an interface for
monitoring the access of object attributes. It can interrupt the execution whenever
some specific attribute is read or written. Because the JVM is realized in software,
there are no limits on the number of monitors,and the performance loss is not as dra-
matic compared with debugger watchpoints. The java.lang.instrumentation
package provides so-called Java agents who can observe and hook into arbitrary
aspects of the execution; so-called native agents can even access the internal data
structures as used by native methods.

Hooks into the interpreter are the base on which all kinds of observation and
diagnostic tools can be built. If you ever wish to implement your own technique, it
is a good idea to first experiment with interpreted languages, since observing and
altering executions is so much easier. Who knows—eventually, you might be end
up writing your own debugger!

8.6 VISUALIZING STATE
To close this chapter, let me present a more visual touch to observation. The tech-
niques discussed so far all have relied on pure textual output of program states and
variables. The following is an example of a tree node as it is being output by GDB
and other debuggers.

8.6 Visualizing State 201

*tree = {value = 7, _name = 0x8049e88 "Ada",
_left = 0x804d7d8, _right = 0x0,
left_thread = false, right_thread = false,
date = {day_of_week = Thu, day = 1, month = 1,
year = 1970,
_vptr. = 0x8049f78 〈Date virtual table〉},

static shared = 4711}

Although textual output is useful for keeping track of scalar values, it is hardly useful
when it comes to tracking relationships between objects—especially inclusions
and references. In the previous structure, which are the elements of the date sub-
structure,for instance?Would you spot whether two pointers have the same address
and thus reference the same object?

To improve the understanding of data structures, some debuggers allow us to
visualize these relationships.The GNU Data Display Debugger,or DDD for short, is
a graphical front end for GDB and other debuggers that provides such a visualization
(Figure 8.2).

FIGURE 8.2

The DDD debugger. In the top window, DDD has visualized a linked list.

202 CHAPTER 8 Observing Facts

Value = 7

—name = 038049

—left = 03804d

—right = 030
left—thread = false
right—thread = false
date = {...}
shared = 4711

1:*tree
1:*tree
{...}

date =

shared = 4711

Value = 7
—name = 038049e88 "Ada"
—left = 03804d7d8
—right = 030
left—thread = false
right—thread= false

day—of—week = Thu
day = 1
month = 1
year = 1970

—vptr. = 0x8049f78 <Date Virtual table>

1: *tree

FIGURE 8.3

Unfolding data structures in DDD.

value= 85
self = Ø�8Ø4d7a8
next = Ø�8Ø4d7b8

value= 86
self = Ø�8Ø4d7b8
next = Ø�8Ø4d7c8

93:list *()
(List *) Ø�8Ø4d7a8

value = 87
self = Ø�8Ø4d7c8
next = Ø�8Ø4d7a8

next

next

self

next

self self

FIGURE 8.4

A linked list in DDD.

DDD visualizes such data as a box with elements that can be unfolded at the
user’s will (Figure 8.3). This allows the user to focus on specific parts of the data
without cluttering the screen with irrelevant data.

DDD displays each individual datum as a single box. However,if a box originates
from another box,DDD creates an arrow from the origin to the target.This normally
happens if the user dereferences a pointer.A pointer arc points from the origin (the
pointer address) to the target (the dereferenced element). This allows for simple
exploration and visualization of complex data structures (Figure 8.4).

In addition to visualizing data structures and relationships, DDD can plot
numerical values as charts, and even plot the history of individual variables. Such
plots summarize multiple values into a single visualization, and make it easier for
programmers to detect an uncommon state.

All of these visualizations are limited,though,by the programmer’s ability to com-
prehend and compare large amounts of data. If one already knows the properties of
some infection (such as“there is a cycle somewhere in the tree”), it can be easier to
have the computer search for these properties rather than scanning huge amounts
of data manually. We will come back to this idea in Chapter 10.

8.7 CONCEPTS
When observing state, do not interfere. Know what and when to observe, and
proceed systematically.

8.8 Tools 203

To observe state, use: How To
■ Logging functions (Section 8.2.1)
■ Aspects (Section 8.2.3)
■ A debugger (Section 8.3)

Logging statements (“printf debugging”) are easy to use,but tend to clutter the code
and the output.

To encapsulate and reuse debugging code, use a dedicated logging framework or
aspects.

Dedicated logging functions can be set up such that they can be turned off without
impacting performance. With enough discipline, they can even remain in the
production code.

Aspects offer an elegant way of keeping all logging code in one place and applying
the same logging code to multiple places.

Debuggers allow flexible and quick observation of arbitrary events. Reuse of logging
code is difficult, though.

To observe the final state of a crashing program, use a debugger to observe the
postmortem memory dump. If that is not available,repeat the run in a debugger.

Advanced debuggers allow flexible querying of events (Section 8.4) and visualization
of program data (Section 8.6).

To automate observation, hook into the interpreter to gain access to the entire
program state.

8.8 TOOLS
LOG4J.The development of LOG4J started in 1996,and has seen countless enhance-

ments and incarnations before it became the popular package it is today.
Everything about LOG4J, as well as its ports to other languages, can be found at
http://logging.apache.org/ .

ASPECTJ. ASPECTJ was introduced by Kiczales et al. (2001). Its Web page
has several resources to aspect-oriented programming. It can be found at
http://www.eclipse.org/aspectj/ .

PIN. The PIN tool for dynamic binary instrumentation is available at http://rogue.
colorado.edu/Pin/ . The site also contains online manuals and documentation.

BCEL. For JAVA, binary instrumentation is available through BCEL, the Byte Code
Engineering Library. It allows arbitrary manipulation of JAVA byte code,including
inserting code to be executed before and after function calls. It can be found at
http://jakarta.apache.org/bcel/ .

GDB. GDB was developed by Stallman and Pesch (1994),mimicking Sun’s DBX inter-
active debugger. Its Web page is found at http://www.gnu.org/software/gdb/ .

204 CHAPTER 8 Observing Facts

DDD. DDD was built by Zeller and Lütkehaus (1996) as a front end to GDB. Since
then, it has been extended to various other command-line debuggers. The DDD
manual was written by Zeller (2000), and is available from its Web page at
http://www.gnu.org/software/ddd/ .

JAVA SPIDER. Although DDD also supports JDB, the JAVA command-line debugger,
I would not recommend it for debugging JAVA programs. If you are interested in
visualizing the JAVA state, have a look at the JAVA SPIDER tool by Erich Gamma
and Kent Beck,which can be found at http://sourceforge.net/projects/ javaspi-
der/ . JAVA SPIDER is publicly available as a plug-in for the ECLIPSE programming
environment.

eDOBS. The eDOBS project by Geiger and Zündorf (2002) uses UML diagrams for
visualization. It thus raises the level of abstraction from plain programming
structures to the level of UML object diagrams. This is especially useful in
large-scale program understanding. It can be found at http://www.se.eecs.uni-
kassel.de/se/index.php?edobs. eDOBS also comes as an ECLIPSE plug-in.

8.9 FURTHER READING
To learn how debuggers such as GDB work, the book by Rosenberg (1996) gives an
insight about the basic algorithms, data structures, and architecture of interactive
debuggers.

GDB allows efficient watchpoints only with hardware support.AsWahbe (1992)
points out,efficient watchpoints need not necessarily be implemented in hardware,
and suggests a software solution. His technique modifies the code of the debuggee
to monitor the instructions that might affect the watched data—with acceptable
performance for most debugging applications.

COCA was developed by Ducassé (1999). An efficient querying concept for
JAVA, using JAVA class instrumentation, is described in Lencevicius (2000).

EXERCISES
8.1 Use DDD to debug sample (see Section 1.1 in Chapter 1) as follows:

1. Set breakpoints at lines 31, 35, and 37 by pressing the right button of your
mouse in these lines at the left border of the source window and selecting
“Set Breakpoint” from the resultant context menu.

2. Run the program by selecting“Program → Run”from the menu. Insert your
failure-producing arguments and select “Run.”

3. The program should have stopped at line 31. Display the content of array
a: In the argument field, insert a[0]@5, and click on the Display button.
(Replace 5 with an appropriate number of array fields.) Display argv in the
same way.

8.9 Further Reading 205

To obtain a display of variables i and argc, it may be easier to hover
with the mouse pointer above a variable name in the source window and
use the context menu obtained with the right mouse button.

4. Select “Program → Continue” (or click on the Cont button on the small
navigation window).

5. The program should have stopped at line 35. Click on the Continue button.
6. The program should have stopped at line 37. Click on the Continue button.
7. The program should run to the end.To restart the program,you can simply

click on “Run again” (or on “Run” in the small navigation window).

Inspect the content of the variables at each breakpoint. Which variables have
changed? When does the state become infected?

8.2 Insert logging macros into the sample program (see Section 1.1 in Chapter 1).
Make your logging macros optional at compile time. Can you determine the
behavior of the shell_sort() function with the log output only?

8.3 In the Chapter 5 exercises,we used a JAVA implementation of the delta debug-
ging algorithm (Example 5.10) to simplify inputs. In this exercise,we shall use
observation methods to trace the run.

(a) Use LOG4J to create a trace. Log all invocations of all methods.
(b) Using appropriate logging levels,allow users to follow the execution of:

■ Each test (i.e., a test is being carried out)
■ Each progress (i.e., the input size has been reduced)
■ Start and end of delta debugging only (showing the final result)

(c) Use aspects to create a trace on the console:

■ Log all invocations of all methods. Use separate aspects for different
methods.

■ Extend your example to use LOG4J.

(d) Modify the example in Example 8.2 such that it computes an execution
profile—that is, it records for each instruction how often it was executed.

8.4 You would like to examine a program run as soon as one of the following
holds:
■ Function foo() is reached
■ Variable a[0] is equal to 2
■ foo() is reached and a[0] is equal to 2
■ foo() is reached or a[0] is equal to 2
■ foo() is reached and at least one of a[0],a[1], …,a[99] is equal to 2
■ All of a[0],a[1], …,a[99] are equal to 2

Assume that the processor has no special debugging support, except for
changing individual machine instructions into interrupt instructions.

(a) Sort these queries according to the execution speed of the examined
program. Start with the fastest.

206 CHAPTER 8 Observing Facts

(b) Sketch processor support that can make these queries more efficient.
(c) Sketch possible code instrumentation (e.g., adding new code at compila-

tion time) that makes these queries more efficient.

8.5 When stopping a program, the current backtrace is a summary of how your
program got where it is. It is a sequence of frames, where each frame holds the
execution context of a called function.The backtrace starts with the currently
executing frame (frame 0), followed by its caller (frame 1), and on up the
stack. The following is an example of a backtrace, showing the innermost
three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71

Suppose you have a given backtrace as an array of function names. For
instance:

backtrace[0] == "m4_traceon"
backtrace[1] == "expand_macro"
backtrace[2] == "expand_token"

Your task is to instrument a debugger such that the program being exam-
ined stops as soon as a specific backtrace or its superset is reached. In
this backtrace, the program should stop as soon as m4_traceon is reached
while expand_macro is active, where expand_macro was reached while
expand_token was active. To instrument the debugger, you can use the
following functions:
■ set_breakpoint(function, ENTER/EXIT|) sets a breakpoint such that

execution stops when entering/exiting the function function. It returns
a unique number for each created breakpoint.

■ delete_breakpoint(bp_nr) deletes the breakpoint number bp_nr.

■ continue() starts or resumes execution until the next breakpoint is
reached. It returns the number of the reached breakpoint.
Example: To make the program stop as soon as "m4_traceon" is entered,
use the following.

m4_bp = set_breakpoint("m4_traceon", ENTER);
do {

bp = continue();
} while (bp != m4_bp);
delete_breakpoint(m4_bp);

Design an algorithm in C-like pseudocode that uses the previous functions to
make a program stop at a specific backtrace. Be sure to comment your work.

8.9 Further Reading 207

8.6 Mystery time! When being executed on Mac OS, the bigbang program shown
in Example 8.3 is reported to hang up after issuing the result (rather than
terminating normally).

$ bigbang
result is: 2
〈Interrupting execution〉
$ _

What’s wrong with this program?

(a) Use logging functions to log the program state. Use a dedicated method
for each class.

(b) Use GDB or another interactive debugger to examine the run.
(c) Use DDD to visualize the relationships between the individual elements.

Document all of your steps in a logbook (see Section 6.5 in Chapter 6).

EXAMPLE 8.3: The bigbang program. The Container class is defined in
Example 8.4. The Element class is shown in Example 8.5

1 #include <iostream>
2 using namespace std;
3
4 #include "Element.h"
5 #include "Container.h"
6
7 bool mode = true; // (1)
8
9 int main (int argc, char *argv[]) {
10 Element *a = new Element(1);
11 Element *b = new Element(2);
12 a->setPeer(b);
13 b->setPeer(a);
14 a->doSomeStuff();
15
16 Container *c = new Container(10, mode);
17 // c->add(b); // (2)
18 c->add(a);
19 c->add(b);
20
21 cout << "result is: " << c->processElements() << ’\n’;
22
23 delete c;
24 return 0;
25 }

208 CHAPTER 8 Observing Facts

EXAMPLE 8.4: The Container.h file for the bigbang program

1 #ifndef MY_CONTAINER_H
2 #define MY_CONTAINER_H
3
4 #include "Element.h"
5
6 class Container {
7 private:
8 bool deleteElements;
9 int size;
10 Element **elements;
11
12 public:
13 Container(int sz, bool del)
14 : size(sz), deleteElements(del)
15 {
16 elements = new Element *[size];
17 for (int i = 0; i < size; i++)
18 elements[i] = 0;
19 }
20 int processElements() {
21 int sum = 0;
22 for (int i = 0; i < size; i++)
23 if (elements[i])
24 sum += elements[i]->getData();
25
26 return sum;
27 }
28 bool add(Element* e) {
29 for (int i = 0; i < size; i++)
30 if (elements[i] == 0) {
31 elements[i] = e;
32 return true;
33 }
34
35 return false;
36 }
37 virtual ˜Container () {
38 if (deleteElements)
39 for (int i = 0; i < size; i++)
40 delete elements[i];
41
42 delete elements;
43 }
44 };
45 #endif

8.9 Further Reading 209

EXAMPLE 8.5: The Element.h file for the bigbang program

1 #ifndef _ELEMENT_H
2 #define _ELEMENT_H
3
4 class Element {
5 int data;
6 Element *peer;
7
8 public:
9 Element (int d)
10 : data(d), peer(0)
11 {}
12
13 int getData () { return data; }
14 void setPeer (Element *p) { peer = p; }
15 void resetPeer () { peer = 0; }
16
17 void doSomeStuff () {
18 if (peer != 0) {
19 delete peer;
20 resetPeer();
21 }
22 }
23
24 virtual ˜Element () {
25 if (peer != 0 && peer->peer == this) {
26 peer->resetPeer();
27 }
28 }
29 };
30
31 #endif

“If a program can’t rewrite its own code,” he asked, “what good is it?”

– ED NATHER

The Story of Mel (1983)

CHAPTER

9Tracking Origins

Once we have observed an infection during debugging, we need to discover its
origin. In this chapter, we discuss omniscient debugging, a technique that records
an entire execution history such that the user can explore arbitrary moments in time
without ever restarting the program. Furthermore, we explore dynamic slicing, a
technique that tracks the origins of specific values.

9.1 REASONING BACKWARD
A common issue with observation tools, as discussed in Chapter 8,Observing Facts,
is that they execute the program forward in time, whereas the programmer must
reason backward in time. Applied to interactive debugging tools, this means that
the programmer must carefully approach the moment in time where the infection
is observable. As soon as the infection is found, he or she must restart the program
and stop at some earlier moment in time to explore the previous state.

Restoring the steps to get to the earlier state can be pretty time consuming—and
if we go just one step too far, the program must be restarted anew. One key issue
for (human) debuggers is thus how to ease the task of discovering the origin of
a value, and how to keep a memory of what was going on during the run. Here,
we ask:

WHERE DOES THIS VALUE COME FROM?

9.2 EXPLORING EXECUTION HISTORY
So you want to support the programmer in examining the history? One first idea
would be to have a means of undoing the last execution steps. An even better idea
is to explore the entire execution history backward. In other words,we record the
execution—every single change to every single aspect of the state.

This radical idea has been realized under the name of omniscient debugging in a
number of recent debuggers. Rather than accessing the program while it is running, 211

212 CHAPTER 9 Tracking Origins

FIGURE 9.1

Exploring execution history in ODB. Users can navigate backward and forward through the
execution, and along events related to variables, statements, and outputs.

an omniscient debugger first executes the program and records it. Once the run is
complete, the omniscient debugger loads the recording and makes it available for
observation.

Figure 9.1 shows the ODB debugger for JAVA, a prototype that pioneered and
proved the concept. At the center of ODB, one can see the traditional source code
window, highlighting the current execution position. The other windows show
more of the program state,such as current threads,the stack content,variable values,
the console output, and so on.

Using the arrow buttons above the source code window, one can step through
the program’s execution. In contrast to ordinary debuggers, though, ODB also
features buttons to step backward through the execution. As one walks back in
time, all windows are synchronized properly. If you step before an assignment, the
variable value shown will go back to the earlier value, and if you step before an
output statement, the appropriate output will disappear from the console.

In addition to stepping backward and forward along program lines,one can step
back and forth between time stamps specific to the individual windows. In the
code window, each moment of line execution has a time stamp (nothing special
here). In the data window, though, time stamps correspond to value changes of
the displayed variables.To find out when array[] was last changed,you can select
array[] in the window listing the variable values, and then use the buttons above

9.3 Dynamic Slicing 213

that window to walk back and forth in the value history. Variables with a value
that has changed from the previously shown time stamp are highlighted with a
leading *.

Each time an earlier point in the execution history is reached, the other win-
dows synchronize as well. Therefore, one sees the previous value and the line that
assigned the value, as well as every other aspect of the current state. In addition to
stepping through events, the programmer can issue event queries (as discussed in
Section 8.4.2 in Chapter 8) and thus directly jump to specific events. (In contrast
to COCA,though,ODB does not need to renew the execution,which makes querying
much faster.) A typical debugging session using ODB proceeds as follows:

1. Start with the failure, as reported in the console window. Clicking on the
output will lead to the moment in time the output was produced—that is,the
output statement will be shown in the code window.

2. Step backward, searching the infection at each point.
3. Follow the infection back to the defect.

The main drawback, of course, is that recording all state changes is expensive.
First, recording adds a certain overhead, such that a typical program will be slowed
down by a factor of 10 or more. Second, recording needs memory—a lot of it. ODB
generates data at the rate of 100 MB per second,meaning that a 2-GB address space
will fill up in 20 seconds. To deal with the memory issue, one can

■ record specific events only (such as the last second before the failure, or
whatever fits into memory),

■ record specific parts of the system only (we do not care what is going on in
the runtime library), or

■ use a compressed storage of the individual events.

All in all, though, the advantages far outweigh the disadvantages. Using omni-
scient debugging, the programmer has random access to every moment in time
and every aspect of the execution, without ever needing to restart the program—
a tremendous advantage over ordinary interactive debuggers. It is not unlikely
that omniscient debugging will become a standard feature of future interactive
debuggers.

9.3 DYNAMIC SLICING
Although omniscient debugging is handy for accessing every aspect of a program
execution, the programmer still has to figure out how the individual values came
to be. This is where dependences come in handy, as discussed in Chapter 7. If we
know that the bad value of variable A can only come from variable B at some earlier
moment in time, we can immediately focus on B. A good programmer would thus
use both observation (of the program run) and deduction (from the program code)
to quickly progress toward the defect.

214 CHAPTER 9 Tracking Origins

Chapter 7 treated dependences in an abstract way—that is,we explored depen-
dences as they hold for arbitrary runs of the program. When debugging, we have a
concrete failing run at hand, and we would like to know the dependences for this
concrete run in order to trace back origins.

This is where the technique of dynamic slicing comes in handy. Like a static
slice, a dynamic slice encompasses a part of the program—that is, the part of the
program that could have influenced (or could be influenced by) a specific variable
at some point. However, a dynamic slice does not hold for all possible runs but for
one single concrete run.

As an example of a static versus a dynamic slice,consider the program shown in
Example 9.1.The static backward slice (a) of s,being output in line 15,encompasses
the entire program (try it!). The dynamic slice in (b) applies to the run in which n
and a are read in as 2 and 0, respectively. Note that a large number of statements
has no effect on the final value of s. The dynamic slice for the run is more precise
than the static slice for the entire program.

How can a slice as shown in Example 9.1 be computed? To compute a dynamic
slice, one requires a trace—a list of statements in the order they were executed
during the concrete run. Such a trace is either created by instrumenting the
program—that is, having the compiler or another tool embed special tracing
commands—or by running the program in an interpreter. The leftmost column
of Example 9.2 shows the trace of statements from the run n = 2, a = 0 in
Example 9.1(b).

In this trace, one records the variables that were read and written—just as in
Table 7.1, except that now the effects are recorded for each statement as it is
executed. In addition, one introduces a predicate pseudovariable for each predi-
cate that controls execution (such as p8 for the predicate i <= n in line 8). Each of

EXAMPLE 9.1: Static and dynamic slices

1 n = read();
2 a = read();
3 x = 1;
4 b = a + x;
5 a = a + 1;
6 i = 1;
7 s = 0;
8 while (i <= n) {
9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

1 n = read(); // 2
2 a = read(); // 0
3 x = 1;
4 b = a + x;
5 a = a + 1;
6 i = 1;
7 s = 0;
8 while (i <= n) {
9 if (b > 0)

10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

(a) Static slice for s (b) Dynamic slice for s

9.3 Dynamic Slicing 215

EXAMPLE 9.2: Computing a dynamic slice from a trace

Trace Write Read Dynamic Slice

1 n = read(); n
2 a = read(); a
3 x = 1; x
4 b = a + x; b a, x 2, 3
5 a = a + 1; a a 2
6 i = 1; i
7 s = 0; s
8 while (i <= n) { p8 i, n 6, 1
9 if (b > 0) p9 b, p8 2, 3, 6, 1, 4, 8
10 if (a > 1) p10 a, p9 2, 3, 6, 1, 4, 8, 5, 9
12 s = s + x; s s, x, p8 6, 1, 7, 3, 8
13 i = i + 1; i i, p8 6, 1, 8
8 while (i <= n) { p8 i, n 6, 1, 8, 13
9 if (b > 0) p9 b, p8 2, 3, 6, 1, 4, 8, 13
10 if (a > 1) p10 a, p9 2, 3, 6, 1, 4, 8, 5, 9, 13
12 s = s + x; s s, x, p8 6, 1, 7, 3, 8, 13, 12
13 i = i + 1; i i, p8 6, 1, 8, 13
8 while (i <= n) { p8 i, n 6, 1, 8, 13
15 write(s); o15 s 6, 1, 7, 3, 8, 13, 12

these pseudovariables is “written” by the statement that controls execution and
“read” by the statements that are controlled. Example 9.2 shows the effects of the
individual statements.

From these effects,one can now compute dynamic slices by following the read/
write dependences.The following is a method that computes all dynamic slices for
all written values at once.

1. For each write w to a variable, assign an empty dynamic slice.

DynSlice(w)�∅

2. Proceed forward through the trace (or execute the program, generating the
trace). Whenever a value w is written, consider all variables ri read in that state-
ment. For each ri , consider the line line(ri) where ri was last written, as well
as its dynamic slice DynSlice(ri). Compute the union of these lines and slices
and assign it to the write of w.

DynSlice(w)�
⋃

i

(
DynSlice(ri)∪{line(ri)}

)

As an example, consider the dynamic slice of line 4,DynSlice(4). In line 4,b =
a + x, variable b is written and variables a and x are read, last written in lines
2 and 3,respectively.Therefore, the dynamic slice of b in line 4 is the union of

■ the dynamic slice of a in line 2 (empty),
■ the dynamic slice of x in line 3 (empty), and
■ lines 2 and 3.

216 CHAPTER 9 Tracking Origins

Formally, this reads:

DynSlice(4)�DynSlice(2)∪{2}∪DynSlice(3)∪{3}
�∅∪{2}∪∅∪{3}
�{2, 3}

3. At the end of the execution, all definitions will be assigned a slice that holds all
origins of all values.

As an example, consider the right column in Example 9.2, showing the dynamic
slices as they are computed along the trace. (Values in bold indicate new additions
to the slices.)The last line shows the dynamic backward slice for s in the statement
write(s). These are exactly the lines highlighted in Example 9.2.

On average, dynamic slices are far more precise than static slices. In a concrete
run, all locations of all variables—including those in computed expressions such
as a[i] or *p—are known, eliminating conservative approximation. Likewise, in a
concrete run paths that were not taken need not be taken into account.

All in all, this makes dynamic slices smaller than static slices. Whereas a
static backward slice typically encompasses 30 percent of a program’s statements,
a dynamic slice only encompasses 5 percent of the executed statements (note
that the executed statements also form a subset of all statements). The increased
precision comes at a price, though:

■ Overhead. Dynamic slices depend on a trace of the program, which is difficult
to obtain efficiently. Although we need not record the entire value history (as in
omniscient debugging), we still need to record which statements were taken in
which order.

■ Lack of generality. Dynamic slices only apply to a single run of the program,and
thus cannot be reused for other runs (in contrast to program-dependence graphs
and static slices, which are valid for all runs).

9.4 LEVERAGING ORIGINS
How can dynamic slices be used in a debugger?This was explored by Ko and Myers
(2004) in the WHYLINE system. WHYLINE stands for Workspace that Helps You
Link Instructions to Numbers and Events.” It is a debugger whereby programmers
can ask questions about why things happened,and why other things did not happen.
In short, it is a debugger whereby you can ask: “Why did my program fail?”

The WHYLINE originally was designed for the ALICE language—a simple lan-
guage in which three-dimensional objects can be defined and manipulated. ALICE
is designed for novices learning programming. In the programming environment,
users select and compose ALICE statements interactively rather than entering them
as text. Nonetheless,ALICE is just as powerful as any other programming language.

9.4 Leveraging Origins 217

In Figure 9.2, we see a screenshot from a student’s debugging session. In a
PACMAN program,the protagonist Pac has collided with a ghost,but does not shrink
as it should. The student uses the WHYLINE for debugging the program. In the
center window, we see the code that should resize Pac by 0.5.

if both Pac is within 2 meters of Ghost and
not Big Dot.isEaten:
Pac resize 0.5

However,this resizing code is not being executed.To find out why the branch is not
taken,the student has clicked on theWhy button. From a menu (Figure 9.3),she has
opted to ask why Pac resize 0.5 was not executed.

The WHYLINE ’s answer is shown at the bottom of Figure 9.2. The diagnosis
comes as a chain of dependences ending at the else branch (), consisting of the
following events:

1. Big Dot.isEaten is set to true.
2. Therefore, the isEaten variable is true.
3. The negation not (from the previous code) is false.
4. Although Pac is within 2 meters of Ghost is true.
5. The and conjunction (from the previous code) evaluates to false.
6. Therefore, the else clause is taken.

FIGURE 9.2

Asking “Why didn’t…?” questions in the WHYLINE. Source: Ko and Myers 2004.

218 CHAPTER 9 Tracking Origins

FIGURE 9.3

Selecting a question in the WHYLINE. At the bottom, the diagnosis shows why a specific piece
of code was not executed. Source: Ko and Myers, 2004.

The student can further explore this diagnosis by scrubbing a time cursor over
the dependency chain and thus access arbitrary moments in time, just as in omni-
scient debugging. When she moves the cursor over the Big Dot.isEaten set
to true bubble,the code window shows the code in which the Big Dot.isEaten
variable is set.

All of this is just correct behavior. It turns out that Pac did not resize simply
because he had eaten a big dot before, making him immune against ghost attacks.
(Rather than Pac being resized, one should see the ghost being eaten!)

How does the WHYLINE compute its diagnosis? The answer is simple: All the
WHYLINE does is compute a dynamic backward slice of the queried property.
More precisely, the following are the strategies that WHYLINE uses:

“Why did…?”questions. For a “Why did…?” question, the WHYLINE shows the
dynamic backward slice from the queried statement S. That is, it would show
all statements P is dependent on. The slice is limited to two such statements. If
needed, the programmer can query again about a specific statement.

As an example, consider the slices shown in Example 9.1 and the question
“Why did s = 2 in line 15?” The WHYLINE strategy would point to

■ “s = 1” from line 12 (s = s + x), the direct origin of s, as well as
■ “i = 2” from line 8 (i <= n), which controls execution of line 12.

(Instead of line 8, the WHYLINE strategy could also point to line 3 (x = 1), the
origin of x.) If needed, the programmer can further explore the origins by
querying why one of these statements was executed.

“Why didn’t…?”questions. For a “Why didn’t…?” question, the WHYLINE would
use the static backward slice of the statement S, and by following back the

9.5 Tracking Down Infections 219

control dependences, retrieve those statements that directly prevented execu-
tion. It then performs the “Why did…?”question on each.

As an example, let’s ask the question “Why didn’t x = 2 in line 11?” Follow-
ing the static dependences, we have three control dependences from line 11
to lines 8, 9, and 10, respectively. Assume the WHYLINE asks the “Why did…?”
question only for the closest one, line 10 (if (a > 1)). As an answer, it would
then present

■ “a = 1” from line 5 (a = a + 1), as well as
■ “b = 1” from line 9 (if (b > 0)), the statement directly controlling line 5.

Again,the programmer could interactively query theWHYLINE about how these
values came to be.

Overall, the WHYLINE demonstrates what can be done in a modern debugger. It
incorporates random access in time (as in omniscient debugging) as well as static
and dynamic slicing to trace origins. By limiting the slice length, it prevents the
programmer from having to deal with too many possible origins, and allows explo-
ration along the dependences. Finally, it shows how to package it all in a nice user
interface, avoiding the use of program analysis jargon such as “dependences” or
“slices.” A study conducted by Ko and Myers (2004) showed that the WHYLINE
could decrease debugging time by nearly a factor of 8,highlighting the potential of
modern debugging environments.

As of 2008, the WHYLINE is also available for JAVA programs, targeting expert
developers, and achieving all of the original WHYLINE contributions “without limi-
tations on the target program, other than that it uses standard I/O mechanisms and
that the program does not run too long” (Ko and Myers, 2008). The WHYLINE for
JAVA allows programmers to ask specific questions on the output of the program:
“Why is this line blue?” or “Why did this error message show up?” In a user study,
the WHYLINE participants were more than twice as fast as the experts without the
WHYLINE—showing off the potential of program-analysis techniques when coming
in an easy-to-use and intuitive package.

9.5 TRACKING DOWN INFECTIONS
Even with all of the advanced observation tools discussed in this chapter, we still
need a strategy for using them systematically. The following is a general strategy
that combines observation and dependences to narrow down arbitrary infection
sites—that is, a strategy for locating arbitrary defects.

1. Start with the infected value as reported by the failure. In the sample program
(Example 1.1), this would be a[0].

2. Follow back the dependences to potential origins. This can be done using
■ static dependences, as discussed in Chapter 7, or
■ dynamic dependences, as discussed in Section 9.3.

220 CHAPTER 9 Tracking Origins

Following the data dependences in sample,we can trace back the value of a[0]
to other values in a[] as well as to size.

3. Observe the origins and judge whether the individual origins are infected or not.
In the sample run, we find that size is infected (it has the wrong value).

4. If you find an earlier infected value, repeat steps 2 and 3 to track its origins. In
sample, the value of size depends on argc (and only on argc).

5. When you find an infected value V where all values that V depends on are sane,
you have found the infection site—in other words, the defect. argc is sane, but
size is not.Thus, the infection must have taken place at the assignment of argc
to size—at the function call to shell_sort().

6. Fix the defect, and verify that the failure no longer occurs.This ensures that you
have found the defect that caused the failure in question.

This strategy is in fact an application of scientific method (see Chapter 6) that
creates hypotheses along the dependences, and uses observation to assess possible
origins. It also guarantees that you will find the infection site, just by observation
and judgment. It even works when dependences are imprecise or even unknown.
In such cases, there is more to observe and more to judge, of course.

However, the amount of data to be observed and to be judged can still be
enormous. We must still ease the task. In particular, we can:

■ Help the programmer judge whether some origin is infected.This can be done
using assertion techniques, discussed in Chapter 10.

■ Help the programmer focus on specific origins. Such origins include anoma-
lies (discussed in Chapter 11) and actual failure causes (discussed in
Chapters 13 and 14).

Stay tuned—there is more to come.

9.6 CONCEPTS
To explore execution history, use an omniscient debugger, which records theHow To

entire execution of a program and grants random access to every aspect of the
execution.

To isolate value origins for a specific run, use dynamic slicing.

Dynamic slices apply only to a single run of the program, but are far more precise
than static slices.

The best available interactive debuggers leverage omniscient debugging, static slic-
ing,and dynamic slicing to provide diagnoses about why things happen and why
they do not.

To track down an infection, follow back the dependences and observe the origins,
repeating the process for infected origins (see Section 7.3 in Chapter 7).

9.8 Further Reading 221

9.7 TOOLS
Dynamic Slicers. Very few dynamic slicers are publicly available.Abhik Roychoud-

hury at the University of Singapore and his team have published JSLICE,a dynamic
slicer for JAVA programs: http://jslice.sourceforge.net/ . Clemens Hammacher at
Saarland University has implemented JAVASLICER, a dynamic slicing framework
for JAVA. JAVASLICER specifically focuses on usability, separation of tracing and
slicing, and accuracy: http://www.st.cs.uni-saarland.de/javaslicer/ .

ODB. The ODB debugger was developed by Lewis (2003), who also coined the
term omniscient debugging. ODB is available at: http://www.lambdacs.com/
debugger/debugger.html. Commercial implementations of omniscient debug-
ging include Visicomp’s RETROVUE and Omnicore’s CODEGUIDE.

WHYLINE. The WHYLINE for JAVA is available for download via Andrew Ko’s
home page at http://faculty.washington.edu/ajko/whyline-java.shtml.

9.8 FURTHER READING
Dynamic slicing was invented independently by Korel and Laski (1990) and by
Agrawal and Horgan (1990). The computation method in this chapter follows
Gyimóthy et al. (1999). Still, the main challenge of dynamic slicing is efficiency.
Zhang and Gupta (2004) offer several interesting approaches to the subject, as well
as an extensive overview on the literature.

An interesting variant of dynamic slicing is critical slicing, as realized by
DeMillo et al. (1996) in the SPYDER debugger. Critical slicing is based on the idea
of removing individual statements from the program and to leave only those state-
ments relevant to the error. As DeMillo et al. (1996) point out, this reduces the
average program by 64 percent.

The original WHYLINE version was presented by Ko and Myers (2004); the JAVA
version is discussed in Ko and Myers (2008). The paper by Ko and Myers (2009)
focuses on the design rationales and gives substantial insights on how to make a
debugger user friendly for real developers.

EXERCISES
9.1 In the exercises of Chapter 5, we used a JAVA implementation of the delta

debugging algorithm (Example 5.10) to simplify inputs. Download and use
ODB to debug the run.

9.2 Compute the dynamic slices for the run sample 11 14 for the sample
program (Example 1.1).

222 CHAPTER 9 Tracking Origins

9.3 Using the WHYLINE strategies, answer the following questions for the run
sample 11 14:

(a) Why is a[0] = 0 at line 38?
(b) Why is line 22 not executed in the first iteration of the for loop in line 16?

9.4 The following program is supposed to determine the greatest common divisor.

01 int gcd(int a, int b)
02 {
03 int d = b; S D1 D2 �

04 int r = a % b; S D1 D2 �
05
06 while(r > 0) S D1 D2 �
07 {
08 int n = d; S D1 D2 �

09 d = r; S D1 D2 �

10 r = n / d; S D1 D2 �
11 }
12
13 return d; S D1 D2 �
14 }

This program has a defect: gcd(2, 6) returns 3, but 3 is not a divisor of 2.
The defect is in line 10: it should read r = n % d.

(a) Determine the static backward slice of d (in line 13). Check S for all
statements that are part of the slice.

(b) Determine the dynamic backward slice of d in the run gcd(2, 6). Check
D1 for all statements that are part of the slice.

(c) Determine the dynamic backward slice of d in the run gcd(0, 5). Check
D2 for all statements that are part of the slice.

(d) Determine the difference between the slices in steps 2 and 3. Check �

for all statements that are part of the difference.
(e) “A difference as obtained in step 4 always contains the faulty statement.”

Give a program and two slices that contradict this claim.

Life can only be understood backwards, but it must be lived forwards.

– SØREN AABYE KIERKEGAARD

Diary (1843)

CHAPTER

10Asserting Expectations

Observation alone is not enough for debugging. One must compare the observed
facts with the expected program behavior. In this chapter, we discuss how to auto-
mate such comparisons,using well-known assertion techniques.We also show how
to ensure the sanity of important system components such as memory.

10.1 AUTOMATING OBSERVATION
Observing what is going on in a program can be a burden for a programmer. First,
there are many states and events that can and must be observed. Second, for each
new run (or each new defect) the same items must be observed again. The bur-
den is not so much the observation itself but the act of judging whether the
observed state is sane or not—which of course multiplies with the amount of data
observed.

In the past, where computing time was expensive, having such judging done
by humans was commonplace (see Bug Story 9, for instance). Given our current
wealth of computing power, though, it becomes more and more reasonable to shift

BUG STORY 9

Examining a Lot of Data
Holberger drives intoWestborough.The sun is in his eyes this morning,and he wonders
in a detached sort of way where it will be hitting his windshield when they finish this
job. Debugging Eagle has the feel of a career in itself. Holberger isn’t thinking about any
one problem,but about all the various problems at once,as he walks into the lab. What
greets him there surprises him. He shows it by smiling wryly. A great heap of paper
lies on the floor,a continuous sheet of computer paper streaming out of the carriage at
Gollum’s system console. Stretched out, the sheet would run across the room and back
again several times. You could fit a fairly detailed description of American history from
the Civil War to the present on it. Veres sits in this midst of this chaos, the picture of a
scholar. He’s examined it all. He turns to Holberger. “I found it,” he says.
Source: Kidder (1981). 223

224 CHAPTER 10 Asserting Expectations

Variables

(a)

T
im

e

Variables

(b)

T
im

e

FIGURE 10.1

Observation (a) versus assertion (b). Whereas observation is limited to small probes in space
and time, assertions can automatically cover a large area.

the burden of observation over to the computer—that is, to have the computer
check whether the program state is still sane,or whether an infection has occurred.
This is the same approach as in automated testing (Chapter 3). Rather than observe
and judge for ourselves, we have the program test its own state continuously.

The first advantage of automated observation is scalability.In contrast to manual
observation, where we can only examine a small number of variable values during
execution (Figure 10.1a),having the computer observe and judge allows us to check
large parts of the execution automatically (Figure 10.1b). Each automated observa-
tion acts like an infection detector, catching infections before they can propagate
and obscure their origins. This effectively narrows down possible infection sites,
and thus speeds up debugging.

The second advantage is, of course, persistence. Once we have specified the
properties of a sane state,we can reuse this specification over and over again.This not
only includes debugging but documentation and general program understanding.
Of all debugging techniques, expressing and checking what a program is supposed
to do is probably the best long-term investment in code quality. Let’s thus explore
some common assertion techniques. Here, we ask:

HOW DO WE AUTOMATE OBSERVATION?

10.2 BASIC ASSERTIONS
To have the program ensure its sane state automatically is deceptively simple. The
basic idea is to insert appropriate code that checks for infections. For instance, to
ensure that a divisor is nonzero, one could write:

10.2 Basic Assertions 225

if (divisor == 0) {
printf("Division by zero!");
abort(); // or some other exceptional behavior

}

Such infection-handling code has been used since the dawn of computing. It
is common and useful—and yet somewhat clumsy. As discussed in Section 8.2 in
Chapter 8, it is wise to explicitly separate code concerned with debugging from the
normal program code. One way to do so is to have a special function that explicitly
checks for a specific condition.The common name of such a function is assert(x),
with the functionality that it aborts execution if x should be false.

assert(divisor != 0);

The assert() function could be implemented in a straightforward way, as in:

void assert(int x)
{

if (!x)
{

printf("Assertion failed!\n");
abort();

}
}

In practice, though, simply having assertions marked as such does not suffice.
Just as with logging functions (see Section 8.2.1 in Chapter 8), we want to be able
to turn assertions off, and we want them to report diagnostic information—at least
more than just “assertion failed.”

$./my-program
divide.c:37: assertion ‘divisor != 0’ failed
Abort (core dumped)
$ _

The techniques that realize these features in logging functions can easily be used
for assertions. The following is a typical definition of assert() for C++ programs.

#ifndef NDEBUG
#define assert(ex) \
((ex) ? 1 : (std::cerr « __FILE__ « ":" « __LINE__ \

« ": assertion ‘" #ex "’ failed\n", \
abort(), 0))

#else
#define assert(x) ((void) 0)
#endif

This definition uses the __FILE__ and __LINE__ macros to report the location
of the assertion in the source file. It also uses the “stringize” mechanism of the
C preprocessor to output the assertion that actually failed (#ex). Finally, by setting
the NDEBUG preprocessor variable the assertion can be turned off (it compiles to a
no-op).

226 CHAPTER 10 Asserting Expectations

Other languages come with assertions built into the language. In JAVA,assertions
are specified using the assert keyword. They work just like the C++ macro, but
throw an exception rather than aborting the program. Note that in the JAVA inter-
preter java assertions are turned off by default. They must be enabled explicitly
using the -enableassertions option.

How does one use assertions during debugging? The basic idea of assertions is
to have the computer do the observation. Thus, assertions can be spread across
the code just like logging functions. The principles of observation, as discussed in
Section 8.1 in Chapter 8, still apply. Assertions should not interfere with the actual
run (and thus have no side effects), and should be used systematically rather than
sprinkled randomly across the code. This brings us to two major (systematic) uses
of assertions in debugging:

■ Data invariants that ensure data integrity.
■ Pre- and postconditions that ensure function correctness.

10.3 ASSERTING INVARIANTS
The most important use of assertions in debugging is to ensure data invariants—
properties that must hold throughout the entire execution.As an example,consider
a C++ class Time that manages times of the day—say,a time such as“5pm,40 minutes,
and 20 seconds” or brief, 17:40:20. We do not care about how time is actually
represented internally (that is the secret of the class), but we know that it provides
an interface that allows us to access the individual components of the current time.

class Time {
public:

int hour(); // 0..23
int minutes(); // 0..59
int seconds(); // 0..60 (including leap seconds)

void set_hour(int h);
...

}

In the case of Time, a sane state is a valid time from 00:00:00 to 23:59:60. From
the client view, this is an invariant that holds for all Time objects for all times. In
practice, this means that the invariant should hold at the beginning and end of each
public method. For this purpose, we can easily write an assertion at the end of the
set_hour() method.This ensures that whatever set_hour() does the invariant is
not violated.

void Time::set_hour(int h)
{

// precondition
assert(0 <= hour() && hour() <= 23) &&

10.3 Asserting Invariants 227

(0 <= minutes() && minutes() <= 59) &&
(0 <= seconds() && seconds() <= 60);

...

// postcondition
assert(0 <= hour() && hour() <= 23) &&

(0 <= minutes() && minutes() <= 59) &&
(0 <= seconds() && seconds() <= 60);

}

(Note that we use the public interface of Time, rather than accessing the internals.
This way, we can check three more functions.)

With these assertions, we can ensure that no set_hour() invocation will ever
make a Time object inconsistent.The violated assertion would immediately flag the
infection. However, putting such a three-line assertion at the beginning and end of
each Timemethod induces redundancy and makes the code difficult to read.A more
elegant way is to introduce a specific helper function,which checks the sanity of a
Time object.

bool Time::sane()
{

return (0 <= hour() && hour() <= 23) &&
(0 <= minutes() && minutes() <= 59) &&
(0 <= seconds() && seconds() <= 60);

}

sane() is more than just a helper function. sane(), being true, is an invariant of
the Time object. It should always hold before and after each public function.We can
now ensure that this invariant holds for the current Time object whenever some
method is called—for instance,at the beginning and end of set_hour()—and thus
ensure that the method did not infect the object state.

void Time::set_hour(int h)
{

assert(sane()); // precondition

// Actual code goes here

assert(sane()); // postcondition
}

If one of these assertions now fails, we can immediately narrow down our
hypothesis on the location of the defect.

■ If the precondition is violated, the infection must have taken place before
set_hour().

■ If the postcondition is violated, the infection must have taken place within
set_hour().

■ If the postcondition holds, the infection cannot have taken place in
set_hour().

228 CHAPTER 10 Asserting Expectations

To have the entire class continuously checked for sanity,all one needs to do is to
wrap each public method that changes the state into two assertions—both checking
the sanity as described previously.This ensures that any infection that takes place in
these methods is properly caught—and if all assertions pass, we can rule out Time
as an infection site.

If data structures get more complex,the invariants become more complex,too—
but also ensure more properties. Example 10.1 shows an excerpt of a class invariant
of a JAVA red/black tree—the base of the JAVA TreeMap class. Every property of the
tree is checked in an individual helper function. The sane() method calls them all
together. If anything ever goes wrong in a red/black tree, this sane() invariant will
catch it.

EXAMPLE 10.1: Ensuring the invariant of a red/black tree

boolean sane() {
assert (rootHasNoParent());
assert (rootIsBlack());
assert (redNodesHaveOnlyBlackChildren());
assert (equalNumberOfBlackNodesOnSubtrees());
assert (treeIsAcyclic());
assert (parentsAreConsistent());

return true;
}

boolean redNodesHaveOnlyBlackChildren() {
workList = new LinkedList();
workList.add(rootNode());
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
Node cl = current.left;
Node cr = current.right;
if (current.color == RED) {

assert (cl == null || cl.color == BLACK);
assert (cr == null || cr.color == BLACK);

}
if (cl != null) workList.add(cl);
if (cr != null) workList.add(cr);

}

return true;
}

boolean rootHasNoParent() { ... }

Ideally,we would set up our class with assert(sane()) statements at the begin-
ning and end of each public method. Unfortunately, this clutters the code some-
what. To reduce clutter, we can use an aspect (see Section 8.2.3 in Chapter 8). For

10.4 Asserting Correctness 229

the red/black tree in Example 10.1, one single aspect can ensure that the invariant
holds before and after each modifying method (add... or del...).

public aspect RedBlackTreeSanity {
pointcut modify():

call(void RedBlackTree.add*(..)) ||
call(void RedBlackTree.del*(..));

before(): modify() {
assert(sane());

}

after(): modify() {
assert(sane());

}
}

By applying or not applying the aspect,one can easily turn the assertions on and
off—for all red/black tree methods now and in the future.

Once one has a function that checks data invariants, one can also invoke it in
an interactive debugger to check data sanity on-the-fly. A conditional breakpoint in
GDB such as

(gdb) break ’Time::set_hour(int)’ if !sane()
Breakpoint 3 at 0x2dcf: file Time.C, line 45.
(gdb) _

acts like an assertion. It will interrupt execution as soon as the breakpoint condition
holds at the specified location—that is, the Time invariant is violated. This even
works if the assertions have been disabled.

10.4 ASSERTING CORRECTNESS
In addition to data invariants, the major use of assertions in debugging is to ensure
that some function does the right thing. In the set_hour() example, for instance,
we can assert that set_hour() does not result in an invalid Time state. How-
ever, how do we know that set_hour(h) is correct—that is, that it sets the hour
to h?

Such properties are expressed as postconditions—conditions over the state that
must hold at the end of the function. As an example, consider a divide function for
computing a quotient and a remainder from a dividend and a divisor. For such a
function, the precondition is divisor ��0, whereas the postcondition is quotient �
divisor �remainder �dividend. Again, a postcondition can be translated into an
assertion

assert(quotient * divisor + remainder == dividend);

230 CHAPTER 10 Asserting Expectations

at the end of the divide function code to check whether the computed quotient
and divisor values are actually correct. In our set_hour() example, this reads:

void Time::set_hour(int h)
{

// Actual code goes here

assert(hour() == h); // postcondition
}

Whereas a postcondition applies to the state that holds at the end of a function,
a precondition expresses conditions over the state that must hold at the beginning
of a function. For instance, to make our divide function work properly the divisor
must not be zero. This condition is again expressed as an assertion

assert(divisor != 0);

at the beginning of the divide function. The following is the precondition for
set_hour().

void Time::set_hour(int h)
{

assert(0 <= h && h <= 23);

// Actual code goes here
}

For complex data structures, specifying a pre- or postcondition may require the
use of helper functions that check for the individual properties. For instance, if
a sequence is to be sorted we need a helper function that checks whether the
postcondition is satisfied.

void Sequence::sort()
{

// Actual code goes here

assert(is_sorted());
}

Helper functions used in postconditions usually make useful public methods.

void Container::insert(Item x)
{

// Actual code goes here

assert(has(x));
}

And, of course, invariants (as discussed in Section 10.3) are essential pre- and
postconditions.

void Heap::merge(Heap another_heap)
{

assert(sane());

10.4 Asserting Correctness 231

assert(another_heap.sane());

// Actual code goes here

assert(sane());
}

Sometimes, a postcondition involves an earlier state—that is, a state that
occurred at the beginning of the function. In the case of the set_hour(h) func-
tion, for instance, we might want to specify that set_hour(h) only sets the hours
(i.e., it does not change the minutes or the seconds). Asserting this requires us to
save the original values at the beginning, such that we can compare against them at
the end.

void Time::set_hour(int h)
{

int old_minutes = minutes();
int old_seconds = seconds();
assert(sane());

// Actual code goes here

assert(sane());
assert(hour() == h);
assert(minutes() == old_minutes &&

seconds() == old_seconds);
}

This works fine, but is somewhat cumbersome. In particular, if we turn off the
assertions we end up with two unused variables, which will result in a compiler
warning (see Section 7.5 in Chapter 7 on code smells).

In other languages,specifying pre- and postconditions is much more elegant.The
EIFFEL language incorporates the concept of design by contract, where a contract
is a set of preconditions that must be met by the caller (the client) and a set of
postconditions that are guaranteed by the callee (the supplier). In EIFFEL,a contract
regarding set_hour() would be specified as:

set_hour (h: INTEGER) is
-- Set the hour from ‘h’

require
sane_h: 0 <= h and h <= 23

ensure
hour_set: hour = h
minute_unchanged: minutes = old minutes
second_unchanged: seconds = old seconds

These conditions are again checked at runtime, just like assertions (although a
true EIFFEL afficionado would shudder at the low-level nature of assertions). Note
that the contract is part of the interface description (in contrast to assert calls). It is
thus visible to the client and thus serves as documentation. In addition to require

232 CHAPTER 10 Asserting Expectations

and ensure, EIFFEL provides an invariant keyword the condition of which is
checked before and after every invocation of a public method.

10.5 ASSERTIONS AS SPECIFICATIONS
The EIFFEL example in Section 10.4 can already serve as a specification of what
the function should do. In short, the assertions become part of the interface.
A user of the set_hour() function must satisfy its precondition. A supplier of
the set_hour() function must satisfy the postcondition under the assumption the
precondition holds. (The invariants, if any, must also hold.) This idea of assertions,
written using program code, that serve as specifications is something quite recent.
In the past, program specifications were of two forms:

1. Natural language. The great majority of all specifications are written in natural
language: “set_hour(h) sets the current hour to h, where h is an integer in
the range 0–23.” This style of specification is easy to read by humans, but is
difficult to make complete and unambiguous. Furthermore, compliance with a
natural-language specification cannot be validated automatically.

2. Formal systems. The most complete and unambiguous language we have is
mathematics, and discrete mathematics is the basis for the several specification
languages, such as Z. Figure 10.2 shows a Z specification for the Date class
and its set_hour() method. It is easy to recognize the invariants as well as the
(intermixed) pre- and postconditions. Such a specification is obviously far more
precise than the natural-language version.

However, validating that the program code satisfies the specification is diffi-
cult. It requires us to prove that the concrete code requires no more than the
abstract specification and that it provides no less than the specification. Such
formal proofs can be tedious,and must be redone after each change to the code.
(On the other hand,once your code is proven correct there would be no reason
to change it again—unless the requirements change.)

0 # hours# 23
0 # minutes# 59
0 # seconds # 59

0 # h? # 23
hours’ 5 h?
minutes’5 minutes
seconds’5 seconds

Date
hours, minutes, seconds :

set—hour
D Date
h? :

FIGURE 10.2

A Z specification for Date and set_hour(). The specification states the invariants that hold
for Date as well as the pre- and postconditions for set_hour().

10.6 From Assertions to Verification 233

However, both approaches have in common that specification and code are
separated—leading to huge efforts when it comes to mapping one onto the other.
In contrast, EIFFEL-style specifications (and,more generally, all assertions) integrate
the specification within the code. Thus,they allow us to validate correctness simply
by running the program. For every program run where the assertions hold, the
assertions guarantee the correctness of the result. For the large bulk of mainstream
software, this is already largely sufficient. (There are some programs, though,where
a failing assertion is not an option. A computer controlling an airbag, for instance,
simply must produce a result in a specific time frame. For such dependable systems,
we must still prove program correctness for all runs.)

10.6 FROM ASSERTIONS TO VERIFICATION
The success of specification languages largely depends on their expressive power
as well as the quantity and quality of available tools. A language that excels in both
areas is JML, the Java Modeling Language. JML assertions are written as special
comments in the JAVA code,recognized by JML tools alone and ignored by ordinary
JAVA compilers. Using requires and ensures keywords, one can specify the pre-
and postconditions of an individual JAVA method in EIFFEL style.

/*@ requires 0 <= h && h <= 23
@ ensures hours() == h &&
@ minutes() == \old(minutes()) &&
@ seconds() == \old(seconds())
@*/

void Time::set_hour(int h) ...

As in this example, assertions are written as ordinary Boolean JAVA expressions
together with some extra operators such as \old,which stands for the value of the
variable at the moment the method was entered. Using JMLC,the JML compiler,such
a specification can be translated into assertions that are then checked at runtime.

JML assertions are more than syntactic sugar around ordinary assertions,though.
For one thing, they can serve as specifications. What does the following fragment
of JML specify?

/*@ requires x >= 0.0;
@ ensures JMLDouble
@ .approximatelyEqualTo
@ (x, \result * \result, eps);
@*/

Example 10.2 shows a more complex JML example—a specification for a debit
card. Note the use of invariants (invariant) to assert data sanity (as in EIFFEL, the
invariant is checked before and after every invocation of a public method), the use
of quantifiers (\forall) to express conditions that span multiple variables, and
the specification of exceptional behavior (signals).

234 CHAPTER 10 Asserting Expectations

EXAMPLE 10.2: A debit card specified in JML

public class Purse {
final int MAX_BALANCE;
int balance;
//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;
/*@ invariant pin != null && pin.length == 4 &&
@ (\forall int i; 0 <= i && i < 4;
@ 0 <= byte[i] && byte[i] <= 9)
@*/

/*@ requires amount >= 0;
@ assignable balance;
@ ensures balance == \old(balance) - amount &&
@ \result == balance;
@ signals (PurseException) balance == \old(balance);
@*/

int debit(int amount) throws PurseException {
...
}

Source: Burdy et al. (2003).

Again, JMLC translates all of these conditions into runtime assertions and thus
ensures that no violation passes by unnoticed. However, there is even more to gain
from JML, such as the following.

■ Documentation. The JMLDOC documentation generator produces HTML con-
taining both JAVADOC comments and JML specifications.This is a great help for
browsing and publishing JML specifications.

■ Unit testing. JMLUNIT combines the JML compiler JMLC with JUNIT (see
Chapter 3) such that one can test units against JML specifications.

■ Invariant generation. The DAIKON invariant-detection tool (see Chapter 11)
can report detected invariants in JML format, thus allowing simple integration
with JML.

■ Static checking. The ESC/JAVA static checker checks simple JML specifications
statically, using the deduction techniques laid out in Chapter 7. In particular, it
can leverage specified invariants to detect potential null pointer exceptions or
out-of-bound array indexes.

■ Verification. JML specifications can be translated into proof obligations for vari-
ous theorem provers.The more that properties are explicitly specified the easier
it is to prove them.

Finally, the extended use of assertions also improves the software process, as
assertions establish a contract between developers—or, more generally, between

10.7 Reference Runs 235

BUG STORY 10

The Lufthansa A320 Accident in Warsaw
On September 14, 1993, a Lufthansa A320 landed at Warsaw airport in a thunderstorm.
The landing appeared to be normal and smooth, albeit somewhat fast. The pilots were
unable to activate any of the braking mechanisms (spoilers,reverse thrust,wheel brakes)
for 9 seconds after touchdown,at which point the spoilers and reverse thrust deployed.
The wheel brakes finally became effective 13 seconds after touchdown.The aircraft was
by this time way too far along the runway to stop before the runway end. It ran off
the end, and over an earth bank near the end of the runway, before stopping. The first
officer died in the accident, as did a passenger who was overcome by smoke from the
burning aircraft.

The investigation of the accident found that the aircraft logics prohibited actuation
of reverse thrust unless the shock absorbers were compressed at both main landing
gears. At Warsaw, due to windshear, the shock absorbers of one landing gear were not
compressed sufficiently. The aircraft software would not allow actuation of reverse
thrust, in compliance with its specification.

As a consequence, Lufthansa had concluded there was a problem with the speci-
fication, and was talking with Airbus on a change in the braking logic to reduce the
weight-on-wheels load criterion from 12 metric tons to 2 metric tons. In the mean-
time,Lufthansa required their pilots to land relatively hard in such weather and runway
conditions, thus compressing the shock absorbers and “fooling” the specification.

clients and suppliers of software. As the contract is unambiguous and complete,
it allows for blame assignment. Rather than discussing who is wrong, one can
immediately focus on making the program conform to its specification. Overall,
few techniques are as helpful for debugging as assertions, and no other technique
has as many additional benefits. For every program, there is every reason to use
assertions lavishly.

By definition, specifications guarantee correctness. However, they do not pro-
tect against surprises—simply because the specification does not match what is
actually desired. The accident of a Lufthansa A320 (see Bug Story 10) in Warsaw
is a tragic example of a situation in which everything performed according to
the specification—a specification that was in error and had to be altered after
the accident. Therefore, be sure to have all of your assertions (and specifications)
carefully reviewed. Do not fall into the trap of adapting your code to a faulty
specification.

10.7 REFERENCE RUNS
In some cases, the correct behavior of a program P1 is not specified explicitly but
by reference to another program P0, the behavior of which is defined as “correct.”

236 CHAPTER 10 Asserting Expectations

LIST 10.1: Sources of Reference Runs

The program has been modified. After a change to the program, we want to preserve the
original behavior. The old version of the program thus becomes the reference version P0,
and the central behavior of the new version P1 must not differ from the central behavior
of P0.

As an example, consider a program P0 where a security leak has been detected. Before
you release a patched version P1, you would like to ensure that P1 behaves like P0 in every
aspect—except for the security leak, of course.

The environment has changed. After a larger change to the environment, we want to ensure
that the old behavior is also present in the new environment. Therefore, P0 becomes the
program in the old environment, and P1 is the program in the new environment.

The most famous example of this situation is the year 2000 problem, where several
programs had to deal with the coming of the new century. If a system in the simulated
year 2000 to the current year 1999 showed any differences (except for the date, that is),
the system would have a defect.

The program has been ported. After moving a program from one machine to another, we
want to ensure that the program P1 on the new machine behaves like P0 on the old
machine. System architectures and environments have many differences that can impact
the program’s behavior. In addition to all of the possible influences listed in Chapter 4,
changes in data representation, memory organization, or simply different versions of the
used libraries and tools can all induce differing, and sometimes incorrect, behavior.

The program has been cloned. The program P1 may be a complete reimplementation of P0—
for instance, because the source code of P0 is not (or no longer) available, or because one
needs a component P1 that acts like P0 for the purpose of interoperability.

Suppose I wanted to write a PERL compiler—that is, a tool that translates PERL pro-
grams into machine code. To ensure correctness of my compiler, I have to compare the
behavior of the compiled programs with their behavior when being executed by the original
PERL interpreter. (Actually, this is how PERL ’s semantics are defined: by referring to the
implementation of the PERL interpreter.)

This means that P1 is supposed to behave like P0 in some central aspect, or even in
every aspect. List 10.1 outlines a number of situations in which this happens. The
most common is that P1 is a new revision or variant of the original P0.

Reference programs are mainly used as oracles—that is, as universal devices
that tell us what is correct, right, or true. For instance, consider testing. Any testing
method needs to assess whether the result produced by a program is correct or
not. Using a reference program P0, one can simply compare against the result of
the reference program. This is a common scenario for regression testing. We feed
P0 and P1 with the same input. Any unexpected difference in output is a potential
error—or at least an anomaly to keep in mind for further investigation.

During debugging, we frequently need to tell whether some program state is
infected or not. Having a reference program P0 as an oracle, we can compare its

10.7 Reference Runs 237

FIGURE 10.3

The GUARD relative debugger. The assertion window highlights differences between the
states of two program runs.

state against the debugged program P1—and again, any difference is a potential
infection or anomaly.

Typically, such a comparison is done by having two interactive debuggers run in
parallel,with the programmer comparing the individual results.This is a tedious and
error-prone process. A better alternative is to automate the comparison. This con-
cept has been explored under the name of relative debugging—that is,debugging a
program relative to a reference version.The key idea of relative debugging is to exe-
cute P0 and P1 in parallel—and flagging any difference between the program states.

As an example,Figure 10.3 shows the relative debugger GUARDdebugging a JAVA
Polygonprogram under two JAVA virtual machines:the reference P0 (using JVM 1.3)
and its variant P1,using JVM 1.5. Both processes can be stepped through individually.
However, specific variables (such as perimeter) can be set up to be compared.

How does GUARD know when and where to compare variable values? This is
specified by the programmer. Essentially, the programmer sets up a relative asser-
tion—an assertion that two variables have the same value at a specific location. For
instance, the GUARD assertion

assert p1::perimeter@Polygon.java:65 == p0::perimeter@Polygon.java:65

238 CHAPTER 10 Asserting Expectations

ensures that in process p1 the value of the variable perimeter at the location
Polygon.java:65 is equal to the value of the same variable at the same location
in process p0. GUARD evaluates every relative assertion as execution reaches the
locations, and flags an error if it is violated—very much like the GDB assertion in
Section 10.3.

The Comparison Results window shows the result of this comparison. In the
first step,theperimeter variable was identical in both programs. In the second step,
though,GUARD found a difference (the relative assertion has failed). Theperimeter
values differ by 1.13. Because JVM 1.3 is the reference, the JVM 1.5 variant is wrong
here.

In practice, the two programs being compared may differ in more than just their
control flow. Their data structures may also be organized differently. For instance,
one implementation may choose to store elements in a tree, whereas another
chooses a hash table. Therefore, GUARD lets the user define individual comparison
functions that can compare using a common abstraction, such as sets.

All in all,relative debugging exploits the existence of a reference run in a classical
interactive debugging session.The more of the state and the run covered by relative
assertions the easier it will be to catch infections early. Best results are achieved
when porting an otherwise identical program from one environment to another.

10.8 SYSTEM ASSERTIONS
Some properties of a program must hold during the entire execution. Good oper-
ating systems take care that a program does not access or change the data of other
processes,that mathematical exceptions do not go by unnoticed,and that a program
stays within the limits set by its privileges. One could think of these properties as
invariants that are continuously checked at runtime.

In addition to increasing security for the user, such properties are immensely
useful for debugging, as they limit the scope of the search. Assume I experience
some memory error on a machine where the individual processes are not clearly
separated. In such a case, I must extend my search to all processes that ran in
conjunction with my program—a situation that is difficult to reproduce and to
debug.

Even within a single process, though, it is advisable to have certain properties
that are guaranteed during the entire run. The most important of these properties
is the integrity of the program data. If the fundamental techniques for accessing
memory no longer work, it becomes difficult to isolate individual failure causes.

In C and C++ programs, misuse of the heap memory is a common source of
errors. In C and C++, the heap is a source for memory. This is the place where new
objects are allocated. If an object is no longer required, the appropriate heap mem-
ory must be deallocated (or freed) explicitly. The memory thus becomes available
for other objects.

10.8 System Assertions 239

The programmer must take care, though, that deallocated memory is no longer
used. In addition, deallocated memory must not be deallocated again. Both actions
result in time bombs—faults that manifest themselves only millions of instructions
later and are thus difficult to isolate.

Fortunately, a number of useful tools help validate the state of the heap. It is a
good idea to always have these tools ready during development, and to apply them
at the slightest suspicion. It makes little sense to reason about individual variable
values if the structure of the heap is not sound.The catch of these tools is that they
increase memory and time requirements and thus cannot be used in production
code.

10.8.1 Validating the Heap with MALLOC_CHECK_
Using the GNU C runtime library (default on Linux systems), one can avoid
common errors related to heap use simply by setting an environment variable
called MALLOC_CHECK_. For instance, one can detect multiple deallocation of heap
memory.

$ MALLOC_CHECK_=2 ./myprogram myargs
free() called on area that was already free’d()
Aborted (core dumped)
$ _

The core file generated at program abort can be read in by a debugger, such that
one is directly led to the location where free() was called the second time. This
postmortem debugging was discussed in Section 8.3.3 in Chapter 8.

10.8.2 Avoiding Buffer Overflows with ELECTRICFENCE
The ELECTRICFENCE library effectively prohibits buffer overflows. Its basic idea
is to allocate arrays in memory such that each array is preceded and followed by
a nonexisting memory area—the actual “electric fence.” If the program attempts
to access this area (i.e., an overflow occurred), the operating system aborts the
program.

Using ELECTRICFENCE, one can quickly narrow down the overflowing array in
sample (Example 1.1). We compile sample using the efence library and call the
resulting sample-with-efence program with two arguments. As soon as a[2] is
accessed, the program is aborted.

$ gcc -g -o sample-with-efence sample.c -lefence
$./sample-with-efence 11 14
Electric Fence 2.1
Segmentation fault (core dumped)
$ _

Again, the core file can be read in by a debugger—unless one runs sample-
with-efence directly within the debugger.

240 CHAPTER 10 Asserting Expectations

10.8.3 Detecting Memory Errors with VALGRIND
VALGRIND (named after the holy entrance to Valhalla, the home of Odin) provides
the functionality of ELECTRICFENCE, plus a little more. VALGRIND detects:

■ Read access to noninitialized memory
■ Write or read access to nonallocated memory
■ Write or read access across array boundaries
■ Write or read access in specific stack areas
■ Detection of memory leaks (areas that were allocated but never deallocated)

If we apply VALGRIND to the sample program from Example 1.1, we obtain
a message stating that sample accesses memory in an illegal manner. This access
takes place in shell_sort() (line 18), called by main and __libc_start_main.

$ valgrind sample 11 14
Invalid read of size 4
at 0x804851F: shell_sort (sample.c:18)
by 0x8048646: main (sample.c:35)
by 0x40220A50: __libc_start_main (in /lib/libc---2.3.so)
by 0x80483D0: (within /home/zeller/sample)

The remaining message gives some details about the invalid memory area. It is
close to the memory area allocated by main (line 32)—the memory area malloc’ed
for a[0 ... 1].

Address 0x40EE902C is 0 bytes after a block alloc’d
at 0x4015D414: malloc (vg_clientfuncs.c:103)
by 0x80485D9: main (sample.c:32)
by 0x40220A50: __libc_start_main (in /lib/libc-2.3.so)
by 0x80483D0: (within /home/zeller/sample)

$ _

How does this work? VALGRIND is built around an interpreter for x86 machine
code instructions. It interprets the machine instructions of the program to be
debugged, and keeps track of the used memory in so-called shadow memory.

■ Each memory bit is associated with a controlling value bit (V-bit). Each V-bit is
initially unset. VALGRIND sets it as soon as the associated memory bit is being
written.

■ In addition, each byte is associated with an allocated bit (A-bit), which is set
if the corresponding byte is currently allocated. When some memory area is
deallocated,VALGRIND clears the A-bits.

Whenever the program tries to read some memory with A-bits or V-bits that are not
set,VALGRIND flags an error.

Figure 10.4 shows the situation in whichVALGRIND generates the previous error
message for the sample program:a[0] and a[1] are allocated and initialized—their
A- andV-bits set (shown in gray). In contrast,a[2] is neither allocated nor initialized.
Accessing it causes VALGRIND to issue an error message.

10.8 System Assertions 241

Address

A-bits

V-bits

Variables

a[0] � 11

0 � 40EE9024 0 � 40EE9028 0 � 40EE902C

a[1] � 14 a[2] � ?

FIGURE 10.4

A- and V-bits in VALGRIND. A-bits are set if the associated byte is allocated; V-bits are set if
the associated bit has been written.

Using VALGRIND is not without drawbacks. The code size can increase up to
12 times, and execution times can increase up to 25 times. Memory usage doubles
due to shadow memory. A more efficient way is not to interpret the machine code
but to instrument it—that is, to include extra code at memory accesses to update
and check shadow memory. This approach is realized in the PURIFY tool, which
detects the same class of errors asVALGRIND but in a more effective way. Programs
instrumented with PURIFY have a typical slowdown factor of only 5 to 10. (PURIFY
also comes with a nice GUI as well as phone support from IBM.)

The relatively low overhead is, in general, acceptable for debugging purposes.
Most of the Linux KDE project,for instance,is checked withVALGRIND. PURIFY has a
long record of successfully checking arbitrary programs. Experienced programmers
routinely validate the heap integrity with VALGRIND, PURIFY, or similar tools—just
for easy elimination of a failure source and an extra ounce of confidence.

There is one point where VALGRIND is different from PURIFY and other mem-
ory checkers. VALGRIND acts as a general framework, where VALGRIND plug-ins
can execute arbitrary code while the original program is interpreted. This allows
for much more than just memory check. In fact, memory checking is just one of
VALGRIND’s plug-ins. For instance, it is easy to write a VALGRIND plug-in that logs
the current execution position,in a fashion similar to PIN (see Section 8.2.4 in Chap-
ter 8).The DAIKON tool,discussed in Section 11.5 in Chapter 11,uses a specialized
VALGRIND plug-in to capture execution traces of Linux binaries.

10.8.4 Language Extensions
At this point, one may wonder why we might bother with system assertions at all.
Shouldn’t one simply switch to a programming language in which such problems do
not occur? Indeed, languages with managed memory and garbage collection, such
as JAVA or C#, do not suffer from the memory problems described in this section.
A more conservative migration path from low-level languages is to use a safer dialect
of an existing programming language. Such a dialect brings extensions that allow
programmers to specify further properties of language entities. These extensions
can then be checked (at runtime, but also statically) to catch errors early.

242 CHAPTER 10 Asserting Expectations

As an example, consider CYCLONE, a safer dialect of the C programming lan-
guage. CYCLONE’s central extension to C is the concept of special pointers—that
is, C pointers with special properties. For instance, in CYCLONE one can declare
a pointer that can never be NULL by using @ instead of *. The getc() function,
retrieving a character from a file, is thus declared as

int getc (FILE @);

Calling getc() with a potentially NULL pointer results in a runtime check being
triggered: If getc() is called with a NULL pointer, the runtime check will terminate
theprogramrather thanhavinggetc() fail in anuncontrolled fashion. Inaddition,the
CYCLONE compiler will give a warning about having inserted such a runtime check.

extern FILE *f;
char c = getc (f); // warning: NULL check inserted

Another interesting CYCLONE feature is fat pointers—pointers that not only
record a location but bound information (such as the size of the area being pointed
to). Such a pointer is declared by using ? instead of *. Using fat pointers, a function
such as strlen(), determining the length of a string, can be declared as

int strlen (const char? s);

In contrast to the original strlen() function, the CYCLONE implementation
need not scan the string for a terminating NUL character. Instead, it can access the
bounds of the string s using s.size. This also implies that, unlike the original C
variant, the CYCLONE version will not scan past the end of strings that lack a NUL
terminator. All memory accesses via a fat pointer will have bounds automatically
checked at runtime. If a violation can be detected at compile time already, the
CYCLONE compiler will flag an error.

To detect errors at compile time,CYCLONE imposes a number of restrictions on
C programs (List 10.2)—restrictions that effectively deal with the caveats outlined in
List 7.3 and that still enable CYCLONE to support low-level programming.All in all,a
few extensions suffice to make C-style programming almost as safe as programming
in JAVA, or other high-level languages, and to prevent memory misuse as described
in this section.

10.9 CHECKING PRODUCTION CODE
We have now seen that the computer can automate much of the observation for us,
and that large parts of the program state can be checked during execution. This is
helpful in debugging and increases our confidence in the program. When it comes
to releasing the program, though, should we still have all checks enabled? First, the
following are some checks that should never be turned off.

Critical results. If your program computes a result that people’s lives, health, or
money depends on, it is a good idea to validate the result using some additional

10.9 Checking Production Code 243

LIST 10.2: Restrictions Imposed by CYCLONE to Preserve Safety

■ NULL checks are inserted to prevent segmentation faults.

■ Pointer arithmetic is restricted.

■ Pointers must be initialized before use.

■ Dangling pointers are prevented through region analysis and limitations on free().

■ Only “safe” casts and unions are allowed.

■ goto into scopes is disallowed.

■ switch labels in different scopes are disallowed.

■ Pointer-returning functions must execute return.

■ setjmp() and longjmp() are not supported.

Source: Jim et al. (2002).

computation.As a lesser alternative,one may also use n-version programming—
that is,one computes the result a second time (using an alternate implementation
or algorithm) and compares the results automatically.

Obviously, an assertion is not the best way of checking critical results, in that
an assertion can be turned off—and you do not want to turn off warnings on
critical results.

External conditions. Any conditions that are not within our control must be
checked for integrity. This especially holds for external input, which must be
verified to satisfy all syntactic and semantic constraints. In case of error, the user
must be notified.

Again, an assertion is not the right way to check external conditions. Think
of an assertion that checks whether the length of the input stays within the
buffer length, for instance. Turning off such an assertion results in a security
leak. Furthermore, the input to a program is typically under the control of the
user, and when the user makes a mistake it is better to tell him or her“A PIN has
exactly four digits” rather than to have the program abort with a message such
as assertion ‘length == 4’ failed.

What do we do with the other assertions in production code, though? The
following are some arguments to consider:

The more active assertions there are, the greater the chances of catching infec-
tions. Because not every infection need result in a failure, assertions increase
your chances of detecting defects that would otherwise go by unnoticed.
Therefore, assertions should remain turned on.

The sooner a program fails the easier it is to track the defect. The larger the dis-
tance between defect and failure, the more difficult it is to track the infection
chain. The more active assertions there are, the sooner an infection will be
caught, which significantly eases debugging. This idea of making code “fail fast”
is an argument for leaving assertions turned on.

244 CHAPTER 10 Asserting Expectations

Defects that escape into the field are the most difficult to track. Remember that
failures that occur at the user’s site are often difficult to reproduce (see
Chapter 4). Failing assertions can give the essential clues on how the infection
spread.

By default, failing assertions are not user friendly. The message from a failing
assertion may be helpful for programmers but will appear cryptic to most users—
and the fact that the program simply aborts (which is the default) is not what
you would call a helpful behavior.

However,this is not yet a reason to turn off assertions.An unnoticed incorrect
behavior is far more dangerous than a noticed aborted behavior.When something
bad may happen,do not shoot the messenger (and turn assertions off),but make
sure the program gracefully fails.For instance,a global exception handler could
state that a fatal error occurred and offer some means of recovery.

Assertions impact performance. This argument is true, but should be considered
with respect to the benefits of assertions. As with every performance issue, one
must first detect how much performance is actually lost. Only if this amount is
intolerable one should specifically check for where the performance is lost.

An assertion executed several times as an invariant, for instance, may impact
performance far more than a single postcondition executed once at the end of
a complex function. Regarding performance, it is thus a wise strategy to turn
off those assertions that do have an impact on performance (as proven by ear-
lier measurements) and to leave on those assertions that prohibit a widespread
infection—for instance, those assertions that control the integrity of a result
(unless already checked as a critical result).

Note that the current trend in software development is to trade performance for
runtime safety wherever possible. JAVA and .NET have introduced the concept of
managed code and managed data, whereby the integrity of both code and data is
constantly monitored and verified. Given the security issues in our networked world,
and given the continuing explosion of computing power, the cost of checking as
much as possible becomes more and more irrelevant when compared to the risk of
not checking enough. Eventually,proving correctness may turn out to be a strategy
for optimization. If it can be proven that an assertion always holds, it can easily be
eliminated.

10.10 CONCEPTS
To automate observation, use assertions.How To
Assertions catch infections before they can propagate through the program state

and cover their origins.

Like observation statements, assertions must not interfere with the actual compu-
tation.

10.11 Tools 245

To use assertions, check preconditions, data invariants, and postconditions:
■ Preconditions document the requirements for calling a function.A successful

check means the requirements are met.
■ Data invariants specify properties over data that hold before and after

each public function that operates on that data. A successful check means
sane data.

■ Postconditions describe the effects of a function. A successful check means
correctness of the result.

Assertions can serve as specifications (as in EIFFEL or JML) and thus document
interfaces.

In contrast to“external”specification languages,assertions are interwoven with the
code and can be easily checked at runtime.

Rich specification languages such as JML provide a smooth transition from assertions
(checked at runtime) to static checking and verification (checked at compile
time).

To check a program against a reference program, use relative debugging.

To check memory integrity, use specialized tools to detect errors in mem-
ory management. Such tools should be applied before all other methods of
debugging.

The most sophisticated tools detect memory misuse by tracking memory usage via
shadow memory.

To prevent memory errors in a low-level language, consider using a safer dialect
such as CYCLONE for the C language.

Use assertions to make your code fail as fast as possible. This increases the
chances of catching infections. It also shortens the chain from defect to failure.

Assertions cause a performance loss. You gain benefits for debugging, though,
and avoid risks of erroneous computing—advantages that frequently outweigh the
costs. Therefore, leave lightweight assertions on in production code—offering a
user-friendly recovery from failed assertions.

Do not use assertions for critical results or external conditions. Use hard-coded
error handling instead.

10.11 TOOLS
JML. The Iowa State University JML tools include the JML compiler (JMLC), the

JMLUNIT unit testing program, and the JMLDOC documentation generator. All
are publicly available at http://www.jmlspecs.org/ .

ESC/JAVA. The ESC/JAVA tool combines static checking with JML.The version that
fully supports JML is ESC/JAVA version 2,developed by David Cok and Joe Kiniry.

246 CHAPTER 10 Asserting Expectations

ESC/JAVA version 2 is available at http://kind.ucd.ie/products/opensource/
ESCJava2/ .

GUARD. The GUARD relative debugger was presented by Sosic̆ and Abramson
(1997), who also pioneered the concept of relative debugging. Their web
site contains more on the concept as well as the debugger. This is found at
http://www.csse.monash.edu.au/∼davida/guard/ .

VALGRIND. The VALGRIND tool for Linux is part of Linux distributions for x86
processors. It is available at http://www.valgrind.org/ .

PURIFY. PURIFY, marketed by IBM, is also available for Linux/Unix and Windows.
Information on PURIFY is available at http://www.ibm.com/software/awdtools/
purify/ .

INSURE++. INSURE++ is a commercial tool that detects memory problems by
instrumenting C and C++ source code. It is therefore available on a number
of platforms. It may be found at http://www.parasoft.com/ .

CYCLONE. The CYCLONE dialect was developed by Jim et al. (2002). An
open-source compiler for Linux can be downloaded at http://www.research.att.
com/projects/cyclone/ .

CCURED. The CCURED language by Necula et al. (2002) takes an approach similar
to that of CYCLONE, but moves control from the programmer to the system.
For this purpose, it has to extend data representations by metadata to enable
even better dynamic book-keeping. Such metadata would, for instance, record
how pointers are supposed to be used. Condit et al. (2003) describe the use of
CCURED on real-world software such as network demons. CCURED, as well as
an online demo, are available at http://manju.cs.berkeley.edu/ccured/ .

10.12 FURTHER READING
Assertions are as old as computers. It is reported that even John von Neumann used
them. To see interesting discussions on the use of assertions, have a look at the
“People, Projects, and Patterns” WIKI at http://c2.com/cgi/wiki. You can contri-
bute, too! The following are some starting points:

■ http://c2.com/cgi/wiki?WhatAreAssertions
■ http://c2.com/cgi/wiki?UseAssertions
■ http://c2.com/cgi/wiki?DoNotUseAssertions

Although people generally believe that assertions are a good thing, there is only
one study that has actually conducted controlled experiments to validate this claim.
Müller et al. (2002) found that assertions indeed do increase liability and understand-
ability of programs, although requiring a larger programming effort. (Müller et al.
did not research the use of assertions for debugging, though.)

The EIFFEL language realized the idea of design by contract pioneered by
Meyer (1997). EIFFEL software and voluminous training material are available at
http://www.eiffel.com/ .

10.12 Further Reading 247

To learn more about the Z specification language,I recommendTheWay of Z by
Jacky (1996). Few other books on formal methods come close in clarity, precision,
and completeness.

JML was originally developed by Leavens et al. (1999). Since then, it has turned
into a cooperative effort of dozens of researchers. Burdy et al. (2003) give an
overview of JML tools and applications. Leavens and Cheon (2004) give a tutorial
on how to use JML as a design-by-contract tool. These papers are available on the
JML home page at http://www.jmlspecs.org/ .

Once one has specified an invariant of a data structure, one can detect any
violation. Demsky and Rinard (2003) go one step further and suggest automatic
repair of data structures with given invariants.

The SPEC# language (spoken“spec sharp”) by Barnett et al. (2004) is an extension
of C#, providing non-NULL types (as in CYCLONE) as well as method contracts (as
in JML). It is being used at Microsoft to improve safety. See the project home page
at http://research.microsoft.com/SpecSharp/ .

ESC/Java was developed at the Compaq Systems Research Center by a
large group of researchers. To get started with extended static checking in
general, see the project home page at http://kind.ucd.ie/products/opensource/
ESCJava2/ .

TheVALGRIND tool was initially developed by Julian Seward,and later extended
to a framework by Nicholas Nethercote.The paper of Nethercote and Seward (2003)
gives several details about the framework.

The concept of having software fail fast is discussed by Shore (2004),
using several code examples to illustrate the use of assertions and exception
handlers.

Checking the integrity of all input is an important factor in building secure
software. See Viega and McGraw (2001) for an introduction to the subject.

N -version programming is a lesser alternative to checking results,because there
are serious doubts whether it works. For details,see Knight and Leveson (1986) and
Leveson et al. (1990).

Bug Story 10, on the A320 accident, was compiled from “Report of the Main
Commission Aircraft Accident Investigation Warsaw,” and information from Peter
Ladkin, posted to the Risks Digest (vol. 15, issue 30) in December 1993. The
report is available, along with other accident reports, at http://sunnyday.mit.edu/
accidents/ .

EXERCISES
10.1 Why can an assertion such as assert(sane()) be used at the beginning and

end of public functions but not necessarily at other places?

10.2 What happens if sane() is called from hour()? How can you improve the
sane() function?

248 CHAPTER 10 Asserting Expectations

10.3 Write assertions for the bigbang program shown in Figure 8.2:

(a) As invariants for the Element and Container classes.
(b) As pre- and postconditions for each public method, checking (among

others) that the invariants still hold.

Do you catch the infection using these assertions? If so,how? If not,why not?

10.4 Consider the public interface of the JAVA TreeMap class. Design an aspect
that adds assert(sane()) to the beginning and end of each public func-
tion. Optimize the aspect such that postmethod checks are only issued for
methods that can change the state.

10.5 Assume we had a function that could tell us whether the state is sane [say,
state_is_sane()]. To search a defect, all we would have to do is insert
assertions

assert(state_is_sane());

into the program to narrow down the infection site by a simple binary search,
which could even be automated. However, if we had such a function we
would not have to search the defect anyway. Why?

10.6 Assume the program state consists only of objects the sanity of which is
guaranteed by (invariant) assertions. Can we assume that the entire state is
sane?

10.7 Rather than writing an assertion such as

assert(0 <= h && h <= 23);

I can use GDB to check the following condition.

(gdb) break ’Time::set_hour(int)’ if h < 0 || h > 23
Breakpoint 3 at 0x2dcf: file Time.C, line 45.
(gdb) _

Discuss the pros and cons of this technique.

10.8 Consider the BinaryTree class shown in Example 10.3. Write some aspects
for the following tasks.

(a) A logging aspect that logs every entry and every exit of a method from
the BinaryTree class. This aspect shall log which method is entered or
left.

(b) A logging aspect that displays every setting of the left or the right child
of a BinaryTree.

10.9 For the BinaryTree class shown in Example 10.3,write some JML invariants
that hold for a tree node per the following:

■ The key is a nonnegative number.

10.12 Further Reading 249

EXAMPLE 10.3: The BinaryTree.java program

1 class BinaryTree {
2 private int key;
3 private Object value;
4 private BinaryTree right;
5 private BinaryTree left;
6
7 public BinaryTree(int _key,Object _value) {
8 key = _key;
9 value = _value;
10 right = left = null;
11 }
12
13 // Lookup a node with a specific key
14 public Object lookup(int _key) {
15 BinaryTree descend;
16 if (_key == key)
17 return value;
18 if (_key < key)
19 descend = left;
20 else
21 descend = right;
22 if (descend == null)
23 return null;
24 return descend.lookup(_key);
25 }
26
27 // Insert a node with a certain key and value
28 public void insert(int _key, Object _value) {
29 if (_key <= key)
30 if (left == null)
31 left = new BinaryTree(_key,_value);
32 else
33 left.insert(_key,_value);
34 else
35 if (right == null)
36 right = new BinaryTree(_key,_value);
37 else
38 right.insert(_key,_value);
39 }
40
41 // Delete a node with a certain key
42 public boolean delete (int key) {
43 // ...
44 return true;
45 }
46 }

250 CHAPTER 10 Asserting Expectations

■ The keys of all left children are less than or equal to the node’s key. The
keys of all right children are greater than or equal to the node’s key.

■ The data object is not empty.

10.10 Sketch JML assertions for the insert method of BinaryTree (Exam-
ple 10.3) that guarantee the following conditions:
■ The inserted object is not null.
■ The key and the object are not altered during insertion.
■ The children of this node contain one further instance of the inserted

key/object pair after insertion.

10.11 Consider the following three pieces of code,which sum up the elements in
an array a[]. First, a PYTHON version:

a = read_elems()
sum = 0
for elem in a.elems():

sum = sum + elem

A C version:

read_elems(a);
sum = 0;
for (int i = 0; i < n; i++)

sum += a[i];

And finally, a JAVA version:

a = read_elems();
sum = 0;
for (Iterator it = a.iterator(); it.hasNext();)

sum += it.next();

In all three versions,we have a variable sum that at the end of the loop holds
the sum of all elements in a[]. Using relative debugging, which assertions
can you set up?

10.12 What are the respective benefits of relative assertions versus standard
assertions?

10.13 Some possible points for a program examination are as follows.
■ Function foo() is reached.
■ Variable z[0] is equal to 2.
■ Function foo() is reached and variable z[0] is equal to 2.
■ Function foo() is reached or variable z[0] is equal to 2.
■ Function foo() is reached and at least one of z[0], z[1], …, z[99] is

equal to 2.
■ All of z[0],z[1], …,z[99] are equal to 2.

Assume that the processor has no special debugging support, except for
changing individual machine instructions into interrupt instructions.

10.12 Further Reading 251

(a) Sort these queries according to the execution speed of the examined
program from fastest to slowest.

(b) Sketch processor support that can make these queries more efficient.
(c) Sketch possible code instrumentation (e.g., adding new code at compi-

lation time) to make these queries more efficient.

10.14 Use VALGRIND (or similar heap checker) to check bigbang (Example 8.3)
for memory problems.

10.15 We observe a union in a C program—a data structure in which all members
start at the same address and in which only one member is actually used.

union node_value {
char c; // 1 byte
int i; // 4 bytes
double d; // 8 bytes

}

Your goal is to disambiguate the union—that is, to decide which of the
members c,i, or d is actually being used. Discuss the means of doing so at
the moment of execution,usingVALGRIND’s bits.Which bits do you use for
which purpose?

10.16 Design a global exception handler that catches failing assertions and gives
user-friendly directions on how to handle the situation. (Hint: See Shore
(2004) for a discussion.)

One other obvious way to conserve programmer time is to teach machines how
to do more of the low-level work of programming.

– ERIC S. RAYMOND

The Art of UNIX Programming (1999)

CHAPTER

11Detecting Anomalies

Although one program run can tell you quite a great deal, having multiple runs to
compare offers several opportunities for locating commonalities and anomalies—
anomalies that frequently help to locate defects. In this chapter, we discuss how to
detect anomalies in code coverage and anomalies in data accesses. We also demon-
strate how to infer invariants from multiple test runs automatically, in order to flag
later invariant violations. All of these anomalies are good candidates for infection
sites.

11.1 CAPTURING NORMAL BEHAVIOR
If we have a full specification of a program’s behavior, we can easily narrow down
an infection (as discussed in Chapter 10). So why not simply use assertions all the
way through? The following are some reasons:

■ Assertions take time to write, especially in otherwise unspecified or undocu-
mented code.

■ Assertions over temporal properties [“Don’t call close() unless you have called
open()”] or control flow (“If you’ve taken this branch, you can’t take this other
branch”) are difficult to specify.

■ For practical purposes, assertions cannot cover all properties of the entire state
at all times—because this would imply a specification as complex as the original
program (and just as likely to contain defects). Thus, there will always be gaps
between assertions that must be explored.

All of these limits come from the fact that assertions verify against correct
behavior, which has to be specified by humans. However, there is an alterna-
tive: rather than having assertions compare against the correct behavior we could
also have assertions compare against normal behavior, and thus detect behavior
that is abnormal (i.e., deviates from the average in some way). Such behavior is
characterized by certain properties of the program run, such as the following:

■ Code coverage: Code that is executed in (“abnormal”) failing runs but not in
(“normal”) passing runs. 253

254 CHAPTER 11 Detecting Anomalies

■ Call sequences: Sequences of function calls that occur only in (“abnormal”)
failing runs.

■ Variable values: Variables that take certain (“abnormal”) values in failing runs
only.

Of course,knowing about abnormal behavior is not as useful as knowing about
incorrect behavior. Incorrect behavior implies a defect,whereas abnormal behavior
implies—well, formally nothing, just abnormal behavior. However,abnormal behav-
ior is often a good indicator of defects, meaning that abnormal properties of a
program run are more likely to indicate defects than normal properties of the run.
Consequently, it is wise to first search for anomalies and then to focus on anomalies
for further observation or assertion.

So, how does one capture normal behavior of a program? This is done using
induction techniques—inferring an abstraction from multiple concrete events. In
our case, the concrete events are program runs. The abstractions are general rules
that apply to the runs taken into account.Typically, such techniques are applied on
runs that pass a given test,generating abstractions for“normal”runs. A run that fails
that test is then examined for those properties where these abstractions are not
met, resulting in anomalies that should be focused on.

In this chapter, we explore a number of automated techniques that use induction
to infer abstractions from runs—and then leverage these abstractions to detect
anomalies and potential defects. Many of these techniques are fairly recent, and are
thus not necessarily ready for industrial primetime. Nonetheless, they should serve
as food for thought on how debugging can be further automated. Here, we ask:

HOW CAN WE FIND OUT WHERE A FAILING RUN DEVIATES FROM PASSING RUNS?

11.2 COMPARING COVERAGE
One of the simplest methods for detecting anomalies operates per the following
logic:

1. Every failure is caused by an infection, which again is caused by a defect.
2. The defect must be executed in order to start the infection.
3. Thus, code that is executed only in failing runs is more likely to contain the

defect than code that is always executed.

To explore this hypothesis, we need a means of checking whether code has been
executed or not. This can easily be done using coverage tools, which instrument
code such that the execution keeps track of all lines being executed. Such coverage
tools are typically used for assessing the quality of a test suite.

A test suite should execute each statement at least once, because otherwise a
defect may not be executed. (More advanced coverage criteria demand that each

11.2 Comparing Coverage 255

EXAMPLE 11.1: The middle program returns the middle number of three

1 // Return the middle of x, y, z
2 int middle(int x, int y, int z) {
3 int m = z;
4 if (y < z) {
5 if (x < y)
6 m = y;
7 else if (x < z)
8 m = y;
9 } else {
10 if (x > y)
11 m = y;
12 else if (x > z)
13 m = x;
14 }
15 return m;
16 }
17
18 // Test driver
19 int main(int arc, char *argv[])
20 {
21 int x = atoi(argv[1]);
22 int y = atoi(argv[2]);
23 int z = atoi(argv[3]);
24 int m = middle(x, y, z);
25
26 printf("middle: %d\n", m);
27
28 return 0;
29 }

transition in the control flow graph be executed at least once.) In our case, though,
we want to use such coverage tools to compare the coverage of a passing and a
failing run.

As an ongoing example, consider the piece of code shown in Example 11.1,
computing the middle value of three numbers. This program works nicely on a
number of inputs.

$./middle 3 3 5
middle: 3
$ _

It fails, though, on specific inputs—the middle number of 2, 1, and 3 is 2, not 1.

$./middle 2 1 3
middle: 1
$ _

We can now examine the code coverage of these runs, as well as a few more,
shown in Example 11.2. Each column stands for a run (with the input values at

256 CHAPTER 11 Detecting Anomalies

EXAMPLE 11.2: Comparing coverage of multiple test runs

3 1 3 5 5 2

3 2 2 5 3 1

2 int middle(int x, int y, int z) { 5 3 1 5 4 3

3 int m = z; • • • • • •
4 if (y < z) { • • • • • •
5 if (x < y) •
6 m = y; •
7 else if (x < z) • • •
8 m = y; • •
9 } else { • • •

10 if (x > y) •
11 m = y; •
12 else if (x > z)

13 m = x;

14 }

15 return m; • • • • • •
16 } � � � � � �

•, •: covered statements

Source: Jones et al. (2002).

the top), and each circle stands for a line being executed in the run. The return
statement in line 15, for instance, has been executed in every single run, whereas
the assignment m = y in line 8 has been executed in both test cases 3 3 5 and
2 1 3 (shown previously).

This line is somewhat special, too. Every statement that has been executed in
the failing run 2 1 3 has also been executed in passing runs. However, line 8 has
been executed in only one passing test,whereas all other lines have been executed
in at least two passing tests. Assuming that a statement is more normal the more
often it is executed in passing runs (which indicates it has a low chance of starting
an infection), line 8 is the least-normal statement.

(You may also have noticed that lines 12 and 13 are never executed—neither in
the failing nor in the passing run. Is this an anomaly we are looking for? No,because
the same effect applies in passing as well as in failing runs.)

If we actually focus on line 8 as an anomaly,we could take a look at the conditions
under which line 8 is being executed. These are y �z (line 4), x �y (line 5), and
x �z (line 7). In other words, y �x �z holds. Thus, the middle value is x, and in
line 8,m should be assigned x rather than y. Line 8, the greatest anomaly regarding
coverage, is indeed the defect that causes the failure.

Such coverage information can be visualized to guide the user in detecting
anomalies. Figure 11.1 showsTARANTULA,a tool for visualizing coverage anomalies.
In TARANTULA, each nonblank character of the code is shown as a pixel. Each line
is assigned a color hue and a brightness, indicating the anomaly level.

11.2 Comparing Coverage 257

FIGURE 11.1

Visualizing coverage anomalies with TARANTULA. Each line of code is assigned a specific
color. The “redder” a statement the stronger its execution correlates with failure. (Source:
Jones et al., 2002.)

■ Color. The redder a statement, the higher the percentage of failing test cases
in the test cases that executed this statement. In Example 11.2, line 8 would
get the highest amount of red, as 50 percent of the test cases that executed this
statement failed. Lines 5, 6, and 9–11, though, would appear in green, as they
were only executed in passing test cases.

■ Brightness. The brighter a statement, the higher the percentage of test cases
executing this statement in all test cases. In Example 11.2, of lines 5–11,
line 9 would obtain the highest brightness, as it was executed in the most test
cases.

What a TARANTULA user would be searching for, then, is bright red lines—
statements that are executed in failing test cases only. In the best of all worlds,only
a few of these lines would show up—limiting the number of lines to be examined.
In a case study, Jones et al. (2002) showed that an anomaly does not necessarily
indicate a defect, but that a defect is frequently an anomaly.

258 CHAPTER 11 Detecting Anomalies

■ For some defects,the percentage of abnormal code was as low as 3 percent.That
is,starting the search at the most abnormal category,the programmer would find
the defect after looking at 3 percent of the code.

■ The most abnormal category (the 20 percent “reddest”) contained at most 20
percent of the code.That is,comparing coverage actually yields small significant
differences.

■ Eighteen of the 20 defects were correctly classified in the most abnormal
category—that is, the one containing 20 percent (at most) of the code.

Thus, in this particular case study, focusing on the abnormal statements allowed
programmers to ignore 80 percent of the code or more. Yet, one can still improve
this. In past years,researchers have focused on the following extensions to coverage
comparison.

Nearest neighbor. Rather than comparing against a combination of all passing runs,
it may be wiser to compare only against one passing run—the so-called“nearest
neighbor.”This nearest neighbor is the passing run the coverage of which is most
similar to the failing run. Obviously, the few remaining differences are those that
are most strongly correlated with failure—and thus likely to point to the defect.

In a case study, Renieris and Reiss (2003) found that the nearest-neighbor
approach predicts defect locations better than any other method based on cov-
erage. In 17 percent of all test runs of the so-called Siemens test suite, the
defect location could be narrowed down to 10 percent or less of the code.
(In Chapter 14, we see how to improve on this result.)

Sequences. As coverage comparison points out, the code of a single method
can be correlated with failure. Some failures, though, occur only through a
sequence of method calls tied to a specific object.As an example,consider streams
in JAVA. If a stream is not explicitly closed after use, its destructor will eventually
close it. However, if too many files are left open before the garbage collector
destroys the unused streams, file handles will run out and a failure will occur.
This problem is indicated by a sequence of method calls. If the last access (say,
read()) is followed by finalize(), but not close(), we have a defect.

In a case study, Dallmeier et al. (2005) applied this technique on a test suite
based on the JAVA NanoXML parser. They found that sequences of calls always
predicted defects better than simply comparing coverage. Overall,the technique
pinpointed the defective class in 36 percent of all test runs, with the same low
cost as capturing and comparing coverage.

As all of these figures were obtained on a small set of test programs, they do
not generalize to larger programs. Nonetheless, these test programs serve as bench-
marks. If a specific technique works better on a benchmark, it is likely to perform
better on other programs. In the future, we will see more and more advanced
coverage-comparison tools, demonstrating their advantage on benchmarks as well
as on real-life programs.

11.3 Statistical Debugging 259

11.3 STATISTICAL DEBUGGING
In addition to simple coverage, there are other aspects to collect from actual runs.
One interesting aspect is exceptional behavior of functions—as indicated by excep-
tions being raised,or unusual values being returned. If such events frequently occur
together with failures, we might have important anomalies that point us to the
defect.

The following is an example of how such a technique works, developed by
Liblit et al. (2003). Release 1.2 of the CCRYPT encryption tool has a defect: When
it comes to overwriting a file, CCRYPT asks the user for confirmation. If the user
responds with EOF instead of yes or no, CCRYPT crashes.

Liblit et al. attempted to use remote sampling to isolate the defect. They instru-
mented CCRYPT such that at each call site of a function it would maintain three
counters for positive, negative, or zero values returned by the function. (In C func-
tions such arithmetic sign values often differentiate whether the call was successful
or not.) When CCRYPT terminated, they would be able to tell how often each func-
tion had returned a positive,negative,or zero value.This data from 570 call sites,or
570�3�1,710 counters, would then be collected for statistical evaluation.

To gather data from actual runs, Liblit et al. generated 2,990 random runs from
random present or absent files, randomized command-line flags, and randomized
user responses (including occasional EOF conditions). These runs were classified
into failing (crashing) and passing runs.

Liblit et al. would then examine the counters. Just as when comparing coverage
(Section 11.2), they would search for functions executed only in failing runs, but
never in passing runs—or more specifically, for functions returning a specific value
category only in failing runs. In other words, the appropriate counter is positive for
all failing runs, but always zero for passing runs.

It turns out that in the 2,990 CCRYPT test runs,only 2 out of the 1,170 counters
satisfy the following conditions:

■ traverse.c:320:file_exists()�0
■ traverse.c:122:xreadline()��0

In other words, the failure occurs if and only if these 2 conditions are met:
file_exists() returns true, because a file (to be overwritten) exists, and
xreadline() returns null, because the user did not provide any input.

Such a result is an anomaly because it occurs only in failing runs. It is not a
defect, though, because both return values are perfectly legal. However, using this
knowledge we can easily follow the forward dependences from the call sites and
see where the returned values are used—and we will quickly find that CCRYPT does
not expect xreadline() to return null.

If we use real user input rather than random strings, we should even expect
some runs where a file exists (i.e., file_exists()�0 holds) but where the user
provides a valid input (such as yes), resulting in xreadline() ��0 and a passing

260 CHAPTER 11 Detecting Anomalies

run.This would imply that the predicate file_exists()�0 is true for at least one
passing run—and thus only xreadline()��0 would remain as the single anomaly
correlated with the failure.

11.4 COLLECTING DATA IN THE FIELD
Detecting anomalies from actual executions may require a large set of runs, which
is why these are typically generated randomly. A far better approach, though, is to
use data collected in the field—that is, from executions at users’ sites.

■ The number of executions at users’sites is typically far higher than the number
of executions during testing.

■ Real-life executions produce a greater variety. In the CCRYPT example, for
instance, the typical behavior of entering “yes” or “no” at a prompt was not
covered by the random input.

■ In our networked world,collecting and gathering data can easily be automated,
as well as the analysis.

■ Gathering information from users’runs gives a firsthand indication about how
the software is being used—information otherwise difficult to obtain.

■ As a side effect,the makers of a software product learn which features are most
frequently used and which are not—an important factor when determining
the impact of a problem (see Section 2.4 in Chapter 2).

In principle, there is no limit to the information that can be collected. Excep-
tional behavior such as crashes is certainly valuable to the provider (see Section 2.2
in Chapter 2). However, to statistically correlate such exceptional behavior with
other aspects of the program run one may also want to monitor function execution
or data values.

It is not wise to log everything, though. Two issues have to be considered:

■ Privacy. Users have a right to privacy, and are very conscious of privacy issues.
Section 2.2 in Chapter 2 has details on these issues and how to address them.

■ Performance. Collecting data impacts the local performance of the system. In
addition, forwarding large amounts of collected data over the network entails
costs.To improve performance,one can focus on a specific part of the product—
for instance, collect data only from a few components rather than the entire
system. Instead of collecting all data, one can also sample the logs such that
each user executes only a small fraction of the collecting statements.

This sampling approach is actually quite effective. In the CCRYPT example from
Section 11.3,Liblit et al. would conduct an experiment in which only 1 out of 1,000
return values of a function was sampled. The impact on performance is less than
4 percent. Of course, sampling only 1 out of 1,000 function returns requires a large
number of runs.

11.4 Collecting Data in the Field 261

140

120

100

N
u

m
b

er
 o

f ‘
‘g

o
o

d
’’

fe
at

u
re

s
le

ft

80

60

40

20

0
0 500 1000 1500

Number of successful trials used

2000 2500 3000

FIGURE 11.2

Narrowing down predicates. Crosses mark means; error bars mark one standard deviation.

Figure 11.2 shows how the function counters discussed in Section 11.3 are
eliminated as the number of runs increases. The process starts with 141 out of
1,710 counters that are ever nonzero. One then adds data from one random run
after another. After having considered 1,750 runs, the set of remaining predicates
has gone down to 20, and after 2,600 runs just 5 are left. Again, these 5 predicates
are strongly correlated with failure.

Overall,the results so far demonstrate that statistical sampling can be a powerful,
low-overhead tool for detecting anomalies in the field. Now all one needs is users
who are willing to have their runs sampled. Liblit et al. (2005) state that “relatively
few runs (we used 32,000) are sufficient to isolate all of the bugs described in this
paper.”

There are situations, though,where several thousand runs are easy to sample. In
particular, a centralized Web service may be called thousands of times a day—and
since there is just one program instance doing the actual work behind the scenes,
instrumenting a sample of runs is pretty straightforward, as is collecting data of
actual failures. In practice, this means that you get anomalies almost for free—and
the higher the number of runs, the more significant the correlation of features and
failures will be.

262 CHAPTER 11 Detecting Anomalies

11.5 DYNAMIC INVARIANTS
So far, we have seen how specific aspects of multiple runs can be collected to
detect anomalies.Another approach for leveraging multiple runs is to generate likely
specifications that hold for all runs and to see whether these can be turned into
general assertions—which can then be used to detect anomalies.

How does one generate specifications from actual runs? A simple yet highly
effective approach has been implemented in the DAIKON tool by Ernst et al. (2001).
The main idea behind DAIKON is to discover invariants that hold for all observed
runs. These invariants come in the form of pre- and postconditions. They can be
converted into assertions to check for abnormal behavior. To see what DAIKON
does, consider the following piece of code.

public static int ex1511(int[] b, int n)
{

int s = 0;
int i = 0;
while (i != n) {

s = s + b[i];
i = i + 1;

}
return s;

}

What does this code do? We create a set of concrete runs, processing 100 ran-
domly generated arrays with a length from 7 to 13 and elements from [�100, 	100].
Running DAIKON on these runs yields two invariants. First is the inferred precon-
dition for ex1511():

Ex.ex1511(int[], int):::ENTER
n == size(b[])
b != null
n <= 13
n >= 7
...

Obviously,n is the size of the array b[].This could serve as an assertion,assuming
we can access the size of b[]. In addition, in the runs observed n is always in the
range from 7 to 13—but this is obviously an artifact of the runs we observed. The
second invariant is the postcondition for ex1511():

Ex.ex1511(int[], int):::EXIT
b[] == orig(b[])
return == sum(b[])
...

In the first invariant, the orig(b[]) clause stands for the “original” value of
b[]—that is, as the function was entered—and the invariant properly states that
ex1511() did not change b[]’s values. The second invariant states that the return
value of ex1511() is always the sum (sum()) of the elements of b[]—and this is
precisely what ex1511() does.

11.5 Dynamic Invariants 263

Test suite
Given

invariants

Program
Trace
file

Detect
invariants

Likely
invariants

User

Instrumentor

Execute
program

FIGURE 11.3

How DAIKON works. The instrumented program generates a trace file, from which DAIKON
extracts the invariants.

How does DAIKON detect these invariants? The general process, as follows, is
shown in Figure 11.3.

1. The program to be observed is instrumented at runtime such that all values of all
variables at all entries and exits of all functions are logged to a trace file. For C and
JAVA programs, DAIKON uses binary instrumentation techniques built on top of
VALGRIND (see Section 10.8.3 in Chapter 10). For PERL programs,DAIKON adds
instrumentation to the source code in a preprocessing step.

2. When executing the program under a test suite,the instrumented code generates
a trace file.

3. DAIKON processes this trace file. DAIKON maintains a library of invariant pat-
terns over variables and constants. Each of these patterns can be instantiated
with different variables and constants.
■ Method specifications come as pre- and postconditions.They can apply to:

– Primitive data such as integers.They compare at most three variables with
constants and other variables, as in:

x = 6; x ∈ {2, 5, ---30}
x < y; y = 5 * x + 10;
z = 4 * x + 12 * y + 3;
z = fn(x, y).

– Composite data such as sequences, arrays, or lists. For instance,
A subsequence B; x ∈ A; A is sorted.

■ Object invariants such as the following.

string.content[string.length] = ’\0’;
node.left.value � node.right.value
this.next.last = this

Just as method specifications, object invariants can apply to primitive as
well as composite data.

264 CHAPTER 11 Detecting Anomalies

For each variable (or tuple of variables),DAIKON maintains a set of potential
invariants, initially consisting of all invariants. At each execution point under
consideration, for each value recorded in the trace, DAIKON checks each inva-
riant in the set to determine whether it still holds. If it does not,DAIKON removes
it from the set.

During this process, DAIKON checks individual variables as well as derived
variables, such as orig(b[]) or sum(b[]) in the previous example. Derived
variables also include the return values of functions,to be used in postconditions.

4. While detecting invariants, DAIKON makes some optimizations to make the
remaining invariants as relevant as possible. In particular, if some invariant A
implies an invariant B, then B need not be reported.

5. After DAIKON has fully processed the trace file, the invariants that remain are
those that held for all execution points.

6. DAIKON ranks the invariants by the number of times they actually occurred. An
invariant detected 100 times is less likely to be a random effect than an invariant
detected 3 times.

7. DAIKON reports the relevant and ranked invariants to the user. The invariants
can be fed into another tool for further processing.

The benefits of this technique are as clear as its drawbacks. The most obvious
drawback of DAIKON is that the invariants it detects are those built into its library.
DAIKON cannot generate new abstractions on its own. For instance, DAIKON can
discover that“at the end of shell_sort(), the value is sorted”(sample.c in Exam-
ple 1.1), but not that “the value returned is the middle number” (middle.c in
Example 11.1).This is because DAIKON knows about“sorted”things but not about
“middle”numbers. It just lacks the appropriate vocabulary.

It is not too difficult to extend DAIKON ’s vocabulary by concepts such as middle
elements. In general, as long as some property can be observed it can be added to
DAIKON’s invariant library. However, the more properties there are to be checked
(as well as possible combinations thereof) the longer DAIKON has to run. In regard
to the current library, invariant detection time for each program point is cubic in
the number of variables that are in scope at this point (as patterns involve three
variables at most).Thus,a large number of invariants on a large number of variables
will quickly bring DAIKON to its knees. Thus, users need to apply DAIKON to the
portion of the code that interests them most.

For the user, the central problem is to assess the reported invariants. Are these
true facts that hold for every possible execution (which is what users are typi-
cally interested in), or do the invariants just hold for the examined runs? On the
other hand, if the examined runs are typical for the general behavior, all reported
invariants will be helpful for understanding this general behavior.

Keeping these issues in mind,DAIKON is a great tool for program understanding
and for summarizing the properties of several runs in a few conditions. DAIKON can
output its assertions in JML format,which JML tools (see Section 10.6 in Chapter 10)
can thus check for other runs—for failing runs, for instance, as well as for new runs

11.6 Invariants on-the-Fly 265

of a changed version.Whenever a specification is required but a test suite is available,
the invariants inferred by DAIKON come in handy as a first take.

11.6 INVARIANTS ON-THE-FLY
A question not yet answered is whether dynamic invariants can be directly used
for anomaly detection—without first selecting those that are useful as general spec-
ifications. In the CCRYPT example from Section 11.3, we showed how function
return values can be correlated with actual failures. Such return values can also be
detected and summarized,making dynamic invariants a potential tool for automatic
anomaly detection.

This idea has been explored in the DIDUCE prototype of Hangal and Lam (2002).
DIDUCE is built for efficiency, and primarily geared toward anomaly detection. It
works for a very specific set of invariants only, but has been demonstrated to be
effective in detecting anomalies.

Just like DAIKON, DIDUCE instruments the code of the program in question. In
contrast to DAIKON, though, DIDUCE works on-the-fly—that is, invariants are com-
puted while the program is executed. For each instrumented place in the program,
DIDUCE stores three items:

Coverage. DIDUCE counts the number of times the place was executed.

Values. For each accessed variable, DIDUCE stores the found value of the variable
read or written.This value is converted to an integer,if necessary,and then stored
as a pair (V , M), where

■ V is the initial value first written to the variable, and
■ M is a mask representing the range of values (the ith bit is 0 if a difference

was found in the ith bit, and 1 if the same value has always been observed for
that bit).

Formally, if the first value of a variable is W , then M :�¬0 and V :�W hold.With
each new assignment W ′, the mask M becomes M :�M ∧¬(W ′ ⊗V), where ⊗
is the exclusive-or operation.

The following is an example. If some variable i is first assigned a value of 16,
then V �16�10000 (in binary representation) holds (M is initially ¬0�11111).
If i is later assigned a value of 18, V is still unchanged, but in M the second bit
is cleared because the difference between V and 18 is the second bit. Thus, M
becomes 11101.

Difference. For each variable, DIDUCE additionally stores the difference between
the previous value and the new value.These are again stored as a pair (V , M), as
described previously.

If i’s value changes from 16 to 18, as described previously, the initial differ-
ence V is 2. In the mask M , all bits are set (M �¬0). If i’s value now increases
to 21, the new difference between old and new value is 21�18�3.The first bit
in M is cleared because the increases 2 and 3 differ in the first bit.

266 CHAPTER 11 Detecting Anomalies

Table 11.1 Collecting Invariants in DIDUCE

Value Difference
Code i V M V M Invariant

i = 10; 1010 1010 …11111 –/– –/– i �10

i += 1; 1011 1010 …11110 1 …11111 10� i �11∧|i′ � i|�1

i += 1; 1100 1010 …11000 1 …11111 8� i �15∧|i′ � i|�1

i += 1; 1101 1010 …11000 1 …11111 8� i �15∧|i′ � i|�1

i += 2; 1111 1010 …11000 1 …11101 8� i �15∧|i′ � i|�2

The masks, as collected during a program run, imply ranges of values and
differences that can easily be translated into invariants over values and differences.
Table 11.1 outlines how the mask bits become more and more cleared as value vari-
ation progresses. Due to the representation, the ranges are not as exact as could be.
The representation, though, is very cost effective. The runtime overhead is limited
to a few memory operations and simple logical operations for each instrumentation
point, and the slowdown factor reported by Hangal and Lam (2002) lies between
6 and 20.

Once one has collected the invariants and finalized the M masks, this repre-
sentation is just as effective for reporting invariant violations. Whenever DIDUCE
observes further variation of M , it reports a violation.Thus,each value or difference
out of the range observed previously becomes an anomaly.

Although far more limited than DAIKON, the invariant violations reported by
DIDUCE have successfully uncovered defects in a number of programs.The follow-
ing is an example reported by Hangal and Lam (2002). A multiprocessor simulator
exhibited rare and presumably random cache errors. Running DIDUCE in a time
interval where no failures occurred resulted in a set of invariants. These invariants
were then checked in an overnight run of DIDUCE. It turned out that one violation
was produced: a status line, which was usually 0 or 1, suddenly turned out to be 2,
and a failure occurred. It turned out that the programmer had not checked this
condition properly, and the anomaly reported by DIDUCE quickly pointed him to
the defect.

As DIDUCE accumulates invariants during a run, and can be switched from
“learning” to “detection” mode without interrupting the application, it is particu-
larly easy to use. In particular, users can start using DIDUCE at the start of the
debugging process and can switch between inferring and checking during a run.

11.7 FROM ANOMALIES TO DEFECTS
An anomaly is not a defect,and it is not a failure cause.Yet,an anomaly can be a good
starting point for reasoning.

11.8 Concepts 267

■ Does the anomaly indicate an infection? If so,we can trace the dependences
back to the origins.

■ Could the anomaly cause a failure? If so, we must understand the effects
of the anomaly—for instance,by following the forward dependences through
the program.

■ Could the anomaly be a side effect of a defect? If so, we must trace back the
anomaly to the common origin of failure and anomaly.

Overall, the case studies in this chapter have shown that abnormal properties of
a program run are more likely to indicate defects than normal properties of the run.
Therefore,whenever we have the choice of multiple events we should first focus on
the abnormal ones—and using scientific method set up an experiment that checks
whether the anomaly causes the failure.

11.8 CONCEPTS
As defects are likely to cause abnormal behavior, anomalies frequently point to
defects.

Anomalies are neither defects nor failure causes,but can strongly correlate with
either.

To determine abnormal behavior, determine the normal behavior of passing runs How To
and see how the failing run(s) differ. This can be done

■ by comparing the summarized properties directly, or
■ by turning the properties into assertions, which can then be used to detect

anomalies in failing runs.

To summarize behavior, use inductive techniques that summarize the properties
of several program runs into an abstraction that holds for all of these runs.

To detect anomalies, researchers so far have focused on coverage, function return
values, and data invariants.

To compare coverage, instrument a program and summarize the coverage for the
passing and for the failing runs. Concentrate on statements executed in failing
runs only.

To sample return values, at each call site count the numbers within each category
of return values. Focus on those categories that occur only in the failing runs.

To collect data from the field, use a sampling strategy such that the impact on
performance is minimized.

To determine invariants, use DAIKON or a similar tool to check whether given
invariants hold at the instrumentation points.

Whenever we have the choice of multiple events, we should first focus on the
abnormal ones.

The techniques discussed in this chapter are fairly recent and not yet fully
evaluated.

268 CHAPTER 11 Detecting Anomalies

11.9 TOOLS
DAIKON. The DAIKON tool by Ernst et al. (2001) has had a tremendous impact

on the field of dynamic program analysis—not only because of its fea-
tures but because it is available for download. The DAIKON project page
offers software, instructions, and papers on the subject. It is found at
http://groups.csail.mit.edu/pag/daikon/.

DIDUCE. The DIDUCE tool by Hangal and Lam (2002) is no longer available for
download. Its old home page is available at http://diduce.sourceforge.net/.

11.10 FURTHER READING
Dynamic program analysis has taken off as a discipline only in the last decade—an
explosion largely due to the wealth of computing power we have today (“Why not
simply run the program 2,000 times?”) and to the presence of cheap communication
(“Let’s collect all data from all users”). As becomes clear in this chapter,the individual
approaches are yet isolated,and it is unclear which approach is best suited for which
situation.Yet, the tools and techniques merit to be experimented with—to see how
they can help with user’s programs.

The TARANTULA tool, developed by Jones et al. (2002), was the first tool to
visualize and leverage code coverage for detecting faults. Jones et al. offer several
details on the tool and a conducted case study.

Renieris and Reiss (2003) introduced the “nearest-neighbor” concept. I also
recommend their paper because of the careful and credible evaluation method.
Sequences of method calls were investigated by Dallmeier et al. (2005).

Liblit et al. (2003) were the first to introduce sampling for detecting failures.
They describe details of the approach as well as additional case studies. At the time
of writing, you could download instrumented versions of common programs that
would report sampled coverage data—thus helping researchers to isolate defects in
these applications. See http://sample.cs.berkeley.edu/.

Remote sampling is also addressed in the GAMMA project under the name
of software tomography (Orso et al., 2003). GAMMA primarily focuses on sam-
pling coverage information such that the coverage comparison (as described in
Section 11.2) can be deployed on a large number of runs.

Podgurski et al. (2003) apply statistical feature selection, clustering, and multi-
variate visualization techniques to the task of classifying software failure reports.
The idea is to bucket each report into an equivalence group believed to share the
same underlying cause. As in GAMMA, features are derived from execution traces.

In addition to DAIKON and DIDUCE, other approaches for extracting behavior
models from actual runs have been researched—although not necessarily with the
purpose of finding defects. Ammons et al. (2002), for instance, describe how to

11.10 Further Reading 269

construct state machines from observed runs that can be used as specifications
for verification purposes. Such state machines may also be helpful in uncovering
anomalies.

Finally, it is also possible to create abstractions both for passing and failing
runs—and then to check a new run as to whether it is closer to one category than
the other, effectively predicting whether the run will pass or fail. This can be use-
ful for discovering latent defects or otherwise undesirable behavior. Dickinson et al.
(2001) describe how to use cluster analysis to predict failures. Brun and Ernst (2004)
show how to classify the features of program properties to “learn from fixes.” If a
program shows properties similar to those that have been fixed in the past, these
properties are also likely to be fixed.

EXERCISES
11.1 Using your own words, compare (1) anomaly detection by comparing cov-

erage and (2) anomaly detection by dynamically determined invariants, in
terms of:
(a) Efficiency
(b) Applicability to a wide range of programs.
(c) Effectiveness in locating defects.

11.2 Sometimes,bugs reappear that have been fixed before. How can regression
testing be used to prevent this? How can regression testing help to detect
anomalies?

11.3 Discuss:
■ How assertions could be used to detect anomalies.
■ Why and why not to use them throughout the program run.

11.4 We have seen that detected anomalies do not necessarily indicate defects
(false positives). Explain this phenomenon. What would be false negatives,
and how can we explain those?

11.5 What is the basic idea of invariant analysis? What are the advantages and
disadvantages of dynamic compared to static techniques?

11.6 Use DAIKON to detect invariants in the bigbang program (Example 8.3).
Note that you may need to resolve memory issues first.

11.7 DAIKON generates a huge number of invariants. What techniques does it
use to reduce that number to relevant invariants? Explain the effectiveness
of the techniques.

11.8 Consider the sample code from Example 1.1 in explaining the effectiveness
of DAIKON and DIDUCE. Discuss strengths and limitations of both tools.

270 CHAPTER 11 Detecting Anomalies

11.9 Compare DAIKON and DIDUCE regarding efficiency, usability, scalability,
performance, and reliability of the results. Discuss when to use which
approach.

11.10 Use the PYTHON sys.settrace() facility discussed in Section 8.5 to com-
pare coverage, as in TARANTULA (Section 11.2). Test your approach on
the middle program (which you reimplement in PYTHON) and the runs
shown in Figure 11.2. When comparing coverage,do you observe the same
anomalies?

11.11 Use the PYTHON sys.settrace() facility discussed in Section 8.5 to check
variable ranges,as in DIDUCE (Section 11.6).Apply it on a PYTHON program
of your choice and compute the induced overhead.

If you never know failure, how can you know success?

– The Matrix (1999)

CHAPTER

12Causes and Effects

Deduction, observation, and induction are all good in finding potential defects.
However,none of these techniques alone is sufficient to determine a failure cause.
How does one identify a cause? How does one isolate not only a cause but the actual
cause of a failure? This chapter lays the groundwork on how to find failure causes
systematically—and automatically.

12.1 CAUSES AND ALTERNATE WORLDS
Anomalies and defects, as discussed in the previous chapters, are all good starting
points in a debugging session. However,we do not know yet whether these actually
cause the failure in question.

If we say“a defect causes a failure,”what does“cause”mean? Generally speaking,
a cause is an event preceding another event without which the event in question
(the effect) would not have occurred. Thus, a defect causes the failure if the failure
would not have occurred without the defect.

Because most of debugging is the search for a defect that causes the failure, we
must understand how to search for cause–effect relationships.That is, to search for
causality—with the idea that once we found a cause, the defect is not far away.

In natural and social sciences, causality is often difficult to establish. Just think
about common disputes such as“Did usage of the butterfly ballot inWest Palm Beach
cause George W. Bush to be president of the United States?”;“Did drugs cause the
death of Elvis Presley?”;“Does human production of carbon dioxide cause global
warming?”

To determine whether these are actually causes, formally we would have to
repeat history without the cause in question—in an alternate world that is as close
as possible to ours except for the cause. Using this counterfactual model of causality,
a cause becomes a difference between the two worlds (Figure 12.1):

■ A world where the effect occurs.
■ An alternate world where the effect does not occur.

We know already what our actual world looks like. However,if in alternate worlds
Albert Gore had been president, Elvis were alive, and global warming were less 271

272 CHAPTER 12 Causes and Effects

Failing world

Causes for
failure Common context Causes for

nonfailure

Passing world

FIGURE 12.1

Causes as differences between alternate worlds.

(and not changing anything else), we would know that butterfly ballots, drugs, and
carbon dioxide had been actual causes for the given effects.

Unfortunately, we cannot repeat history like an experiment in a lab. We have
to speculate about what would have happened. We can have all experts in the
world agree with our speculation, but in the real, nondeterministic, and, above all,
nonrepeatable world,one can never absolutely know whether a probable cause is a
cause.This is why one can always come up with a new theory about the true cause,
and this is why some empirical researchers have suggested dropping the concept
of causality altogether.

In our domain of computer science, though, things are different. We can easily
repeat program runs over and over, change the circumstances of the execution as
desired, and observe the effects. Given the right means (Chapter 4), the program
execution is under (almost) total control and is (almost) totally deterministic. (The
“almost” is there because the execution may still be determined by physical effects,
as described in Section 4.3.8 in Chapter 4.)

Scientists frequently use computers to determine causes and effects in models
of the real world. However, such causes and effects run the danger of being inap-
propriate in the concrete, because the model may have abstracted away important
aspects. If we are determining causes and effects in the program itself, though, we
keep abstraction to a minimum.Typically,we only abstract away the irreproducible
physical effects. Minimal abstraction implies minimal risk.Thus,among all scientific
disciplines debugging is the one that can best claim to deal with actual causality.
In the remainder of this chapter, we shall thus address the key question:

HOW DO I KNOW SOMETHING CAUSES THE FAILURE IN QUESTION?

12.2 VERIFYING CAUSES
How do we check whether some anomaly—or, more generally, any property of a
program run—causes the failure in question? The actual world in which the effect
occurs is our real world—with the effect, the failing run,occurring before our eyes.

12.3 Causality in Practice 273

The alternate world, though, is what we need to show that some property causes
the failure. To show causality, we must set up an experiment with an alternate
world in which the property does not occur. If in this alternate world the failure
does not occur either, we have shown that the property caused the failure.

As an example,consider a program that emits a warning message (say,“Configura-
tion file not found”) and then fails. How do we show that the missing configuration
file causes the failure? We set up an alternate world in which a configuration file is
present. In other words, we set up an experiment to support or refute our hypoth-
esis about causality. If (and only if) in our experiment the failure no longer occurs
have we shown causality (i.e., that the missing file caused the failure).

This reasoning may sound trivial at first (“Of course, we need such an experi-
ment!”),but having such an explicit verification step is crucial for avoiding fallacies.
In our example,it would only be natural to assume that the warning message is some-
how connected to the failure—especially if the warning is all we can observe—and
thus attempt to resolve the warning in the hope of resolving the failure.

This type of reasoning is called post hoc ergo propter hoc (“after this, therefore
because of this”). This means that an anomaly has occurred before the failure, and
therefore the anomaly must have caused the failure. However, it may well be that
the warning is totally unrelated to the failure. In that case, resolving the warning
will cost us precious time.Therefore, any systematic procedure will first determine
causality by an experiment, as described previously.

12.3 CAUSALITY IN PRACTICE
The following is a somewhat more elaborate example. Consider the following piece
of C code.

a = compute_value();
printf("a = %d\n", a);

This piece of code invokes the compute_value() function,assigns the result to
the variable a, and prints the value of a on the console. When executed, it prints
a = 0 on the console, although a is not supposed to be zero. What is the cause for
a = 0 being printed?

Deducing from the program code (see Chapter 7),we may reason that if variable
a is zero we must examine the origin of this value. Following back the dependences
from a, we find that the last assignment was from compute_value(), and thus we
might investigate how compute_value() can return a zero value. Unfortunately,
it turns out that compute_value() is not supposed to return zero. Thus, we may
proceed digging into the compute_value() code to find out how the zero came
to be.

Unfortunately, reasoning alone does not suffice for proving causality. We must
show by experiment that if a cause is not present,an effect is not present.Therefore,
we must show that a being zero is the cause for a = 0 being printed. Later on, we

274 CHAPTER 12 Causes and Effects

would show that compute_value() returning zero is the cause for a being zero—
and each of these causalities must be shown by an experiment (or,at least,additional
observation).

At this point, this may seem like nitpicking. Isn’t it obvious that a is zero? After
all, we print its value on the console. Unfortunately,“obvious” is not enough. “Obvi-
ously,” the program should work, but it does not. Thus, we can trust nothing, and
especially not the obvious.

Let’s then attempt to show causality using scientific method. We set up a
hypothesis:

a being zero is the cause for a �0 being printed.

To show that this hypothesis holds,we must set up an experiment in which a is
not zero, and in which a = 0 is not being printed. Let’s do so by inserting a little
assignment a = 1 into the code. This results in our first alternate world:

a = compute_value();
a = 1;
printf("a = %d\n", a);

If the program now prints a = 1, we know that a being zero was the cause for
a = 0 being printed. However, if we execute this piece of code we find that a = 0
is still being printed, regardless of the inserted assignment.

This is weird. How can this happen? We set up a new hypothesis:

a �0 is being printed regardless of the value of a.

To prove this hypothesis, we could set a to various values other than 1—and
we would find that the hypothesis always holds. This means that there must be
something wrong with the printf() invocation. And there is. a is declared a
floating-point variable:

double a;
.
.
.

a = compute_value();
a = 1;
printf("a = %d\n", a);

However,the argument "%d" makes printf() expect an integer value as a next
argument. If we pass a floating-point value instead, this means that only the first
four bytes of the floating-point representation are being read—and interpreted as
an integer. (In fact, this type of mistake is so common that many compilers issue
a warning when the printf() format string does not match the later arguments.)
What happens on this specific machine is that the first four bytes of the internal
representation of 1.0 (and any other small integer) are all zero—and thus a = 0 is
printed regardless of the value of a.

But all this, again, is yet only reasoning. Our working hypothesis becomes:

The format "%d" is the cause for a = 0 being printed.

12.4 Finding Actual Causes 275

To prove the hypothesis,we must again set up an experiment in which the cause
does not occur. In other words, we must alter the program to make the failure go
away. A proper format for floating-point values in printf() is "%f". Let’s alter the
format to this value:

a = compute_value();
printf("a = %f\n", a);

Now that the cause "%d" is no longer present, the actual value of a is being
printed on the console.That is, the effect of printing a = 0 is gone.This means that
"%d" actually was the cause of a = 0 being printed. In other words,"%d" was the
defect that caused the failure. Our final hypothesis has become a theory about the
failure cause. Note how the use of scientific method (Chapter 6) prevents fallacies
from the start, as every hypothesis (about a failure cause) must be verified by an
experiment (with an alternate world in which the cause does not occur).

As pointed out in Section 12.1, detecting causes in the real world is difficult,
essentially because one cannot turn back history and see what would have happened
in the alternate world.This is why the counterfactual definition of causality is often
deemed too restrictive. In the context of debugging, though, we can repeat runs
over and over. In fact, conducting experiments with alternate worlds is a necessary
effect of applying scientific method. Thus, in debugging, experiments are the only
way to show causality. Deduction and speculation do not suffice.

12.4 FINDING ACTUAL CAUSES
Now that we have discussed how to verify a cause, let’s turn to the central problem:
How do we find a failure cause? It turns out that finding a cause is trivial. The
problem is to find the cause among a number of alternatives.

In debugging, as in experimental science, the only way to determine whether
something is a cause is through an experiment.Thus,for example,only by changing
the program in Section 6.3 in Chapter 6 could we prove that the defect was actually
the cause of the failure.

This conjunction of causes and changes raises an important problem. Just as
there are infinitely many ways of writing a program, there are infinitely many ways
of changing a program such that a failure no longer occurs. Because each of these
changes implies a failure cause, there are infinitely many failure causes.For exam-
ple, how can we say that something is the defect or the cause of a failure, as "%d"
in Section 12.3?

■ We could also say that the printf() statement as a whole is a cause for printing
a = 0, because if we remove it nothing is printed.

■ Anomalies,as discussed in Chapter 11,are a cause of a failure because without
anomalies (i.e., in a “normal” run) the failure does not occur.

■ We can treat the entire program code as a cause, because we can rewrite it
from scratch such that it works.

276 CHAPTER 12 Causes and Effects

■ Electricity,mathematics, and the existence of computers are all failure causes,
because without them, there would be no program run and thus no failure.

This multitude of causes is unfortunate and confusing. In debugging, and espe-
cially in automated debugging,we would like to point out a single failure cause,not
a multitude of trivial alternatives.

To discriminate among these alternatives, the concept of the closest possible
world comes in handy.A world is said to be“closer”to the actual world than another
if it resembles the actual world more than the other does. The idea is that now the
cause should be a minimal difference between the actual world where the effect
occurs and the alternate world where it would not (Figure 12.1). In other words,
the alternate world should be as close as possible. Therefore, we define an actual
cause as a difference between the actual world where the effect occurs, and the
closest possible world where it would not.

Another way of thinking about an actual cause is that whenever we have the
choice between two causes we can pick the one of which the alternate world
is closer. Consequently, "%d" is the defect, but the printf() statement is not—
because altering just the format string is a smaller difference than removing the
printf() statement. Likewise, the absence of electricity would result in a world
that is quite different from ours. Thus, electricity would not qualify as an actual
failure cause. This principle of picking the closer alternate world is also known as
Ockham’s Razor,which states that whenever you have competing theories for how
some effect comes to be, pick the simplest.

12.5 NARROWING DOWN CAUSES
Let’s now put these general concepts of causality into practice. Given some failure
(i.e.,the effect),how do we find an actual cause?A simple strategy works as follows:

1. Find an alternate world in which the effect does not occur.
2. Narrow down the initial difference to an actual cause, using scientific

method (Chapter 6).

If you think that this sounds almost too trivial,you are right.The alternate world
is where the effect does not occur—is not this just what we aim at? Think about a
defect causing the failure, for instance. If we have an alternate world in which the
defect does not occur, we are already set. Why bother dealing with the differences
to the real world if we already know what the alternate world is supposed to be?

The trick is that the alternate world need not be a world in which the program
has been corrected. It suffices that the failure does not occur—which implies that
there is some other difference either in the program input or its execution that
eventually causes the differing behavior with respect to the failure. The challenge
is to identify this initial difference, which can then be narrowed down to an actual
cause.

12.7 The Common Context 277

12.6 A NARROWING EXAMPLE
The following is a little example that illustrates this approach.When I give a presen-
tation, I use a little shareware program on my laptop such that I can remote-control
the presentation with my Bluetooth phone. (Sometimes it’s fun to be a nerd.) Hav-
ing upgraded this program recently, I found that it quit after moving to the next
slide. I exchanged a few emails with the author of the shareware. He was extremely
helpful and committed, but was not able to reproduce my problem. In his setting
(and in the setting of the other users), everything worked fine.

To narrow down the cause, I searched for an alternate world in which the failure
did not occur. It turned out that if I created a new user account from scratch,using
all of the default settings, the program worked fine. Thus, I had a workaround—but
I also had a cause, as this alternate account (the alternate world) differed from my
account in a number of settings and preferences.

Just having a cause, though, did not help me in fixing the problem. I wanted
an actual cause. Thus, I had to narrow down the difference between the accounts,
and so I copied setting after setting from my account to the new account, check-
ing each time whether the failure would occur. In terms of scientific method, the
hypothesis in each step was that the respective setting caused the problem,and with
each new copied setting not showing the failure I disproved one hypothesis after
another.

Finally,though,I was successful:copying the keyboard settings from my account
to the new account caused the failure to occur. Mostly living in Germany,I occasion-
ally have to write text in German, using words with funny characters such as those
in “Schöne Grüße” (best regards). To type these characters quickly, I have crafted
my own keyboard layout such that simple key combinations such as Alt+O or Alt+S
give me the ö or ß character, respectively. Copying this layout setting to the new
user account resulted in the failure of the shareware program.

Thus, I had an actual cause—the difference between the previous setting and
the new setting—and this diagnosis was what I emailed the shareware author (who
had explored some other alternatives in the meantime). He committed to support
such hand-crafted layouts in the future, and everybody was happy.

12.7 THE COMMON CONTEXT
As the example in Section 12.6 illustrates, we do not necessarily need an alternate
world in which the defect is fixed. It suffices to have some alternate world in which
the failure does not occur—as long as we can narrow down the initial difference
to an actual cause.

This initial difference sets the frame in which to search for the actual cause.
Aspects that do not differ will be part of the common context and thus never
changed nor isolated as causes. This context is much larger than may be expected.

278 CHAPTER 12 Causes and Effects

Our common context includes, for instance, the fact that the program is executed,
and all other facts required to make the execution possible. One can also think
about the common context as defining necessary conditions that must be satisfied
by every alternate world.Anything that is not part of the common context can differ,
and thus sets the search space—such as the settings in my user account.

In many cases, we have the choice between multiple alternate worlds. For
instance, I may find out that some earlier version of the shareware program works
nicely, such that I could narrow down the difference between the old and new
version—with the settings unchanged. I could try different devices and leave every-
thing else unchanged. Perhaps the failure occurs only with specific devices? The
choice of an alternate world sets the search space in which to find causes. What-
ever alternate world is chosen, one should strive to keep it as similar as possible
to the actual world—simply because Ockham’s Razor tells you that this gives you
the best chance of finding the failure cause.

12.8 CAUSES IN DEBUGGING
The concepts actual cause and closest possible world are applicable to all causes—
including the causes required for debugging.Thus,if we want to find the actual cause
for a program failure we have to search for the closest possible world in which the
failure does not occur.

■ Input. The actual failure cause in a program input is a minimal difference
between the actual input (where the failure occurs) and the closest possible
input where the failure does not occur.

■ State.The actual failure cause in a program state is a minimal difference between
the actual program state and the closest possible state where the failure does
not occur.

■ Code.The actual failure cause in a program code is a minimal difference between
the actual code and the closest possible code where the failure does not occur.

All of these failure causes must be verified by two experiments: one in which
effect and failure occur and one in which they do not. Once a cause has been
verified, valuable information for debugging is available.

■ Causes are directly related to the failure.As a failure is an effect of the cause, it
only occurs when the cause occurs. Neither defects, (Chapter 7) nor anomalies,
(Chapter 11) are as strongly related to the failure.

■ Failure causes suggest fixes. By removing the failure cause, we can make the
failure disappear. This may not necessarily be a correction, but it is at least a
good workaround.

Both properties make causes excellent starting points during debugging,which is
why in the remainder of this book we will explore how to isolate them automatically.

12.10 Further Reading 279

12.9 CONCEPTS
Of all circumstances we can observe during debugging,causes are the most valuable.

A cause is an event preceding another event without which the event in question
(the effect) would not have occurred.

A cause can be seen as a difference between two worlds—a world in which the
effect occurs and an alternate world in which the effect does not occur.

To show causality, set up an experiment in which the cause does not occur. How To
Causality is shown if (and only if) the effect does not occur either.

To find a cause, use a scientific method to set up hypotheses on possible causes.
Verify causality using experiments.

An actual cause is the difference between the actual world and the closest possible
world in which the effect does not occur.

The principle of picking the closest possible world is also known as Ockham’s
Razor, which states that whenever you have competing theories for how some
effect comes to be, pick the simplest.

To find an actual cause, narrow down an initial difference via scientific method.

A common context between actual worlds excludes causes from the search
space.

12.10 FURTHER READING
The definitions of cause and effect in this book are based on counterfactuals,because
they rely on assumptions about nonfacts.The first counterfactual definition of causes
and effects is attributed to Hume (1748): “If the first object [the cause] had not been,
the second [the effect] never had existed.” The best-known counterfactual theory
of causation was elaborated by Lewis (1973), refined in 1986.

Causality is a vividly discussed philosophical field. In addition to the counterfac-
tual definitions, the most important alternatives are definitions based on regularity
and probabilism. I recommend Zalta (2002) for a survey and Pearl (2000) for an
in-depth treatment.

Ockham’s Razor is the principle proposed by William of Ockham in the 14th
century: “Pluralitas non est ponenda sine neccesitate,” which translates as “plurality
shouldn’t be posited without necessity.” A modern interpretation is: “If two theories
explain the facts equally well,the simpler theory is to be preferred.” Or just: “Keep it
simple.” The principle was stated much earlier byAristotle:“For if the consequences
are the same it is always better to assume the more limited antecedent.”

According to Bloch (1980), Hanlon’s Razor “Never attribute to malice that
which is adequately explained by stupidity”was coined by the late Robert J. Hanlon
of Scranton, Pensylvania. (This phrase or very similar statements have been

280 CHAPTER 12 Causes and Effects

attributed to William James, Napoleon Bonaparte, Richard Feynman, Johann
Wolfgang von Goethe, Robert Heinlein, and others.) Reportedly, Hanlon was a
winner in a contest to come up with further statements similar to Murphy’s Law:
“If it can go wrong, it will.”

EXERCISES
12.1 Suppose you wish to find out whether:

■ Elvis died of an overdose of drugs.
■ The butterfly ballot cost Al Gore the White House.
■ Global warming is caused by carbon dioxide.
Which experiments would you need to support your views?

12.2 Consider the experiment in Section 6.3 in Chapter 6. In each step:

(a) What is the hypothesis about the failure cause?
(b) How does the hypothesis verify causality?

12.3 Consider the failure of the bigbang program in Example 8.3.

(a) List three actual failure causes.
(b) List three failure causes that are not actual causes.
(c) Where would you correct the program? Why?

12.4 Be creative. Write a failing program with:

(a) A failure cause that looks like an error (but is not).
(b) An error that looks as if it caused the failure (but does not).

12.5 Site A and site B each send a virus-infected email to site C . A’s email
arrives first, infecting C . Using the counterfactual definition, what is the
cause:

(a) For site C being infected?
(b) For site C being infected right after A’s email arrives?

Try to find your own answer first,and then look at the discussion (and further
tricky examples) in Zalta (2002).

12.6 What are the relationships among failing world, passing world, initial differ-
ence, and cause?

12.7 Explain the meaning of closest possible world in which a failure does not
occur. What type of failure causes do we distinguish, and how do we verify
them? Illustrate using examples.

12.8 Each of the following statements is either true or false.
■ If c is a cause, and e is its effect, then c must precede e.
■ If c is a circumstance that causes a failure, it is possible to alter c such that

the failure no longer occurs.

12.10 Further Reading 281

■ If some cause c is an actual cause, altering c induces the smallest possible
difference in the effect.

■ Every failure cause implies a possible fix.
■ For every failure there is exactly one actual cause.
■ A failure cause can be determined without executing the program.
■ A failure is the difference to the closest possible world in which the cause

does not occur.
■ If I observe two runs (one passing, one failing) with a minimal difference

in input, I have found an actual failure cause.
■ A minimal and successful correction proves that the altered code was the

actual failure cause.
■ Increasing the common context between the possible worlds results in

smaller causes.

12.9 “Given enough evidence, an anomaly can qualify as a cause.”Discuss.

When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.

– SHERLOCK HOLMES, IN A. CONAN DOYLE

The Sign of Four (1890)

CHAPTER

13Isolating Failure
Causes

This is the chapter that automates most debugging. We show how delta debugging
isolates failure causes automatically—in the program input, in the program’s thread
schedule,and in the program code. In the best case,the reported causes immediately
pinpoint the defect.

13.1 ISOLATING CAUSES AUTOMATICALLY
Narrowing down causes as described in Chapter 12 can be tedious and boring—
when conducted manually, that is. Therefore, we should aim at narrowing down
failure causes automatically.

In principle, narrowing down a cause can be easily automated. All it takes is

■ an automated test that checks whether the failure is still present,
■ a means of narrowing down the difference, and
■ a strategy for proceeding.

With these ingredients, we can easily automate the scientific method involved.
We have some automaton apply one difference at a time; after each difference, the
automaton tests whether the failure now occurs. Once it occurs,we have narrowed
down the actual cause.

Consider the keyboard layout example from Section 12.6 in Chapter 12,in which
a specific keyboard layout setting caused a presentation shareware to fail. In this
example, automation translates to the following points:

■ The automated test starts the presentation shareware and checks for the failure.
■ The means of narrowing down the difference is copying settings from one

account to another.
■ The strategy for proceeding could be to copy one setting at a time.

Proceeding one difference at a time can be very time consuming, though. My
keyboard layout, for instance, has definitions for 865 key combinations. Do I really

283

284 CHAPTER 13 Isolating Failure Causes

want to run 865 tests just to learn that I should not have Alt+O defined? What we
need here is a more effective strategy—and this brings us to our key question:

HOW DO I ISOLATE FAILURE CAUSES AUTOMATICALLY?

13.2 ISOLATING VERSUS SIMPLIFYING
In Chapter 5,we saw how to leverage automated tests to simplify test cases quickly,
using delta debugging. One could think of applying this approach toward simplifying
the difference between the real world and the alternate world—that is, to find an
alternate world the difference of which to the real world is as“simple”or as close as
possible. In practice,this means trying to remove all differences that are not relevant
for producing the failure—that is, to bring the alternate world as close as possible
to the real world. In the remaining difference,each aspect is relevant for producing
the failure—that is, we have an actual cause.

When we are thinking about narrowing down differences, though, there is a
more efficient approach than simplifying, called isolating. In simplifying, we get
a test case where each single circumstance is relevant for producing the failure.
Isolating, in contrast,produces a pair of test cases—one passing the test,one failing
the test—with a minimal difference between them that is an actual cause.

Let’s highlight isolation using an example. In Example 5.5, we saw how the
ddmin algorithm eventually simplifies a failure-inducing HTML line from 40 char-
acters down to 8 characters in 48 tests. In the result, a <SELECT> tag, every single
character is relevant for producing the failure.

Isolating works in a similar fashion,each time a test case fails,the smaller test case
is used as the new failing test case. However, we do not just remove circumstances
from the failing test case but add circumstances to the passing test case, and thus
may obtain a new (larger) passing test case. Figure 13.1 highlights the difference
between simplification and isolation. Simplifying results in a simplified failing test
case, whereas isolation results in a passing and a failing test case with a minimal
difference.

Example 13.1 shows how this works on the HTML input of the Mozilla example.
Starting with the empty passing input (bottom) and the 80-character failing input
(top), we first remove half the characters—as in ddmin. The test passes, and this is
where isolation shows the difference. We use the half of the input as a new passing
test case and thus have narrowed down the difference (the cause) to the second
half of the characters. In the next step, we add half of this half to the passing test
case, which again passes the test.

Continuing this pattern, we eventually end up in a minimal difference between
the original failing input

<SELECT NAME="priority" MULTIPLE SIZE=7>

13.2 Isolating versus Simplifying 285

Simplifying Isolating

FIGURE 13.1

Simplifying versus isolating. While simplifying, we bring the failing configuration (�) as close as
possible to the (typically empty) passing configuration (�). When isolating, we determine the
smallest difference between the two, moving the passing, as well as the failing, configuration.

EXAMPLE 13.1: Isolating a failure-inducing difference. After six tests, the <
is isolated as failure cause

Input: <SELECT NAME="priority" MULTIPLE SIZE=7>〈40 characters 〉 �

<SELECT NAME="priority" MULTIPLE SIZE=7>〈 0 characters 〉 �

1 <SELECT NAME="priority" MULTIPLE SIZE=7>〈20 characters 〉 �

2 <SELECT NAME="priority" MULTIPLE SIZE=7>〈30 characters 〉 �

3 <SELECT NAME="priority" MULTIPLE SIZE=7>〈35 characters 〉 �

4 <SELECT NAME="priority" MULTIPLE SIZE=7>〈37 characters 〉 �

5 <SELECT NAME="priority" MULTIPLE SIZE=7>〈38 characters 〉 �

6 <SELECT NAME="priority" MULTIPLE SIZE=7>〈39 characters 〉 �

Result: <

and the new passing input

SELECT NAME="priority" MULTIPLE SIZE=7>

The difference is in the first character: adding a < character changes the SELECT
text to the full HTML <SELECT> tag, causing the failure when being printed. This
example demonstrates the basic difference between simplification and isolation.

■ Simplification means to make each part of the simplified test case relevant.
Removing any part makes the failure go away.

■ Isolation means to find one relevant part of the test case. Removing this
particular part makes the failure go away.

286 CHAPTER 13 Isolating Failure Causes

As an allegory,consider the flight test from Section 5.1 in Chapter 5. Simplifying
a flight test returns the set of circumstances required to make the plane fly (and
eventually crash). Isolating, in contrast, returns two sets of circumstances that differ
by a minimum—one set that makes the plane fly (that is,the“passing”outcome) and
a set that makes the plane crash (the “failing” outcome). The difference is a failure
cause, and being minimal, it is even an actual failure cause.

In general, isolation is much more efficient than simplification. If we have a large
failure-inducing input, isolating the difference will pinpoint a failure cause much
faster than minimizing the test case. In Example 13.1, isolating requires only 5 tests,
whereas minimizing (Example 5.8) requires 48 tests.

The greater efficiency of isolation comes at a price,though.An isolated difference
can come in a large context, which may require more effort to understand—
especially if the isolated cause is not an error. Reconsidering the flight test example,
assume we isolate that switching on the cabin light causes the crash. If the light stays
off, the plane lands perfectly. Switching on the cabin light is standard procedure,
and thus we still have to find out how this event interacts with the context such
that it leads to the crash.With minimization,we simplify the context as a whole.We
still find that the cabin light is relevant for the crash, but we only keep those other
events that are also relevant (e.g., the short-circuit in the cabin light cable).

13.3 AN ISOLATION ALGORITHM
How do we automate isolation? It turns out that the original ddmin algorithm, as
discussed in Section 5.5 in Chapter 5,can easily be extended to compute a minimal
difference rather than a minimal test case. In addition to reducing the failing test
case c� whenever a test fails,we now increase the passing test case c� whenever a
test passes. The following is what we have to do to extend ddmin.

1. Extend-ddmin -such that it works on two sets at a time:
■ The passing test case c′

� that is to be maximized (initially, c′
� �c� �∅ holds).

■ The failing test case c′
� that is to be minimized (initially, c′

� �c� holds).
These two sets are the worlds between which we narrow down the difference.

2. Compute subsets �i as subsets of ��c′
� \c′

� (instead of subsets of c′
�).

3. In addition to testing a removal c′
� \�i , test an addition c′

� ∪�i .

4. Introduce new rules for passing and failing test cases:
■ Some removal passes: If c′

� \�i passes for any subset �i , then c′
� \�i is a larger

passing test case. Continue reducing the difference between c′
� \�i and c′

�.
■ Some addition fails: This is the complement to the previous rule. If c′

� ∪�i fails
for any subset �i , then c′

� ∪�i is a smaller failing test case. Continue reducing
the difference between c′

� and c′
� ∪�i .

■ Some removal fails: This rule is the same as in ddmin. If c′
� \�i fails for any

subset �i , then c′
� \�i is a smaller failing test case. Continue reducing the

difference between c′
� and c′

� \�i .

13.3 An Isolation Algorithm 287

■ Some addition passes: Again, this is the complement to the previous rule.
If c′

� ∪�i passes for any subset �i , then c′
� ∪�i is a larger passing test case.

Continue reducing the difference between c′
� ∪�i and c′

�.
■ Increase granularity: This rule is as in ddmin, but applies only if all tests

are unresolved. Increase the granularity and split c� into 4 (8, 16, and so on)
subsets.

The full algorithm, named dd, is shown in Example 13.2. It builds on the defini-
tions used for ddmin and is called the general delta debugging algorithm.The

EXAMPLE 13.2: The dd algorithm in a nutshell

Let a program’s execution be determined by a set of circumstances called a configuration.
By C, we denote the set of all changes between configurations.
Let test :2C →{�, �, �} be a testing function that determines for a configuration c ⊆C
whether some given failure occurs (�) or not (�) or whether the test is unresolved (�).

Now, let c� and c� be configurations with c� ⊆c� ⊆C such that test (c�)��∧ test (c�)�

�. c� is the “passing” configuration (typically, c� �∅ holds) and c� is the “failing”
configuration.

The general delta debugging algorithm dd (c�, c�) isolates the failure-inducing difference
between c� and c�. It returns a pair (c′

�, c′
�)�dd(c�, c�) such that c� ⊆c′

� ⊆c′
� ⊆c�,

test (c′
�)��, and test (c′

�)�� hold and c′
� \c′

� is a relevant difference—that is, no single
circumstance of c′

� can be removed from c′
� to make the failure disappear or added to c′

�

to make the failure occur.

The dd algorithm is defined as dd (c�, c�)�dd ′(c�, c�, 2) with

dd ′(c′
�, c′

�, n)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c′
�, c′

�) if |�|�1

dd ′(c′
� \�i, c′

�, 2) if ∃i∈{1..n}� test (c′
� \�i)��

(“some removal passes”)

dd ′(c′
�, c′

�∪�i, 2) if ∃i∈{1..n}� test (c′
� ∪�i)��

(“some addition fails”)

dd ′(c′
� ∪�i, c′

�, max(n�1, 2)
)

else if ∃i∈{1..n}� test (c′
� ∪�i)��

(“some addition passes”)
dd ′(c′

�, c′
� \�i, max(n�1, 2)

)
else if ∃i∈{1..n}� test (c′

� \�i)��

(“some removal fails”)
dd ′(c′

�, c′
�, min(2n, |�|)) else if n� |�| (“increase granularity”)

(c′
�, c′

�) otherwise

where ��c′
� \c′

� ��1 ∪�2 ∪· · ·∪�n with all �i pairwise disjoint, and ��i � |�i |≈(|�|/n)

holds.
The recursion invariant for dd ′ is test (c′

�)��∧ test (c′
�)��∧n� |�|.

288 CHAPTER 13 Isolating Failure Causes

dd algorithm returns a pair of configurations c′
�, c′

� that both lie between the
original c� and c� and the difference of which ��c′

� \c′
� is 1-minimal—that is,

each difference in � is relevant for producing the failure (see Proposition A.17
in the Appendix). Although in practice � frequently contains only one difference,
� may contain multiple differences, which must all be applied to c′

� in order to
produce c′

�.
Regarding complexity,dd has the same worst-case complexity as ddmin. If nearly

all test cases result in an unresolved outcome, the number of tests can be quadratic
with respect to |c� \c�|. The more test cases that pass or fail, though, the more
efficient dd becomes, up to logarithmic complexity when all tests have a resolved
outcome (see Proposition A.19 in the Appendix). When using dd, it is thus wise to
keep unresolved test outcomes to a minimum, as this keeps down the number of
tests required.

The dd algorithm can be seen as an automation of scientific method. It defines
hypotheses (configurations),tests them,and refines or rejects the hypothesis accord-
ing to the test outcome. One might argue that humans may be far more creative than
this simple strategy. However,automating the process makes it less error prone and
more systematic than most humans proceed—and it is exactly the type of boring
task computers are supposed to relieve us from.

13.4 IMPLEMENTING ISOLATION
Example 13.3 shows a PYTHON implementation of dd. Just as with the PYTHON
implementation of ddmin (Example 5.4), tail recursion and quantifiers have been
turned into loops.Again,we rely on a split() function as well as set operations on
lists such as listunion() (Example 13.4) and listminus(). (An implementation
for listunion() is shown in Example 5.7.) Of course, we also need a test()
function that returns either PASS,FAIL, or UNRESOLVED (e.g., a test() function as
in Example 5.8 for MOZILLA). Extending the abstract form shown in Example 13.2,
the concrete implementation has some fine points that reduce the number of tests:

■ The order in which the test cases are checked is optimized. In particu-
lar, the first two cases require testing of test(next_c_fail) but not of
test(next_c_pass). This ensures a minimum number of tests, especially in
cases where few tests are unresolved.

■ We first check those situations that reduce the difference the most, such as
cases 1–3.

■ In principle, case 1 is not necessary, as it is subsumed by case 4. If success-
ful, though, it avoids invoking test(next_c_pass). Together, cases 1 and 2
turn dd() into a binary search if all tests return PASS or FAIL (rather than
UNRESOLVED).

■ The implementation assumes caching of earlier test results (see Section 5.8.1
in Chapter 5). If the test() function does not cache, you must rewrite the

13.4 Implementing Isolation 289

code shown in Example 13.3 such that it saves and reuses the results of
test(next_c_pass) and test(next_c_fail).

■ The offset variable records the subset to check next. When some difference
becomes irrelevant (cases 4 and 5),we continue checking the next subset rather
than restarting with the first subset. This makes sure each delta has the same
chance to be removed.

EXAMPLE 13.3: A PYTHON implementation of the dd algorithm

def dd(c_pass, c_fail, test):
"""Return a pair (C_PASS’, C_FAIL’) such that

* C_PASS subseteq C_PASS’ subset C_FAIL’ subseteq C_FAIL holds
* C_FAIL’ - C_PASS’ is a minimal difference relevant for TEST."""

n = 2 # Initial granularity

while 1:
assert test(c_pass) == PASS
assert test(c_fail) == FAIL

delta = listminus(c_fail, c_pass)
if n > len(delta):

return (c_pass, c_fail) # No further minimizing

deltas = split(delta, n); assert len(deltas) == n

offset = 0
j = 0
while j < n:

i = (j + offset) % n
next_c_pass = listunion(c_pass, deltas[i])
next_c_fail = listminus(c_fail, deltas[i])

if test(next_c_fail) == FAIL and n == 2: # (1)
c_fail = next_c_fail
n = 2; offset = 0; break

elif test(next_c_fail) == PASS: # (2)
c_pass = next_c_fail
n = 2; offset = 0; break

elif test(next_c_pass) == FAIL: # (3)
c_fail = next_c_pass
n = 2; offset = 0; break

elif test(next_c_fail) == FAIL: # (4)
c_fail = next_c_fail
n = max(n --- 1, 2); offset = i; break

elif test(next_c_pass) == PASS: # (5)
c_pass = next_c_pass
n = max(n --- 1, 2); offset = i; break

else:
j = j + 1 # Try next subset

if j >= n: # All tests unresolved
if n >= len(delta):

return (c_pass, c_fail)
else:

n = min(n * 2, len(delta)) # Increase granularity

290 CHAPTER 13 Isolating Failure Causes

EXAMPLE 13.4: A PYTHON implementation of the listunion() function

def listunion(c1, c2):
"""Return the union of C1 and C2.

Assumes elements of C1 are hashable."""

The hash map S1 has an entry for each element in C1
s1 = {}
for delta in c1:

s1[delta] = 1

Add all elements in C2 that are not in C1
c = c1[:] # Copy C1
for delta in c2:

if not s1.has_key(delta):
c.append(delta)

return c

■ Ordering of cases 3 and 4 is tricky. Case 4 simplifies the failing configuration and
can rely on the result of a test already performed. Case 3 requires another test,
but quickly reduces the difference if successful. Because we want to minimize
the difference as quickly as possible, case 3 comes first.

Just like the PYTHON code for ddmin (List 5.2), this code should be easy to
port to other languages. All you need is an appropriate representation for sets of
circumstances such as c_pass or c_fail.

13.5 ISOLATING FAILURE-INDUCING INPUT
Let’s now put dd to practice, applying it on a number of failure-inducing circum-
stances.We have already seen how dd pinpoints the < character in the HTML input
(Example 13.1) and how this requires much fewer tests than simplifying the entire
input (Example 5.5).

Applying dd on the fuzz inputs (discussed in Section 5.7 in Chapter 5) yields
even more substantial savings. As reported in Zeller and Hildebrandt (2002), only
12–50 tests were required to narrow down the failure-inducing difference to a single
character. This confirms the prediction of Proposition A.19 predicting a logarith-
mic number of tests when all tests have a resolved outcome. In case of the FLEX
tests, where ddmin requires 11,000–17,960 test runs to simplify the input, the dd
algorithm requires but 23–51 runs.

In cases where there were unresolved outcomes,as well as larger failure-inducing
differences, the number of tests performed by dd was larger. In one of the NROFF
test cases,473 test runs (out of which 390 were unresolved) were needed to isolate a

13.6 Isolating Failure-inducing Schedules 291

17-character failure-inducing difference. However, this is still a much lower number
than the 5,565 test runs required for simplification of the same input.

13.6 ISOLATING FAILURE-INDUCING SCHEDULES
Again, we can apply isolation on all circumstances that influence the program
execution—provided we have a means of controlling and reproducing them. As
discussed in Section 4.3.7 in Chapter 4, schedules of process and threads can result
in failures that are difficult to debug.With a means of recording and replaying sched-
ules, and a means of isolating failure-inducing differences, such defects become far
easier to track down. The basic idea uses four building blocks:

Deterministic replay. Use a tool that captures the execution of nondeterministic
JAVA applications and allows the programmer to replay these executions
deterministically—that is,input and thread schedules are reconstructed from the
recorded execution. This effectively solves the problem of reproducing failures
deterministically.

Test case generation. A replay tool allows the application to be executed under a
given thread schedule. Use the tool to generate alternate schedules. For instance,
one can alter an original passing (or failing) schedule until an alternate failing
(passing) schedule is found.

Isolating failure causes. Use dd to automatically isolate the failure cause in a
failure-inducing thread schedule. The basic idea is to systematically narrow the
difference between the passing and the failing thread schedule until only a min-
imal difference remains—a difference such as “The failure occurs if and only if
thread switch #3291 occurs at clock time 47,539.” This effectively solves the
isolation problem.

Relating causes to errors. Each of the resulting thread differences occurs at a spe-
cific location of the program—for instance, thread switch #3291 may occur at
line 20 of foo.java—giving a good starting point for locating thread interferences.

Choi and Zeller (2002) implemented this idea using IBM’s DEJAVU tool to record
and replay thread schedules on a single-processor machine. As a proof of concept,
they applied the approach on a multithreaded ray-tracing program from the SPEC
JVM98 JAVA test suite, in which they had reintroduced a data race that had been
commented out by the original authors. This defect, shown in Example 13.5, lead
to a failure the first time it was executed.

1. Thread A enters the LoadScene() method and saves the value of
ScenesLoaded in OldScenesLoaded (line 84).

2. In line 85,a thread switch occurs,causing the transfer of control from thread A
to another thread B.

292 CHAPTER 13 Isolating Failure Causes

EXAMPLE 13.5: Introducing a race condition

25 public class Scene { …
44 private static int ScenesLoaded = 0;
45 (more methods …)
81 private
82 int LoadScene(String filename) {
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations …)
91 infile = new DataInputStream(…);
92 (more code …)
130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 …
134 }
135 …
733 }

Source: Choi and Zeller (2002). ScenesLoaded may not be properly updated if a thread switch occurs

during execution of lines 85–130.

3. Thread B runs the entire LoadScene() method and properly increments the
ScenesLoaded variable.

4. As thread A resumes execution,it assigns the value of OldScenesLoaded plus
one to ScenesLoaded (line 130).This effectively undoes the update made by
thread B.

Using a fuzz approach (see Section 5.7 in Chapter 5),Choi and Zeller generated
random schedules, starting from the failing one. Each schedule consisted of long
lists of yield points—places in the program code such as function calls or backward
branches where a thread switch occurred. After 66 tests, they had generated an
alternate schedule where the failure would not occur.

Comparing the original (failing) schedule and the alternate (passing) schedule
resulted in 3,842,577,240 differences, each moving a thread switch by one yield
point. Applying all differences to the passing schedule changed its yield points to
those in the failing schedule, thus making the program fail. However, only a few of
these 3.8 billion schedule differences were relevant for the failure, which could be
uncovered by delta debugging.

The delta debugging run is summarized in Figure 13.2.The upper line is the size of
the failing configuration c′

�,and the lower line is the size of the passing configuration
c′

�. As the tests only return � or �, dd requires a logarithmic number of tests such
that after 50 tests only one difference remains. The failure occurs if and only if
thread switch #33 occurs at yield point 59,772,127 (instead of 59,772,126)—that
is, at line 91 of Scene.java.

13.7 Isolating Failure-inducing Changes 293

1e+14

1e+13

D
el

ta
s

1e+12

1e+11
0 5 10 15 20 25

Tests executed
30 35 40 45 50

cpass

cfail

FIGURE 13.2

Narrowing down a failure-inducing thread switch. After 50 tests, one out of 3.8 billion thread
switches is isolated as an actual failure cause.

Line 91 of Scene.java is the first method invocation (and thus yield point)
after the initialization of OldScenesLoaded. Likewise, the alternative yield point
59,772,126 (with a successful test outcome) is the invocation of LoadScene at
line 82 of Scene.java—just before the variable OldScenesLoaded is initialized.Thus,
by narrowing down the failure-inducing schedule difference to one single difference
the approach had successfully rediscovered the location where Choi and Zeller had
originally introduced the error.

As this example was artificially generated, it does not necessarily generalize to
all types of parallel programs. However, it illustrates that once we have a means
of automated deterministic testing (as with the DEJAVU tool) adding automated
isolation of failure-inducing circumstances is easy. In other words, once one has
automated testing, automated isolation of failure causes is a minor step.

13.7 ISOLATING FAILURE-INDUCING CHANGES
Failure-inducing inputs and thread schedules do not directly cause a failure. Instead,
they cause different executions of the program, which in turn cause the failure. An
interesting aspect of thread switches is that they can be directly associated with

294 CHAPTER 13 Isolating Failure Causes

code—the code executed at the moment the thread switch occurs (and is thus a
failure cause). Consequently, the programmer can immediately focus on this part of
the program code.

This is close to what we’d actually want: some machine where we can simply
shove in our program and it will tell us “This line is wrong; please fix it” (or better
yet, fix it for us such that we do not have to do any work at all anymore).

As surprising as it seems,such an approach exists,and it is based on delta debug-
ging. It works as follows. Rather than having two different inputs for the same
program, we have one input for two versions of the program—one version where
the test passes,and one version where it fails.The goal of delta debugging is now to
isolate the failure-inducing difference between the two versions—the change that
turns a failing version into a passing version.

At this point, you may ask “Where should I get the passing version from? Is not
this the whole point of debugging?”And you are right. However, there are situations
in which some “old” version of a program passed a test that a “new” version fails.
This situation is called a regression.The new version falls behind the capabilities of
the old version.

The following is an example of a regression. From 1997 to 2001,I was maintaining
the DDD debugger discussed in Section 8.6 in Chapter 8. DDD is a front end to
the GDB command-line debugger, sending commands to GDB and interpreting its
replies. In 1998, I got an email from a user who had upgraded his GDB version and
suddenly DDD no longer worked properly.

Date: Fri, 31 Jul 1998 15:11:05 -0500
From: 〈Name withheld〉
To: DDD Bug Reports <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command correctly
uses any prior command-line arguments, or the value of
"set args". However, when I switched to GDB 4.17, this
no longer worked: If I entered a run command in the
console window, the prior command-line options would be
lost. [...]

This regression situation is all too common when upgrading your system.
You upgrade one part and suddenly other parts that depended on the “old”
behavior no longer work. I wondered whether there was a way of isolating the
cause automatically—that is, of isolating the change to GDB that caused DDD’s
failure.

If a regression occurs, a common debugging strategy is to focus on the changes
one made. In our case,the change was a move from GDB 4.16 to GDB 4.17,and thus
this part was clear. However, this change in the GDB release translates into several
changes to the GDB source code. Running the diff utility to highlight those changes
revealed an output of 178,200 lines.

13.7 Isolating Failure-inducing Changes 295

$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING
5c5
< 675 Mass Ave, Cambridge, MA 02139, USA

���

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

���

> How to Apply These Terms to Your New Programs
.
.
.

〈178,192 more lines〉

These 178,200 lines translate into 8,721 individual changes separated by
unchanged lines—that is, there were 8,721 locations in the GDB source code that
had been changed. At least one of these 8,721 changes caused the regression—but
which one?

Again, this is a setting in which delta debugging can isolate the failure cause.The
idea is to treat these changes as input to a patch-and-test program that works in
three steps.

1. Apply changes. We must apply the changes to the GDB code base. This is done
by taking the original-GDB -4.16 code base and then running the UNIX PATCH
program to apply a subset of the changes. Note that PATCH may fail to apply the
changes—for instance, if individual changes depend on each other. In this case,
the test outcome is unresolved (�).

2. Reconstruct GDB. We must reconstruct GDB after all changes have been applied.
Normally, this would be a simple matter of invoking the UNIX MAKE program.
However,as the MAKE specification itself may have changed we need to recreate
the Makefile first.

If we apply a huge set of unrelated changes, we are quite likely to get a
compilation error. The patch-and-test program must detect this and return an
unresolved test outcome.

3. Run the test. If we have been successful in recreating GDB, we run it (with
DDD) to see whether the failure occurs or not. Because applying arbitrary subsets
of changes can result in surprising behavior of the program, it is wise to limit
unwanted effects. In the case of GDB, we created a temporary directory for each
run, ensuring that personal files would not be touched or overwritten.

Having translated the changes to input, we can now apply delta debugging to
minimize the set of changes or to isolate the failure-inducing change (the failure-
inducing input).The patch-and-test program,instrumented by ddmin or dd, would
apply a subset of the changes,see whether GDB can be reconstructed,and if so return
� or � depending on the test outcome. If GDB cannot be reconstructed with the
changes applied (which is quite common for random subsets), the patch-and-test

296 CHAPTER 13 Isolating Failure Causes

program would return �, and delta debugging would try the next alternative. If we
actually do this, and run delta debugging, we end up in a single change that makes
DDD fail.

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is started.\n\
���

> "Set argument list to give program being debugged when it is started.\n\

This change in a string constant from arguments to argument listwas respon-
sible for GDB 4.17 not interoperating with DDD. Although the string constant is
actually part of GDB’s online help, it is also the basis for GDB’s output. Given the
command show args, GDB 4.16 replies

Arguments to give program being debugged when it is started is "a b c"

but GDB 4.17 issues a slightly different (and grammatically correct) text:

Argument list to give program being debugged when it is started is "a b c"

Unfortunately, this output could not be parsed by DDD, which expected a reply
starting with “Arguments.”To solve the problem here and now, one could simply
have reversed the GDB change. Eventually, I upgraded DDD to make it work with
the new-GDB-version.

This approach of determining the culprit for a regression has been named the
blame-o-meter—as a means to know who to blame. However, as the GDB example
shows,a cause for a problem need not be a defect,it may not even be a mistake.What
the GDB programmers did was perfectly sensible. DDD’s defect,if any,was to rely on
a specific output format. Nonetheless,once one has an automated regression test it
may prove useful to add a blame-o-meter on top. This way, whenever a regression
test fails one could start the blame-o-meter and tell the developer not only that a
test fails but also why it fails.

Building a blame-o-meter is not very difficult, provided one has automated con-
struction, automated regression tests, and a means of applying changes (such as
the UNIX PATCH program). A number of issues call for specific optimizations,
though.

History. If the changes come from a version archive, they can be grouped accord-
ing to their creation time. Ensuring that later changes always occur with
earlier changes will speed up delta debugging enormously, as this ensures
consistent reconstruction and thus resolved test outcomes. In addition, as we
know from Proposition A.19 in the Appendix, resolved tests outcomes result
in a logarithmic number of tests—basically a binary search along the change
history.

Reconstruction. As each test requires reconstruction of the program, it is useful to
have a means of incremental reconstruction.The MAKE program compiles only

13.7 Isolating Failure-inducing Changes 297

the code the sources of which have changed since the last construction. The
CCACHE program speeds up recompilation by caching previous compiles and
detecting when the same compile is being done again.

Grouping. Many subsets of changes result in unresolved outcomes because the
program cannot be reconstructed. For instance, a change A that references a
variable may require a change B that declares that variable. Every subset that
contains only A but not B will result in an unresolved outcome, slowing down
delta debugging considerably.Therefore, in addition to grouping changes by cre-
ation time, it is also useful to group them according to scope—that is, to keep
those changes together that apply to the same file, class, or function.

Failure resolution. A simple means of dealing with construction errors is to search
for changes that may fix these errors.After a failing construction,one could scan
the error messages for identifiers,add all changes that reference these identifiers,
and try again.This is repeated until construction is possible,or until there are no
more changes to add.

In the case of the 8,721 changes to the GDB source code, these optimizations
all proved beneficial. CCACHE reduced the average reconstruction time to 20 per-
cent. Grouping by scope reduced the number of tests by 50 percent. Overall,
as Figure 13.3 shows, using dd with scope information required about 97 tests.
Assuming that each test takes about two minutes, this boils down to three hours
until delta debugging has isolated the cause in the GDB code.

Three hours still sounds like a lot. I am pretty confident that you as a programmer
would have found the cause in the GDB code in less than three hours (especially
having read this book). However, it is rather uncommon to have 8,721 changes
without any temporal ordering and intermediate regression tests, such that typical
regressions can be dealt with much faster.

100,000

10,000

1000

100

10

0 50 100 150
Tests executed

C
h

an
ge

s
le

ft

GDB with ddmin algorithm

... with dd algorithm

... plus scope information

200 250 300
1

FIGURE 13.3

Isolating failure-inducing code changes. After 97 tests, delta debugging has isolated one of
8,721 code changes as causing the failure.

298 CHAPTER 13 Isolating Failure Causes

FIGURE 13.4

Isolating failure-inducing code changes in ECLIPSE. As soon as a test fails, the delta debugging
plug-in automatically determines the failure-inducing code change—if there were an earlier
version where the test did not fail.

If you want to experiment with delta debugging, Figure 13.4 shows a plug-
in named DDCHANGE for the ECLIPSE programming environment. DDCHANGE
keeps track of all tests and all test outcomes. As soon as a test fails that had passed
in some previous version, the delta debugging plug-in automatically determines the
failure-inducing code change in the background and presents its diagnosis as soon
as it is available.This plug-in makes use of the facilities for automated construction,
automated testing, and version control, as they are integrated within ECLIPSE (thus,
no complex setup is necessary).

DDCHANGE is not that quick,either.As it has to reconstruct the program several
times, it can take some time to isolate the failure-inducing change—and again, an
experienced programmer might find the cause quicker. However, unless you need
the cause in the next hour you can easily have delta debugging determine the cause
for you. It is slow and dumb,but it will come up with a result—and no programmer
I know of has fun running these experiments manually.

13.8 Problems and Limitations 299

13.8 PROBLEMS AND LIMITATIONS
Although delta debugging is generally good at isolating causes,one should be aware
of its limits as well as common issues. These include the following

How do we choose the alternate world?
As laid out in Section 12.7 in Chapter 12,choosing the alternate world (i.e., input or
version) determines the initial difference in which to search for causes. If we want
to search for causes in the input,we should use a passing run with a different input.
If we want to search for causes in the configuration,we should search a passing run
with an alternate configuration. In general, we should choose an alternate world
that is as close as possible to the actual world, in order to keep the initial search
space as small as possible.

How do we decompose configurations?
Many configurations naturally decompose into smaller parts that can be individually
assessed. A text decomposes into lines, an HTML page decomposes into head and
body sections, a schedule decomposes into thread switches, and a code difference
decomposes into locations. However, there are some configurations for which it is
difficult to provide such a decomposition.

As an example, consider image processing—wherein an application fails when
processing one specific image but passes on all others. What is the difference
between the failure-inducing image and the passing ones? In such cases, it helps
to understand how the application works. Does it process the image row by row?
In such cases, decomposing the image by rows may make sense. Does it rely on
properties such as number of colors, brightness, or contrast? In this case, it may
make sense to reduce the difference in terms of these properties—for instance, to
have each delta adjust the contrast until the difference becomes minimal.

When do we know a failure is the failure?
When a program is fed with arbitrary input,it may fail in a number of ways. However,
the changed input may cause a different failure than the original test case—that is,
the program may fail at a different location, produce an alternate error message, or
otherwise produce a behavior that is considered“failing”but differs from the original
behavior. We call such different failures artifacts, which are artificially generated
during the delta debugging process.

In the fuzz examples from Section 5.7 in Chapter 5,for instance,our test function
would return � whenever a program crashed—regardless of further circumstances.
In the fuzz case, ignoring artifacts may be legitimate, as a program must not crash
under any input. In general, though, we may want to check further aspects of the
failing behavior.

One of the most important aspects about a failure is to know the location that
was active at the moment of the failure—that is, the exact statement that issued
the failing message, or the last executed statement in case of a crash. Checking

300 CHAPTER 13 Isolating Failure Causes

this location is a good protection against artifacts. An even better protection is to
take into account the backtrace, the stack of calling functions (see Section 8.3.1 in
Chapter 8) at the time of the failure.

■ The test function returns � only if the program failed and if the backtrace of
the failure was identical to the original backtrace.

■ If the program failed, but with a different backtrace, test would return �.
■ If the program passed the test, test would return �.

In addition to the backtrace, further aspects such as coverage, timing, or exact
output can be used to check against artifacts. However, the larger the number of
aspects to be considered part of a failure, the larger the cause required to create all
of these aspects.

How do we disambiguate between multiple causes?
For the sake of efficiency,delta debugging always takes the first possibility to narrow
down a difference. However, there may be other possibilities, resulting in alternate
actual causes. In the MOZILLA example, for instance, dd returned < as a failure-
inducing difference,but removing any of the <SELECT> characters would have made
the failure disappear.

It is fairly easy to extend dd such that it considers other alternatives. This is a
trade-off between performance and convenience. In my experience, the first cause
is typically sufficient to characterize the failure. If it were not, I would run ddon the
other alternatives. Others may prefer to have dd compute multiple alternatives in
advance, such that they can consider them all.

How do I get to the defect?
Every failure-inducing difference returned by delta debugging is an actual cause. As
such, it suggests a fix: simply remove the cause and the failure will no longer occur.
For instance, we could remove the < from the MOZILLA input, prohibit thread
switches during the Raytracer data race, or revert the GDB code to the previous
version. This illustrates that such fixes are more workarounds than corrections—
simply because they do not increase correctness of the program.

In general,though,the cause delta debugging isolates is seldom an error—simply
because the alternate world need not be correct,either. In fact,if an error is the same
in both worlds it will not even be part of the difference in which delta debugging
searches for an actual cause.

To turn the cause into a correction, we still have to find out where to correct
the program (which is, in fact, deciding where and what the defect is). We would
have to search the code that handles printing of <SELECT> tags in MOZILLA, set up
the Raytracer such that the data race no longer occurs, and adapt DDD such that it
handles the outputs from different GDB versions.

In all three cases, the correction is induced by the cause,and the cause certainly
helps in designing and motivating the correction.To get to the actual defect,though,
again requires us to examine the innards of the program,as explored in the remainder
of this book.

13.11 Further Reading 301

13.9 CONCEPTS
To isolate failure causes automatically, you need

■ an automated test that checks whether the failure is still present,
■ a means of narrowing down the difference, and
■ a strategy for proceeding.

One possible strategy is the general delta debugging algorithm dd (Example 13.2).

dd determines the relevant difference between two configurations (inputs,
schedules,code changes,or other circumstances) with respect to a given test—that
is, an actual cause for the failure.

To isolate a failure cause in the input, apply dd (or another strategy) on two How To
program inputs—one that passes and one that fails the test.

To isolate a failure cause in the thread schedule, apply dd (or another strategy)
on two schedules—one that passes and one that fails the test.You need a means
of replaying and manipulating schedules, such as DEJAVU.

To isolate a failure-inducing code change, apply dd (or another strategy) on
two program versions—one that passes and one that fails the test. You need
automated reconstruction of the program after a set of changes has been applied.

Any actual cause, as returned by delta debugging, can be altered to make the
failure no longer occur.This does not mean, though, that the cause is a defect. It
also does not mean that there may be only one actual cause.

Delta debugging on states is a fairly recent technique and not yet fully evaluated.

13.10 TOOLS
Delta Debugging Plug-ins for ECLIPSE. At the time of writing,a number of delta

debugging tools were made available for the ECLIPSE programming framework.
They can be downloaded at http://www.st.cs.uni-saarland.de/eclipse/ .

CCACHE. To apply delta debugging on program changes, you may find
the CCACHE tool for incremental compilation useful. It is available at
http://ccache.samba.org/ .

13.11 FURTHER READING
Delta debugging on program inputs is described in Zeller and Hildebrandt (2002),
a paper discussed in Chapter 5. The paper cites all data from all experiments. The
definitions are general enough to pertain to all types of changes and configurations.

Delta debugging on thread schedules was developed by Choi and Zeller (2002)
while the authors were visiting IBM research. This paper contains all details on the
approach and the experiment. The DEJAVU tool by Choi and Srinivasan (1998) is
described in Chapter 4.

302 CHAPTER 13 Isolating Failure Causes

Zeller (1999) describes how to apply delta debugging to code changes.This was
the first application of delta debugging. The algorithms used in this paper are now
superseded by the more advanced versions in this book, but the case studies are
still valid.

Failure-inducing code changes were first handled by Ness and Ngo (1997). In
their setting,a compiler consisted of a number of optimization modules. By reverting
module after module to an earlier (passing) state, they succeeded in identifying the
module the changes of which caused the failure and therefore kept it at its earlier
revision.

EXERCISES
13.1 Repeat the exercises of Chapter 5 “Simplifying Problems” using isolation

instead of minimization.

13.2 Implement simplification of test cases using an unchanged dd implementa-
tion,but with a wrapper around the test function.Which wrapper is needed?

13.3 Rather than simplifying the failing configuration (as in ddmin), one can
also think about maximizing the passing configuration—that is,having the
largest possible configuration that still passes (with a minimal difference to
the failing configuration).

(a) When would such a ddmax algorithm be useful?
(b) Give a mathematical description of ddmax (analogously to ddmin in

List 5.2).
(c) Implement ddmax.

13.4 Each statement about causes and effects is either true or false. Give a short
reason for your answer if appropriate.
■ If C is a cause and E is its effect, C must precede E. T/F

■ If C is a circumstance that causes a failure, it is possible to alter C such that
the failure no longer occurs. T/F

■ If some cause C is an actual cause,altering C induces the smallest possible
difference in the effect. T/F

■ Every failure cause implies a possible fix. T/F

■ For every failure, there is exactly one actual cause. T/F

■ A failure cause can be determined without executing a program. T/F

■ If I observe two runs (one passing, one failing) with a minimal difference
in input, I have found an actual failure cause. T/F

■ A successful fix proves that the altered code was the actual failure cause.T/F

13.11 Further Reading 303

13.5 In delta debugging, you can either use simplification to simplify failure-
inducing input or isolation to isolate a minimal failure-inducing difference.

(a) Compare these two approaches with respect to their advantages and
disadvantages.

(b) Compare the running times of the respective algorithms in their worst-
case and best-case behavior.

(c) Which are the properties of a 1-minimal result of isolation?

13.6 Using the logbook format (Section 6.5 in Chapter 6), describe the first four
steps of the delta debugging run in Example 13.1.Which are the hypotheses,
predictions, and experiments?

13.7 Is delta debugging an instance of scientific method? Discuss.

13.8 Which are the prerequisites in order to apply delta debugging? Discuss
situations in which delta debugging is not helpful.

Debugging is still, as it was 30 years ago, a matter of trial and error.

– HENRY LIEBERMAN

The Debugging Scandal (1997)

CHAPTER

14Isolating Cause–Effect
Chains

This chapter presents a way of narrowing down failure causes even further. By
extracting and comparing program states, delta debugging automatically isolates
the variables and values that cause the failure, resulting in a cause–effect chain
of the failure: “variable x was 42; therefore p became null; and thus the program
failed.”

14.1 USELESS CAUSES
In Chapter 13, we saw how to isolate inputs, code changes, or schedules that cause
a given failure. In many cases, such causes directly lead to the defect in question.
There are cases,though,where a difference in the input,for instance,gives few clues,
if any, to the nature of the error. This is particularly true if program processes input
at several places, such that it is difficult to relate a difference to some specific code.

One typical example of such programs is a compiler. A compiler processes the
original source code through several stages until it produces an executable.

1. For C, C++, and other languages, the source code is first passed through a
preprocessor.

2. The compiler proper parses the source code into a syntax tree.
3. By traversing the syntax tree, the compiler emits assembler code.
4. The assembler translates the code into object code.
5. The linker binds the objects into an executable.

In addition,each step can include a number of optimizations.The compiler, for
instance, optimizes expressions found in the syntax tree, as well as the generated
assembler code.

As an example, consider the fail.c program shown in Example 14.1. It is
interesting only in one aspect: compiling fail.c with the GNU compiler (GCC)
version 2.95.2 on Linux with optimization enabled causes the compiler to crash. In
fact,depending on the version of Linux you are using it does not just crash but allo-
cates all memory on the machine, causing other processes to die from starvation.
When I tried this example first, every single process on my machine died, until
only the Linux kernel and GCC remained—and only then did the kernel finally kill 305

306 CHAPTER 14 Isolating Cause–Effect Chains

EXAMPLE 14.1: The fail.c program that makes the GNU compiler crash

double mult(double z[], int n) {
int i, j;

i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] * (z[0] + 1.0);

}

return z[n];
}

the GCC process. (Actually, this happened while I was remotely logged in on the
workstation of our system administrator,effectively terminating his session. I cannot
recommend repeating the experience.)

The fail.c program in Example 14.1 is an input (to GCC), and thus we can
isolate the actual cause—using delta debugging, for instance. Thus, we may find
that if we change the line

z[i] = z[i] * (z[0] + 1.0);

to

z[i] = z[i] * (z[0]);

the program compiles just fine. Thus, we now know that the piece of code + 1.0
in fail.c causes the failure.

With this knowledge, we may now be able to work around the problem. If the
mult() function in fail.c were part of our program, we could rearrange its code
such that its semantics remained unchanged but still be capable of being compiled
with GCC . To correct GCC , though, this knowledge is pretty much useless, even
if we were compiler experts. As discussed previously, GCC processes the program
code at a large number of places (in particular, optimizations), and thus there is no
direct linkage from a piece of input (such as + 1.0) to a piece of code that handles
this input. (Contrast this to printing a <SELECT> tag in MOZILLA,for instance.There
is one piece of code in MOZILLA that does exactly this.)

To understand what an input such as + 1.0 does, we must take a look into the
actual computation and see what is going on. Consider a program execution as a
series of states (Figure 14.1). A difference in the input (such as + 1.0) causes a
difference in the following states. As the computation progresses, these state differ-
ences again cause differences in later states.Thus,the differences propagate through
the computation until they become observable by the user—as the difference that
makes the program fail.

The difference between the two inputs is a failure cause, as are the later dif-
ferences between states. Each state difference, however, is also an effect of earlier

14.2 Capturing Program States 307

Input Program state (� Variables) Final state

FIGURE 14.1

How differences propagate through a program run. An initial difference in the input, such
as + 1.0, causes further differences in the state—up to the final difference in the test
outcome.

differences. Thus, the chain of differences forms a cause–effect chain along the
computation—or, in our case, along the GCC run. If we could know what this
cause–effect chain looks like, we would obtain a good understanding of how the
failure came to be.

The question is: Can we actually leverage such differences by comparing pro-
gram states? And how do we capture program states up front? We shall work our
way through four steps and show:

1. How to capture program states as memory graphs.
2. How to compare program states to reveal differences.
3. How to narrow down these differences to reveal causes.
4. How to combine the causes into cause–effect chains.

For the sake of simplicity, we shall first study the individual steps on the well-
known sample program (Example 1.1)—and having mastered that,we will face the
mountain of complexity that is GCC. Our key question is:

HOW DO WE ISOLATE CAUSES IN PROGRAM STATE OR CODE?

14.2 CAPTURING PROGRAM STATES
To see how differences propagate along program states, we must find a way of
capturing program states. At the lowest level, this is simple:As the program stores
its state in computer memory,all one needs is a dump of that memory region.When
it comes to comparing program states,though,we want to use the same abstraction
level as when observing a program state—that is, we want to compare (and thus
capture) the program state in terms of variables, values, and structures.

308 CHAPTER 14 Isolating Cause–Effect Chains

Chapter 8 discussed how to use a debugger to observe arbitrary parts of the
program state during a program run. A debugger also allows us to list all variables
of the program—that is, all global variables as well as all local variables of functions
that are currently active. We call these variables base variables.

As an example,recall the GDB session from Section 8.3.1 in Chapter 8,where we
ran the GNU debugger (GDB) on the sample program (Example 1.1). GDB provides
three commands for listing variables:

■ info variables lists the names of global variables.
■ info locals shows all local variables in the current frame.
■ info args shows all function arguments in the current frame.

If we stop at the shell_sort() function, for instance,we can examine all local
variables.

(gdb) break shell_sort
Breakpoint 1 at 0x1b00: file sample.c, line 9.
(gdb) run 9 8 7
Breakpoint 1, shell_sort (a=0x8049880, size=4)

at sample.c:9
9 int h = 1;
(gdb) info args
a = (int *) 0x8049880
size = 4
(gdb) info locals
i = 0
j = 10
h = 0
(gdb) _

By moving through the stack frames,we can obtain all variable values for the calling
functions.

(gdb) frame 1
#1 0x00001d04 in main (argc=3, argv=0xbffff6fc)

at sample.c:36
36 shell_sort(a, argc);
(gdb) info args
argc = 4
argv = (char **) 0xbffff7a4
(gdb) info locals
a = (int *) 0x8049880
i = 3
(gdb) _

sample has no global variables; otherwise, we could have obtained them via GDB’s
info variables command.

With these names and values, we can easily capture a program state as a map-
ping of base variables to values, as outlined in Table 14.1. For the sake of avoiding
ambiguity, we suffix each (local) variable with its frame number. This way,a0—the

14.2 Capturing Program States 309

Table 14.1 Base Variables of the sample Program

Variable Value Variable Value

a0 0x8049880 argc1 4

size0 4 argv1 0xbffff7a4

i0 0 a1 0x8049880

j0 10 i1 3

h0 0 — —

Table 14.2 Derived Variables of the sample Program

Variable Value Variable Value Variable Value

a0[0] 9 a1[0] 9 argv1[0] “sample”

a0[1] 8 a1[1] 8 argv1[1] “9”

a0[2] 7 a1[2] 7 argv1[2] “8”

— — — — argv1[3] “7”

— — — — argv1[4] 0x0

argument a in frame 0 (shell_sort())—cannot be confounded with a1, the local
variable a in frame 1 (main()).

Unfortunately, this naive approach is not enough. We must record the values of
references, such as a or argv, and we must take into account the data structures
being referenced. In other words,we must also take care of derived variables such
as argv[0], a[1], and so on. One simple approach toward doing so is to unfold
the program state—that is, follow all references until the state reaches a fix point.

1. Start with a program state consisting of all base variables and their values.
2. For each pointer in the state, include the variables it references.
3. For each array in the state, include its elements.
4. For each composite data in the state (objects, records, and so on), include

its attributes.
5. Continue until the state can no longer be expanded.

Such a process can easily be automated (by instrumenting GDB, for instance) as
long as we can accurately determine the types and sizes of all objects. (SectionA.2.7
in the Appendix sketches how to handle such issues in C.) Doing so for the sample
run reveals a number of derived variables,outlined in Table 14.2.These are obtained
from following the pointers a and argv and including the elements of the arrays
being pointed to.

Base and derived variables, as outlined in Tables 14.1 and 14.2, form the entire
program state. Every memory location a program can (legally) access is covered.

310 CHAPTER 14 Isolating Cause–Effect Chains

Unfortunately, a simple name/value representation does still not suffice, because
aliasing is not reflected.Whereas a0 and a1 are different variables,a0[0] and a1[0]
are not. Because the pointers a0 and a1 have the same value,a0[0] and a1[0] refer
to the same location in memory.

Visual debuggers such as DDD (see Section 8.5 in Chapter 8,on visualizing state)
have addressed this problem by showing the program state not as pairs of name
and values but as a graph in which variable values are represented by vertices
and references by edges. We shall follow the same approach, but (in contrast to
a debugger) capture the graph for the entire state, obtaining a so-called memory
graph. The basic structure of a memory graph is as follows:

■ Vertices stand for variable values. Each memory location that is accessible via
some base or derived variable becomes a vertex.

■ Edges stand for references. Each reference points to the location being
referenced. Its expression shows how to access the location.

As an example, consider the memory graph for sample shown in Figure 14.2.
Starting from the root vertex at the top, we can follow the individual edges to the
base variables.The size edge,for instance,brings us to the location where the size
value (4) is stored. The a variables (one for each frame) both reference the same
array [...] referencing the three values 9,8, and 7. Likewise,argv unfolds into an
array of five pointers, referencing the strings "sample","9","8", and "7"; the fifth
pointer is NULL.

Some of the names attached to the references may appear rather cryptic. What
does (()[0] @ 3) mean, for instance? The string () is a placeholder for the

<Root>

0

i0 j h a0 size a1 i1 argc argv

10

9 8 7

0

(()[0] @ 3)

()[0] ()[1] ()[2] ()[0]

()[0..] ()[0..] ()[0..] ()[0..]

()[1] ()[2] ()[3] ()[4]

[...] [...]

(()[0] @ 3) (()[0] @ 5)

0x80498800x8049880 0xbffff7f4

0xbffff934

"Sample" "9" "8" "7"

0xbffff95b 0xbffff95d 0xbffff95f 0x0

4 3 4

FIGURE 14.2

The state of a passing sample run.

14.3 Comparing Program States 311

expression of the parent—in our case,the unambiguous a.The @ operator is special
to GDB, where x @ n means “the array that consists of x and the n — 1 elements
following in memory.”Thus, (a[0] @ 3) stands for the three-element array start-
ing at a[0], and this is exactly what [...] stands for. For a formal definition, see
Section A.2.1 in the Appendix.

14.3 COMPARING PROGRAM STATES
Once we can extract program states as separate entities, there are many things we
can do with them. We can observe them (as long as we can focus on a manageable
subset),and we can check whether they satisfy specific properties—although asser-
tions (see Chapter 10) would probably be better tools for this. The most important
thing, though, to do with program states is compare them against program states
observed in different runs or from different program versions.

As an example of comparing program states, consider Figure 14.3.This memory
graph was obtained from a failing run of sample; namely, the run with the argu-
ments 11 and 14. In this visualization, we have highlighted the differences with
respect to the passing state shown in Figure 14.2. Out of the 19 values,only 8 have
a differing value.This difference in the state is caused by the difference in the input.
However, this difference in the state also causes the difference in the final outcome.
Thus, if we search for failure causes in the state,we can focus on the differences (as
highlighted in Figure 14.3).

<Root>

i0

0 10 0 0x8049880

(()[0] @ 3) (()[0] @ 3)
(()[0] @ 4)

()[0]

11 14 0 0xbffff8e7

"sample" "11" "14"

0xbffff90e 0xbffff911 0x0

()[1] ()[2] ()[0]

()[0..] ()[0..] ()[0..]

()[1] ()[2] ()[3]

[...] [...]

3 0x8049880 2 3

j h a0 size a1 i1 argc argv

0xbffff7a4

FIGURE 14.3

Differences in the state of the failing sample run.

312 CHAPTER 14 Isolating Cause–Effect Chains

How does one compute such differences? The basic idea is to compute a
matching between both memory graphs G� and G�.

■ A vertex in G� matches a vertex in G� if
– both vertices are not pointers, and have the same type, value, and size; or
– both vertices are pointers of the same type and are NULL; or
– both vertices are pointers of the same type and are non-NULL.
This rule abstracts from memory locations:Regardless of where a value is stored,
it can be matched. In Figure 14.3, for instance,argv[0]’s value differs from the
one in Figure 14.2. As both are non-NULL pointers, though, they match each
other.

■ An edge in G� matches an edge in G� if
– the edge expressions are equal, and
– the source and target vertices match each other.

Any vertex or edge that is not matched thus becomes a difference.
The question is now: How do we establish the best possible matching? This

is an instance of the largest common subgraph problem, which is known to be
NP-complete. The best-known algorithms have a running time that is exponential
in the number of vertices. A pragmatic alternative is to compute a large common
subgraph (and thus a large matching) by parallel traversal. Starting from the 〈Root〉
vertex, we determine all matching edges originating from the current vertex and
ending in a vertex with matching content. These edges and vertices become part
of the common subgraph. The process is then repeated recursively. The resulting
common subgraphs are not necessarily the largest but are sufficiently large for prac-
tical purposes. The complexity is that of a simple graph traversal. (Details of the
algorithm are found in Section A.2.4 in the Appendix.)

14.4 ISOLATING RELEVANT PROGRAM STATES
Focusing on the differences between two states can already be helpful for
debugging—simply because the differences in the state cause the failure.As pointed
out in Chapter 12, though,we normally do not search for some cause but for actual
causes—that is,minimal differences between the world in which the failure occurs
and the alternate world in which it does not occur. In Chapter 13 we saw how
delta debugging narrows down actual causes in the program input and other cir-
cumstances. Can we apply similar techniques to automatically isolate actual causes
in the program state?

In principle, we can see each program state as input to the remainder of the
program run. Thus, we may be able to isolate failure-inducing differences in the
state just as we did within the original input. What we need, though, is a difference
we can

■ apply to change the passing state into the failing state, and
■ decompose into smaller differences to narrow down the actual cause.

14.4 Isolating Relevant Program States 313

EXAMPLE 14.2: GDB commands that change the sample state from passing
to failing

frame 0 # shell_sort()
set variable size = 3
frame 1 # main()
set variable a[0] = 11
set variable a[1] = 14
set variable a[2] = 0
set variable i = 2
set variable argc = 3
set variable argv[1] = \

(char *)strncpy((char *)malloc(3), "11", 3)
set variable argv[2] = \

(char *)strncpy((char *)malloc(3), "14", 3)
set variable argv[3] = 0x0

Applying differences is not too difficult. All we need to do is translate the state
differences between G� and G� into debugger commands that alter the state. In the
two sample graphs shown in Figures 14.2 and 14.3 there are 22 vertices and edges
that are not matched. Thus, we obtain 22 differences, each adding or removing a
vertex or adjusting an edge.These 22 differences translate into 10 GDB commands,
shown in Example 14.2.

(Details on how to obtain these commands are listed in Section A.2.5 in the
Appendix.) We can apply all of these GDB commands on the passing run, thus
changing the state such that it is identical to the state of the failing run.

(gdb) break shell_sort
Breakpoint 1 at 0x1b00: file sample.c, line 9.
(gdb) run 9 8 7
Breakpoint 1, shell_sort (a=0x8049880, size=4)

at sample.c:9
9 int h = 1;
(gdb) set variable size = 3
(gdb) frame 1
#1 0x00001d04 in main (argc=3, argv=0xbffff6fc)

at sample.c:36
36 shell_sort(a, argc);
(gdb) set variable a[0] = 11
(gdb) set variable a[1] = 14

.

.

.

(gdb) set variable argv[3] = 0x0
(gdb) _

Because the program state determines the remainder of the execution,the remaining
behavior is exactly the behavior of the failing run.

314 CHAPTER 14 Isolating Cause–Effect Chains

(gdb) continue
Continuing.
Output: 0 11

Program exited normally.
(gdb) _

Let’s summarize. If we apply no differences,we get the unchanged passing run.
If we apply all differences,we get the failing run. Consequently,one or more of the
differences in the program state must form the actual cause of the failure.

To decompose differences, we could simply take the individual debugger com-
mands and find out which of these are relevant for producing the failure. However,
it is wiser to operate at a higher level of abstraction—that is, at the memory graph
level. The following is the plan:

1. Take a subset of the memory graph differences.
2. Compute the appropriate debugger commands.
3. Apply them to the passing run.
4. Resume execution.
5. See whether the failure still occurs or not.

This can be easily implemented in a test function and then invoked from a delta
debugging algorithm such as dd. By applying a subset of the differences, we effec-
tively create a mixed program state containing parts of the passing state and parts
of the failing state.After resuming execution,we assess whether a mixed state results
in a passing (�), failing (�), or unresolved (�) outcome (Figure 14.4).

Eventually, delta debugging should isolate a relevant difference—at least, this
is our hope, as it may well be that such mixed states always result in unresolved
outcomes.

Passing state Failing state

Mixed state

Test outcome �

�
�

FIGURE 14.4

Narrowing down state differences. Depending on the test outcome, delta debugging uses the
mixed state either as a passing or as a failing state. If the test outcome is unresolved (�), delta
debugging creates a new mixed state.

14.4 Isolating Relevant Program States 315

25

20

15

10

5

0
0 1 2 3

Tests executed

D
el

ta
s

4 5

cpass
cfail

FIGURE 14.5

Isolating the failure-inducing state in sample. After five tests, delta debugging has narrowed
down the failure cause to one single variable.

Applied to sample, it turns out that delta debugging performs quite well.
Figure 14.5 shows what happens if we actually run dd on the sample differences.

■ Test 1: In the first test, dd applies half the differences, resulting in all of a[], i1,
size,argc, and argv[] being set to the failing state. It turns out that the failure
(0 being output) still persists, and thus the variables j,h, and i0 are ruled out as
causes.

■ Test 2: dd only sets a[] and argv[1]. The failure occurs. Now, i1, size, and
argc are ruled out.

■ Test 3: dd only sets argv[1]. The test passes, ruling out argv[1] as a failure
cause. Only a[] remains.

■ Test 4: dd sets a[0] = 11. The test passes, ruling out a[0].

■ Test 5: dd sets a[0] = 11 and a[1] = 14.The test also passes,ruling out a[1].

The only difference that remains after five tests is a[2]. Setting a[2] = 0 in the
passing run causes the failure in sample. Thus, dd reports a[2] as an actual failure
cause. The failure occurs if and only if a[2] is zero.

Is this a good diagnosis? Yes, because it immediately helps in understanding the
failure. If I sort 11 and 14, the value of a[2] should not influence the outcome at
all—yet it does. Therefore, this diagnosis points immediately to the defect.

On the other hand, this example raises some of the delta debugging issues dis-
cussed in Section 13.8 in Chapter 13. In particular, it shows that although delta
debugging returns causes (such as a[2]) it need not return infections (such as
size). One might wish to have dd isolate an infection such as the value of size.

316 CHAPTER 14 Isolating Cause–Effect Chains

However, although size has a different value in the two runs, and could thus be
isolated as the cause, changing size from 3 (the value in the failing run) to 4 (the
value found in the passing run) only changes the outcome if a[2] is also set to zero.

However, even if delta debugging “only” returns causes, these causes can again
be very helpful in understanding how the failure came to be. We have built a pro-
totype called IGOR (“Igor, go fetch bugs!”) that runs the previously cited steps
automatically. It determines the places to compare states,determines the differences,
and runs delta debugging on the differences. IGOR can be downloaded (it is open
source) and installed on your system. Originally,there also was an automated debug-
ging server ASKIGOR that provided a public interface. Figure 1.9 shows ASKIGOR
with a diagnosis for sample, computed as described in this section.

14.5 ISOLATING CAUSE–EFFECT CHAINS
Let’s now go back to the original problem and address the GCC failure. A + 1.0 in
the input is the beginning of a long cause–effect chain that eventually leads to the
failure.

Because GCC executes for a long time, the first question is:At which locations
should IGOR compare executions? For technical reasons, we require comparable
states. Because we cannot alter the set of local variables, the current program coun-
ters and the backtraces of the two locations to be compared must be identical. In
addition to this constraint, though,we can choose arbitrary locations during execu-
tion. Because the causes propagate through the run, the cause–effect chain can be
observed at any location.

However, for crashing programs such as GCC the backtrace of functions that
were active at the moment of the crash have turned out to be a good source for
locations. Example 14.3 shows the backtrace of the crash. Given a backtrace, IGOR
starts with a sample of three events from the backtrace.

■ After the program start—that is, the location at the bottom of the backtrace,
when GCC’s subprocess cc1 reaches the function main().

■ In the middle of the program run—that is,in the middle of the backtrace,when
cc1 reaches the function combine_instructions().

■ Shortly before the failure—that is, the top of the backtrace,when cc1 reaches
the function if_then_else_cond() for the 95th time—a call that never
returns.

All these events occur in both the passing run r� and the failing run r�. Let’s
examine these events (and associated locations) in detail.

At main(). We start by capturing the two program states of r� and r� in main().
The graph G� and G� has 27,139 vertices and 27,159 edges. To squeeze them
through the GDB command-line bottleneck requires 15 minutes each.

14.5 Isolating Cause–Effect Chains 317

EXAMPLE 14.3: The GCC backtrace

Frame Address Location
#0 0x810b19f in if_then_else_cond () at combine.c:6788

.

.

.

#3189 0x810b19f in if_then_else_cond () at combine.c:6788
#3190 0x8105449 in simplify_rtx () at combine.c:3329
#3191 0x8105029 in subst () at combine.c:3183

.

.

.

#3198 0x8105029 in subst () at combine.c:3183
#3199 0x8102457 in try_combine() at combine.c:1758
#3200 0x810110b in combine_instructions() at combine.c:659
#3201 0x804c7fb in rest_of_compilation() at toplev.c:4092
#3202 0x8183aa4 in finish_function() at c-decl.c:7268
#3203 0x81751ea in yyparse() at c-parse.y:349
#3204 0x804b2f1 in compile_file() at toplev.c:3265
#3205 0x804e59a in main() at toplev.c:5440

It takes a simple graph traversal to determine that exactly one vertex is dif-
ferent in G� and G�—namely,argv[2],which is "fail.i" in r� and "pass.i"
in r�. These are the names of the preprocessed source files as passed to cc1
by the GCC compiler driver.This difference is minimal, and thus IGOR does not
need a delta debugging run to narrow it further.

At combine_instructions(). As combine_instructions() is reached,GCC has
already generated the intermediate code (called RTL for “register transfer list”),
which is now optimized. IGOR captures the graphs G� with 42,991 vertices and
44,290 edges,as well as G� with 43,147 vertices and 44,460 edges.The common
subgraph of G� and G� has 42,637 vertices.Thus,we have 871 vertices that have
been added in G� or deleted in G�. (The graph G� is shown in Figure 1.2.)

The deltas for these 871 vertices are now subject to delta debugging, which
begins by setting 436 GCC variables in the passing run to the values from the
failing run (G�). Is there anything good that can come out of this mixed state?
No. GCC immediately aborts with an error message complaining about an incon-
sistent state. Changing the other half of variables does not help either.After these
two unresolved outcomes, delta debugging increases granularity and alters only
218 variables. After a few unsuccessful attempts (with various uncommon GCC
messages), this number of altered variables is small enough to make GCC pass
(Figure 14.6). Eventually, after only 44 tests, delta debugging has narrowed the
failure-inducing difference to one single vertex,created with the GDB commands.

set variable $m9 = (struct rtx_def *)malloc(12)
set variable $m9->code = PLUS
set variable $m9->mode = DFmode
set variable $m9->jump = 0
set variable $m9->fld[0].rtx = loop_mems[0].mem

318 CHAPTER 14 Isolating Cause–Effect Chains

900

800

700

600

500

400

300

200

100

0
0 5 10 15 20

Tests executed

D
el

ta
s

25 30 35 40 45

cpass
cfail

FIGURE 14.6

Narrowing at combine_instructions(). After 44 tests, delta debugging has narrowed
down the failure cause to one single state difference—a PLUS operator.

set variable $m9->fld[1].rtx = $m10
set variable first_loop_store_insn->fld[1].rtx->\

fld[1].rtx->fld[3].rtx->fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion of a node in the RTL
tree containing a PLUS operator—the proven effect of the initial change �1.0
from pass.c to fail.c.

At if_then_else_cond(). Shortly before the failure, in if_then_else_cond()
IGOR captures the graphs G� with 47,071 vertices and 48,473 edges, as well as
G� with 47,313 vertices and 48,744 edges.The common subgraph of G� and G�
has 46,605 vertices;1,224 vertices have been either added in G� or deleted in G�.

Again, delta debugging runs on the 1,224 differing vertices (Figure 14.7).
As every second test fails, the difference narrows quickly. After 15 tests, delta
debugging has isolated a minimal failure-inducing difference—a single pointer
adjustment, created with the GDB command

set variable link->fld[0].rtx->fld[0].rtx = link

This final difference is the difference that causes GCC to fail. It creates a cycle in
the RTL tree. The pointer link→fld[0].rtx→fld[0].rtx points back to link!
The RTL tree is no longer a tree,and this causes endless recursion in the function
if_then_else_cond(), eventually crashing cc1.

The complete cause–effect chain for cc1, as reported by ASKIGOR, is shown in
Figure 14.8.

With this summary, the programmer can easily follow the cause–effect chain
from the root cause (the passed arguments) via an intermediate effect (a new node

14.5 Isolating Cause–Effect Chains 319

cpass
cfail

1400

1200

1000

800

600

400

200

0
0 2 4 6 8

Tests executed

D
el

ta
s

10 12 14 16

FIGURE 14.7

Narrowing at if_then_else_cond(). After 15 tests, delta debugging has isolated a tree
cycle as the cause for the GCC crash.

FIGURE 14.8

The GCC cause–effect chain as reported by ASKIGOR.

320 CHAPTER 14 Isolating Cause–Effect Chains

in the RTL tree) to the final effect (a cycle in the RTL tree).The entire diagnosis was
generated automatically from the passing and the failing run. No manual interaction
was required.

IGOR required six runs to extract the GCC state (each taking 15–20 minutes)
and three delta debugging runs (each taking 8–10 minutes) to isolate the failure-
inducing differences. (Most of this overhead is due to accessing and manipulating
memory via the GDB command line. A nonprototypical implementation, built into
GDB or linked with the debuggee, could speed up state access by a factor of 10 to
1,000.)

Again, it should be noted that IGOR produces this diagnosis in a fully automatic
fashion. All the programmer has to specify is the program to be examined as well
as the passing and failing invocations of the automated test. Given this information,
IGOR then automatically produces the cause–effect chain as shown in Figure 14.8.

14.6 ISOLATING FAILURE-INDUCING CODE
So far, we have been able to isolate causes in the program state. Ultimately, though,
we are looking for causes in the program code—that is, the defect that causes the
failure. This implies searching in time for the moment the defect executed and
originated the infection chain.

In the GCC example, we assume that the states at main() and the states at
combine_instructions() are sane. The RTL cycle at if_then_else_cond()
obviously is not. Thus, somewhere between the combine_instructions() and
if_then_else_cond() invocation the state must have changed from sane to
infected. An experienced programmer would thus try to identify the moment in
time where the transition from sane to infected takes place—for instance, by set-
ting up appropriate invariant assertions,such as assert(isAcyclicTree(root)),
in all executed functions that modify the RTL tree.

However, there is another way of coming closer to the defect—and this can
also be fully automated.The idea is to search for statements that cause the failure-
inducing state. In other words, when we find a cause in the program state, we
search the code that created this very cause—in the hope that among these pieces
of code we find the actual defect.

To find such causes in the code, one idea is to look at the variables associated
with the cause in the program state. Assume there is a point where a variable A
ceases to be a failure cause, and a variable B begins. (These variables are isolated
using delta debugging, as described earlier.) Such a cause transition from A to B
is an origin of B as a failure cause. A cause transition is thus a good place to break
the cause–effect chain and to fix the program. Because a cause transition may be a
good fix, it may also indicate the actual defect.

How do we locate such transitions? The actual algorithm cts is formally defined
in Section A.3 in the Appendix, but it is easy to see how it works. Figure 14.9

14.6 Isolating Failure-Inducing Code 321

Passing run

T
im

e

Causes

argc 5 3

argc 5 3

a[2] 5 0

shell_sort(a[], argc);

Program
states

Cause
transition
from argc
to a{2}

Failing run

��

FIGURE 14.9

Locating a cause transition. Delta debugging can detect failure causes in the program state at
arbitrary moments in time. When the cause shifts from one variable to another, we can use
binary search in time to narrow down the transition—a statement that is likely to cause
the failure.

sketches its application to the sample program. Before the call to shell_sort(),
delta debugging isolates argc as a failure cause. Afterward, a[2] is the failure cause.
To find the moment of that cause transition,we apply delta debugging in the middle
of the interval.Then we repeat the process for the two subintervals, effectively nar-
rowing down the transitions until we find only direct transitions from one moment
to the next—that is, at a single statement. Overall, cts returns three direct cause
transitions:

■ From argc to a[2] in line 36
■ From a[2] to v in line 18
■ From v to a[0] in line 22

Each of these cause transitions is where a cause originates—that is, it points to
program code that causes the transition and thus the failure. a[2] gets its value in
lines 32–35, v gets its value in line 18, and so on. Each of these cause transitions is
thus a candidate for a code correction. Moreover,each is a likely defect. Indeed, the
first transition in line 36 of sample is exactly the location of the defect.

Let’s apply this concept of cause transitions to the GCC example. Table 14.3
outlines all cause transitions occurring in GCC between the invocation and the
failure.We find that the failure cause propagates through the GCC execution in four
major blocks:

■ Initially,the file name (fail.c) is the failure cause. Called with pass.c,the alternate
input file without + 1.0,the error does not occur.This argument is finally passed
to the GCC lexer (transitions 1–3).

322 CHAPTER 14 Isolating Cause–Effect Chains

Table 14.3 Cause Transitions in GCC

No. Location Cause Transition to Variable

0 〈Start〉 argv[3]

1 toplev.c:4755 name

2 toplev.c:2909 dump_base_name

3 c-lex.c:187 finput→_IO_buf_base

4 c-lex.c:1213 nextchar

5 c-lex.c:1213 yyssa[41]

6 c-typeck.c:3615 yyssa[42]

7 c-lex.c:1213 last_insn→fld[1].rtx
→fld[1].rtx→fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence_result[2]
→fld[0].rtvec
→elem[0].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[3].rtx→fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx→fld[0].rtx

■ In the lexical and syntactical analysis (transitions 4–6), it is the actual difference
in file content that becomes a failure cause—that is, the characters + 1.0.

■ The difference in file content becomes a difference in the abstract syn-
tax tree, where + 1.0 induces fld[1].rtx to hold an additional node
(fld[1].rtx.code is PLUS) in the failing run (transitions 7–8). Thus, the + in
the input has caused a PLUS node, created at transition 8.

■ In transition 9, the failure cause moves from the additional PLUS node to the
cycle in the abstract syntax tree. We have

x→fld[0].rtx→fld[0].rtx = x,

meaning that the node at *x is its own grandchild. That is, we have again found
the cycle in the RTL tree (albeit involving a different base pointer). As discussed
in Section 14.5, this cycle ultimately causes an endless recursion and thus the
GCC crash. However, transition 9 is where this cycle originates!

At combine.c:4271, the location of the last transition,we find a single statement

return x;

This line is not likely to be a defect. Let’s take a look at the direct origin of x, in
combine.c:4013–4019, listed in Example 14.4.

14.6 Isolating Failure-Inducing Code 323

EXAMPLE 14.4: The GCC defect

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

}
break;

This place is where the infection originates. The call to the
apply_distributive_law() function is wrong. This function transforms
code using the rule

(MULT (PLUS a b) c)⇒(PLUS (MULT a c1)(MULT b c2))

(This application of the distributive law allows for potential optimizations, espe-
cially for addresses.) Unfortunately, in the apply_distributive_law() call
(Example 14.4), c1 and c2 share a common grandchild (the macro XEXP(x, 1)
translates into x→fld[1].rtx),which leads to the cycle in the abstract syntax tree.
To fix the problem,one should call the function with a copy of the grandchild—and
this is how the error was fixed in GCC 2.95.3.

At this point, one may wonder why cause transitions did not single out the call
to apply_distributive_law() as a cause transition. The answer is simple: This
piece of code is executed only during the failing run. Therefore, we have no state
to compare against, and therefore cannot narrow down the cause transition any
further. Line 4,271, however, has been executed in both runs, and thus we are able
to isolate the failure-inducing state at this location.

Overall, to locate the defect the programmer had to follow just one backward
dependency from the last isolated cause transition. In numbers, this translates into
just 2 lines out of 338,000 lines of GCC code. Even if we assume the programmer
examines all nine transitions and all direct dependencies, the effort to locate the
GCC defect is minimal.

324 CHAPTER 14 Isolating Cause–Effect Chains

Of course, cause transitions cannot always pinpoint a defect—simply because
neither delta debugging nor the isolation of cause transitions has any notion of what
is correct, right, or true. However, cause transitions are frequently also defects. In
fact, cause transitions predict defect locations significantly better than any of the
anomaly-based methods discussed in Chapter 11.This was found by Cleve and Zeller
(2005).

Applied on the Siemens test suite (see Section 11.2 in Chapter 11), cause tran-
sitions narrowed down the defect location to 10 percent or less of the code in
36 percent of the test runs. In 5 percent of all runs, they even exactly pinpointed
the defect. Again, these figures do not generalize to larger programs but show the
potential of the concept.

14.7 ISSUES AND RISKS
Section 13.8 in Chapter 13 discussed some issues to be aware of when using delta
debugging. These issues are also valid for applying delta debugging to program
states. In particular,

■ The alternate (passing) run should be as close as possible to the actual
(failing) run.

■ One may be unable to decompose large differences.
■ One should take extra care to avoid artifacts (for instance, by comparing the

backtrace).
■ The actual cause reported may be one of multiple actual causes.
■ The actual cause need not be an error.

In addition, applying delta debugging on program states raises its own issues,
which one should be aware of.

How do we capture an accurate state? In C and C++, most of memory manage-
ment is done by convention,and left to the abilities of the programmer.This can
lead to ambiguous interpretations of memory content, and thus to inaccurate
memory graphs. Section A.2.7 in the Appendix lists some potential pitfalls. This
issue is nonexistent for languages with managed memory such as JAVA or C#,
because the garbage collector must always know which objects are referenced
by which other objects.

How do we ensure the cause is valid in the original runs? Each cause, as repor-
ted by delta debugging, consists of two configurations (states) c′

� and c′
� such

that the difference ��c′
� �c′

� is minimal. This difference � between states
determines whether the outcome is � or � and thus is an actual failure cause.

However, � is a failure cause only in a specific context—the configuration
c′
�—and this context may or may not be related to the original passing or failing

runs. It is conceivable that c′
� may not be feasible—that is, there is no possible

14.7 Issues and Risks 325

input such that c′
� is ever reached. It is yet unknown whether this causes

problems in practice. A stronger checking for artifacts may avoid the problem.

Where does a state end? As described here, we assume that the program state is
accessible via an interactive debugger. However,differences may also reside out-
side the program memory. For instance,a file descriptor may have the same value
in r� and r� but be tied to a different file. To some extent, such “greater” states
can be seen as external input, such that the techniques discussed in Chapter 13
may be more appropriate.

What is my cost? Determining cause transitions is very expensive—not because
the algorithms are complex but because the states are very huge and because
a large number of test runs is required. Furthermore, one needs a signifi-
cant infrastructure. In contrast, comparing coverage (discussed in Section 11.2
in Chapter 11) is far more lightweight, can be implemented without much
risk, and requires just two test runs (which may even be conducted manu-
ally). On the other hand, it is not as precise. Obviously, you get what you
pay for.

The most interesting question for the future is how to combine the individ-
ual automated debugging techniques. For instance, one could combine coverage
and cause transitions and focus on cause transitions occurring in code that exe-
cutes only in failing runs (see Section 11.2 in Chapter 11). One could have delta
debugging focus on state that correlates with failure (see Chapter 11)—and thus
effectively combine correlation,as detected from a large number of runs,with causes,
as determined by additional experiments. If one has a specification of what’s cor-
rect, right, or true (see Chapter 10), this could effectively guide all searches toward
defects. Obviously, we have come quite far, and there is every reason to believe
that computer scientists will come up with even better tools and techniques in the
future.

How far can we actually go? Unfortunately, there is no chance we will ever be
able to automate the entire debugging process—in particular,because there can be
no automated way of determining the defect that causes a failure.The argument
is as follows:

■ By definition,the defect is where the program code deviates from what is correct,
right,or true. If we know the correct code,though,there is no point in debugging.
We can simply use the correct code instead.

■ Assume that the defect is where the program state becomes infected. To deter-
mine whether the state is infected or not requires a complete specification of the
state—at all moments during execution. Such a specification is called a correct
code, and we reenter the argument as previously explained.

■ Furthermore, in the absence of a correct code (or,more precisely, in the absence
of a fix) we cannot tell whether a defect causes the failure—because we need a
fix to verify causality. In fact,determining the defect that causes a failure requires
generating a fix (i.e., writing the correct program).

326 CHAPTER 14 Isolating Cause–Effect Chains

Thus, there is no chance of an automatic device that determines the defects—at
least not until we find a way of writing programs automatically. As long as we can
isolate causes automatically, though, we can come very close to the defects—and
close to a good explanation of how the failure came to be.

14.8 CONCEPTS
To understand how a failure cause propagates through the program run, oneHow To

can apply delta debugging on program states, isolating failure-inducing variables
and values.

To capture program states, use a representation that abstracts from concrete
memory locations, such as memory graphs.

To compare program states, compute a large common subgraph. Any value that is
not in the subgraph becomes a difference.

To isolate failure-inducing program states, have a test function that
■ takes a subset of the memory graph differences,
■ computes the appropriate debugger commands,
■ applies them to the passing run, and
■ sees whether the failure still occurs or not.

Using this test function in a delta debugging framework will return a 1-minimal
failure-inducing program state.

A failure-inducing variable, as returned by delta debugging, can be altered to make
the failure no longer occur. It is thus an actual cause.This does not mean,though,
that the variable is infected. It also does not mean that there may be only one
failure-inducing variable.

To find the code that causes the failure, one can automatically search for cause
transitions where a variable A ceases to be a failure cause and a variable B
begins. Such cause transitions are places where the failure can be fixed, and
they are likely defects.

To narrow down the defect along a cause–effect chain,search for a cause transition
from a sane variable to an infected variable.

Delta debugging on states is a fairly recent technique and not yet fully evaluated.
Whereas finding failure causes can be fully automated, finding the defect that

causes a failure will always remain a manual activity.

14.9 TOOLS
IGOR and ASKIGOR. You can download an open-source command-line version of

IGOR at http://www.askigor.org/ . The ASKIGOR debugging server is no longer
active.

14.10 Further Reading 327

14.10 FURTHER READING
The concept of memory graphs, as described in this book, was first formulated by
Zimmermann and Zeller (2002).This paper also contains more details and examples
on how to capture and compare memory graphs.

The idea of isolating cause–effect chains by applying delta debugging on program
states was developed by Zeller (2002). This paper is also the basis for this chapter.
In this paper, the central tool was called HOWCOME, which is now a part of IGOR.

The concept of cause transitions was developed by Cleve and Zeller (2005).The
paper describes the details of cause transitions in the sample program, in GCC,and
in the Siemens test suite. All of these papers, as well as recent work, are available at
the delta debugging home page found at http://www.st.cs.uni-saarland.de/dd/ .

Locating a defect becomes much easier if one has a specification handy. Such
a specification can be combined with systematic experiments, as discussed in this
chapter. A common issue with model checkers, for instance, is that they can detect
that a program (or, more precisely, its model as a finite automaton) does not satisfy
a given specification but fail to give a precise diagnosis why that would be. To this
end, Groce and Visser (2003) used multiple passing and failing runs to provide a
precise diagnosis, including likely defect locations. In that these runs are generated
on demand, the approach is close to delta debugging on program states. In contrast
to delta debugging, though, the approach can determine defects from nondefects
due to the supplied specification. In Chaki et al. (2004), the technique showed
excellent localization capabilities for nontrivial programs.

To actually compute the largest common subgraph instead of simply some large
subgraph, one can use the approach of Barrow and Burstall (1976), starting from a
correspondence graph as computed by the algorithm of Bron and Kerbosch (1973).
The correspondence graph matches corresponding vertex content and edge labels.
This is very suitable in our case, in that we normally have several differing content
and labels. However, in the worst case (all content and labels are equal) computing
the largest common subgraph has exponential complexity.

Compilers such as GCC have frequently been the subject of automated debug-
ging techniques. Whalley (1994) describes how to isolate failure-inducing RTL
optimizations in a compiler, using a simple binary search over the optimizations
applied.

EXERCISES
14.1 Once again,consider the bigbang program (Example 8.3). If you change the

mode variable in line 7, the failure no longer occurs.
(a) Sketch how the difference in mode propagates through the execution

and how it prohibits the failure.
(b) Sketch the cause transitions in bigbang.

328 CHAPTER 14 Isolating Cause–Effect Chains

(c) Would these cause transitions help in locating the defect? If so, why?
If not, why not?

14.2 Download the IGOR command-line tool from http://www.askigor.org/ .
Use IGOR to obtain a diagnosis for the sample program. If you alter the
arguments, how does the diagnosis change? Why?

14.3 Give three examples of cause transitions that are defects,and three examples
of cause transitions that are not defects.

So assess them to find out their plans,
both the successful ones and the failures.
Incite them to action in order to find out
the patterns of movement and rest.

– SUN TZU

The Art of War (c. 400 BC)

CHAPTER

15Fixing the Defect

Once we have understood a failure’s cause–effect chain, we know how the failure
came to be. Still, we must find the place where the infection begins—that is, the
actual location of the defect. In this chapter, we discuss how to narrow down a
defect systematically—and having found the defect, how to fix it.

15.1 LOCATING THE DEFECT
Section 9.5 in Chapter 9 discussed a general strategy for narrowing down infection
sites:

1. We start with the infected value that defines the failure (Figure 15.1a).
2. We determine the possible origins of the infected value, following depen-

dences in the source code (Figure 15.1b).
3. Using observation, we check each single origin to determine whether it is

infected or not (Figure 15.1c). Having found the earlier infection, we restart
at step 2.

This loop goes on until we find an infection with origins that are all sane. The code
producing this infection is the defect.

Although this process is guaranteed to isolate the infection chain, it is pretty
tedious—especially if you consider the space and time of a simple program exe-
cution. This is where the induction and experimentation techniques discussed in
Chapter 16 come into play. However, although these techniques can determine
causes (or at least anomalies that correlate with failure) they cannot tell where the
defect is—simply because they have no notion of correctness. Therefore, we must
combine induction and experimentation with observation such that the program-
mer can tell (or specify) what is correct or not—and eventually fix the program.
Our key question is:

HOW DO WE ACTUALLY LOCATE AND FIX THE DEFECT?

329

330 CHAPTER 15 Fixing the Defect

(a)

T
im

e
T

im
e

T
im

e

8

7

6

5

4

3

2

1

Variables

(c) (d)

8

7

6

5

4

3

2

1

Variables

8

7

6

5

4

3

2

1

Variables

8

7

6

5

4

3

2

1

Variables

(b)

T
im

e

FIGURE 15.1

Narrowing down a defect: (a) the starting point, (b) following dependences, (c) observing state,
and (d) asserting an invariant.

15.2 FOCUSING ON THE MOST LIKELY ERRORS
In the previous section,we resumed the general strategy for locating the defect along
the infection chain. It turns out that induction and experimentation techniques
nicely fit into this strategy. The key is to use them to focus on specific origins.
Whenever we have a choice of multiple origins (or,more generally,hypotheses),we

15.2 Focusing on the Most Likely Errors 331

can use automatic induction and experimentation techniques to help us focus on
the most likely origin.

As an example, let’s reexamine the situation shown in Figure 15.1(c) and con-
tinue to locate the defect.

Assertions (Chapter 10) ensure data sanity over a long moment in time and a wide
range in space.Any failing assertion by definition signals an infection. Of course,
this is something we must focus on. On the other hand, whatever is covered by
a passing assertion need no longer be considered. In our example, we can use
an assertion to rule out possible infection origins—simply because the assertion
guarantees that the state is sane (Figure 15.1d).

Anomalies (Chapter 11) are aspects of the execution the properties of which are
correlated with failure, such as coverage (Section 11.2) or dynamic invariants
(Section 11.5). Because of the correlation, it is wise to focus on such anomalies
first.

In Figure 15.1(d), we still have the choice between two origins. Observing
the one that is abnormal reveals an infection (Figure 15.2a).

Causes (Chapters 13 and 14) are aspects of the execution (such as input, state, or
code) that are not only correlated with failure but actually cause the failure, as
experimentally proven. Therefore, causes are even more likely to indicate the
defect than anomalies.

In Figure 15.2(b) we have found a cause transition—a statement that causes
the failure. As the origin is sane and the target is infected, we have a real defect
here—and the complete infection chain.

8

(a)

7

6

5

4

3

2

1

Variables

8

(b)

7

6

5

4

3

2

1

Variables

T
im

e

T
im

e

FIGURE 15.2

Narrowing down a defect: (a) anomalies and (b) cause transition.

332 CHAPTER 15 Fixing the Defect

Although these techniques can help us to focus on specific origins, we still do
not know which technique to choose. Starting with those techniques that are most
likely to find the defect, the following is our list:

Focus on infections. If you already know that some origin is faulty—from a failing
assertion or via observation—focus on this one first and check whether the
infection causes the failure. Typically, though, we do not know which of the
origins is infected, and thus have nothing to focus on. Therefore, our priority
goes to available automated techniques (following).

Focus on causes. If delta debugging or any other form of experimentation has high-
lighted some state or input as a failure cause, focus on these causes and check
whether they are infected.

Focus on anomalies. Otherwise, of all possible origins, those that are associated
with anomalies are more likely to contain errors. Focus on these and check
whether they are infected and cause the failure.

Focus on code smells. Otherwise, if you have determined code smells in your pro-
gram (see Section 7.5 in Chapter 7),and if one of these code smells is a possible
origin,first focus on the code smell and check whether it causes infection and/or
failure.

Focus on dependences. Otherwise,anything that is not in the backward slice of the
infected state cannot possibly have caused the infection. Of all possible origins,
check the backward slice for infections, starting with the closest statements.

“Cannot possibly”in fact means“cannot legally.” Your program may well find
a way to break the rules and use undefined behavior, as discussed in Section 7.6
in Chapter 7. This can be prevented by system assertions (see Section 10.8 in
Chapter 10) or checking for code smells (see Section 7.5 in Chapter 7).

These rules constitute the“focus on likely origins”step in the TRAFFIC strategy from
List 1.1. Each potential origin must then be verified whether it is infected or not,
and we repeat the process for the infected origin.

Fortunately,we need not identify every single bit of the infection chain,as we are
only interested in its origin. Therefore, we make larger gaps—for instance, toward
the boundaries of functions or packages. These are places where communication
is restricted (typically, to function arguments), which makes it easier to assess
whether the state is sane or not.

If we find that some state is sane, we need not consider earlier states. Instead,
we search forward for the moment in time the infection takes place. Eventually,we
will find some piece of code where the state is initially sane but is infected after
execution.This is the place where the infection originates—that is,the actual defect.

15.3 VALIDATING THE DEFECT
In the focusing rules in Section 15.2, I have constantly emphasized that whenever
we focus on a potentially erroneous origin we must also check whether it actually

15.3 Validating the Defect 333

causes the failure. Why is that so? This is simple: Finding an error is not enough;
we must also show that the error causes the failure.When tracing back the infection
chain, we must show at each step that:

■ The origin is infected—that is, that the variable value is incorrect or otherwise
unexpected.

■ The origin causes the infection chain—that is,that changing the variable value
makes the failure (and the remaining infections) no longer occur.

Let’s briefly examine why both of these steps are necessary.

15.3.1 Does the Error Cause the Failure?
Why do we have to show causality for an infection origin? The first reason is that
if we find an origin that is infected but does not cause the failure we are being
put on the wrong track. We risk a post hoc ergo propter hoc (“after this, therefore
because of this”) fallacy, as discussed in Section 12.2 in Chapter 12. As an example
of being put on the wrong track, reconsider the example from Section 12.3 in
Chapter 12.

a = compute_value();
printf("a = %d\n", a);

Because the program outputs a = 0, we assume that compute_value() pro-
duces an infection. However, we have not shown that a being zero causes the
program to output a = 0. Indeed, if we change a to 1 the program still outputs
a = 0. Therefore, we know that a does not cause the output.

As we found in Section 12.3 in Chapter 12, the printf() format is wrong. The
program outputs a = 0 for most values of a. Without verifying the cause,we might
have gone for a long search to determine why a could possibly have become zero.

Being put on the wrong track is especially dangerous when dealing with“suspi-
cious”origins—variables where we cannot fully tell whether their values are correct
or not. Before following such a scent, you should ensure that the origin actually
causes the error—for instance,by replacing its value with a nonsuspicious one and
checking whether the failure no longer occurs.

15.3.2 Is the Cause Really an Error?
The previous section discussed errors that are not failure causes. Let’s now turn to
another source of problems: failure causes that are not errors.

Breaking the infection chain for a particular failure is easy.You simply check for
the infected value and fix it for the run at hand. The issue, though, is to break the
cause–effect chain in such a way that we prevent as many failures as possible. In
short, we want our fix to actually correct the program.

The following is an instance of a fix that makes a failure no longer occur, but
nonetheless fails to correct the program. A loop adds up the balance for a specific
account.

334 CHAPTER 15 Fixing the Defect

balance[account] = 0.0;
for (int position = 0; position < numPositions; position++)
{

balance[account] += deposit[position];
}

It turns out that the sum for account 123 is wrong, and thus we “fix” it by
including:

if (account == 123)
balance[123] += 45.67;

Likewise, for some reason, some people do not get their savings bonus:

if (account == 890 && balance[account] >= 0)
balance[account] *= 1.05;

These “fixes” are wrong because they do not correct the program. They fix the
symptom rather than the cause. The origin of the infections may well be in the
original claim amounts, which must be investigated.

The following is a less blatant example. Consider once more the sample program
from Example 1.1. Assume I have no real clue why the program fails. As I always
have trouble with loop boundaries, I suspect the number of loop iterations is off by
one. Thus, I replace the for loop (in line 16)

for (i = h; i < size; i++)

with

for (i = h; i < size � 1; i++).

Does this help? Yes, it does:

$ sample 11 14
Output: 11 14
$ _

This clearly proves that the loop header caused the failure. I may have no clue why
it was wrong,but at least the program now works. Did I really correct the program?
I don’t know. What we have here is a case of ignorant surgery.

Such a “fix” is even worse than the one described earlier. I have changed the
program to make it work,but I actually have no clue how it works.The actual defect
that still lurks in the code is likely to produce similar failures in the future. Worse,
with my“fix”I have introduced a new defect that will manifest itself as soon as some
other part of the program invokes the “fixed”shell_sort() function.

The “technique” of twisting and fiddling with the code until the failure miracu-
lously goes away is also known as debugging into existence. We change the code
although we have not fully understood how the failure came to be. Such a “tech-
nique” may eventually help in fixing the failure at hand, but it is so likely to induce
new defects (or simply leave defects in the code) that it is best avoided.

The Devil’s Guide to Debugging (List 15.1) lists more techniques to be avoided.
Have fun.

15.4 Correcting the Defect 335

LIST 15.1: The Devil’s Guide to Debugging

Find the defect by guessing. This includes:

■ Scatter debugging statements throughout the program.
■ Try changing code until something works.
■ Don’t back up old versions of the code.
■ Don’t bother understanding what the program should do.

Don’t waste time understanding the problem. Most problems are trivial, anyway.

Use the most obvious fix. Just fix what you see:

x = compute(y);
// compute() doesn’t work for y == 17, so fix it
if (y == 17)

x = 25.15;

Why bother going all the way through compute()?

Source: McConnell (1993).

15.3.3 Think Before You Code
Does one really need to verify causality for every step in the infection chain? Not if
you have a clear understanding of how the failure came to be. That is, you should
have understood the infection chain to a point such that your hypothesis about the
problem cause becomes a theory—a theory that allows you to exactly predict :

■ How your change to the code will break the infection chain.
■ How this will make the failure (as well as similar failures) no longer occur.

One way to ensure you have a theory is to have your fix reviewed by someone
else before applying it. If you can clearly explain how your fix will work, you have
a good theory.

Of course, your prediction about how our change will correct the program had
better come true. Otherwise, you will know that you have made a huge mistake. If
it comes true, though,and the failure is gone,your change retrospectively validates
causality. Fixing the defect made the failure no longer occur, and therefore the
original defect caused the failure.

15.4 CORRECTING THE DEFECT
Assume you have fully understood the infection chain and prepared a correction
for the problem. Before you apply the correction,be sure to save the original code—
for instance, using the version control system. Then, you actually correct the code.

Correcting the code can be a great moment. You have reproduced the fail-
ure, observed the execution, carefully tracked back the infection chain, and gained

336 CHAPTER 15 Fixing the Defect

complete understanding of what was going on. All of this has prepared you for this
very moment—the actual correcting of the code. (And there was much rejoicing.)

Unfortunately, all great moments are futile. As soon as you have applied your
correction, you must take care of four problems, as follows.

15.4.1 Does the Failure No Longer Occur?
After correcting the code,you must ensure that the correction makes the failure no
longer occur. First, this retrospectively validates causality (Section 15.3.3). Second,
it makes sure we actually solved the problem.

Ensuring that the correction was successful is easy to determine: If the original
problem (see Chapter 4) no longer occurs with the changed code, the correction
was successful. (If you feel like a hero the moment the failure is gone, you have
not been systematic enough. You should be confident about the success of your
correction,but the problem no longer occurring should give you just the last bit of
confirmation you needed.) If the program still fails after your correction has been
applied, though, there is still a defect that must be fixed.

■ It may well be that a failure is caused by multiple defects, and that removing the
first defect causes the second defect to become active.

■ However, there is also a chance that the code you fixed was not a defect at all,
and that your understanding of the infection chain was wrong. To exclude this
possibility, work through your earlier observations and experiments, as noted
in the debugging logbook (see Section 6.5 in Chapter 6). Check whether your
conclusions are valid, and whether other conclusions are possible.

Being wrong about a correction should:

– Leave you astonished.
– Cause self-doubt, personal reevaluation, and deep soul searching.
– Happen rarely.

If you conclude that the defect might be elsewhere, bring back the code to
its original state before continuing. This way, your earlier observations will not be
invalidated by the code change.

15.4.2 Did the Correction Introduce New Problems?
After correcting the code, you must ensure that the correction did not introduce
new problems. This, of course, is a much more difficult issue—especially because
many corrections introduce new problems (List 15.2). Practices that are most useful
include the following.

■ Having corrections peer reviewed, as mandated by the problem life cycle (see
Chapter 2). A software change control board (SCCB) can organize this.

■ Having a regression test ready that detects unwanted behavior changes. This
is another reason to introduce automated tests (see Chapter 3).

15.4 Correcting the Defect 337

LIST 15.2: Facts on Fixes

■ In the ECLIPSE and MOZILLA projects, about 30 to 40 percent of all changes are fixes
(Śliwerski et al., 2005).

■ Fixes are typically two to three times smaller than other changes (Mockus and Votta,
2000).

■ Fixes are more likely to induce failures than other changes (Mockus and Weiss, 2000).

■ Only 4 percent of one-line changes introduce new errors in the code
(Purushothaman and Perry, 2004).

■ A module that is one year older than another module has 30 percent fewer
errors (Graves et al., 2000).

■ Newly written code is 2.5 times as defect prone as old code (Ostrand and Weyuker, 2002).
(All figures apply to the systems considered in the case studies.)

Do not attempt to fix multiple defects at the same time. Multiple fixes can inter-
fere with one another and create failures that look like the original one. Check each
correction individually.

15.4.3 Was the Same Mistake Made Elsewhere?
The defect you have just corrected may have been caused by a particular mistake,
which may have resulted in other similar defects. Check for possible defects that
may be caused by the same mistake.

The following is a C example. The programmer copies a character string from
a static constant t[] to a memory-allocated area s, using malloc(n) to allocate
n characters, strlen(t) to determine the length of a string t , and strcpy(s, t) to
copy a string from t to s.

char t[] = "Hello, world!";
char *s = malloc(strlen(t));
strcpy(s, t);

What’s wrong with this code? In C, character strings are NUL -terminated.
A five-character string such as Hello actually requires an additional NUL char-
acter in memory. The previous code, though, does not take the NUL character
into account and allocates one character too few. The corrected code should
read:

char t[] = "Hello, world!";
char *s = malloc(strlen(t) + 1);
strcpy(s, t);

The programmer may have made the same mistake elsewhere, which is why it
is useful to check for further occurrences of strlen() and malloc(). This is also

338 CHAPTER 15 Fixing the Defect

an opportunity to refactor the code and prevent similar mistakes. For instance, the
previous idiom is so common that one might want to use the dedicated function

char t[] = "Hello, world!";
char *s = strdup(t);

where strdup(s) allocates the amount of required memory—using malloc
(strlen(s) + 1) or similar—and copies the string using strcpy(). By the way,
strdup() can also handle the case that malloc() returns NULL.

15.4.4 Did I Do My Homework?
Depending on your problem life cycle (see Chapter 2), you may need to assign a
resolution (such as FIXED) as to the problem.You also may need to integrate your fix
into the production code, leaving an appropriate log message for version control.

Finally,you may wish to think about how to avoid similar mistakes in the future.
We will come to this in Chapter 16.

15.5 WORKAROUNDS
In some cases, locating a defect is not difficult, but correcting the defect is. The
following are some reasons this might happen:

■ Unable to change. The program in question cannot be changed—for instance,
because it is supplied by a third party and its source code is not available.

■ Risks.The correction induces huge risks—for instance,because it implies large
changes throughout the system.

■ Flaw. The problem is not in the code, but in the overall design—that is, the
system design must undergo a major revision.

In such situations,one may need to use a workaround rather than a correction—that
is, the defect remains, but one takes care that it does not cause a failure.

Such a workaround can take care to detect and handle situations that would
make the defect cause a failure. It can also take place after the defect has been
executed, correcting any undesired behavior.

A workaround is not a permanent solution, and is typically specific to the situa-
tion at hand. Workarounds thus tend to reintroduce the failure again after a change
has taken place. Therefore, in implementing a workaround it is important to keep
the problem open (in the tracking system, for instance) so as to later implement a
proper solution.

Of course, if there were a better solution available immediately one would use
that instead of a workaround. But at least a workaround solves the problem—for
now. In practice,customers often find themselves living with workarounds for long
periods of time. List 15.3 outlines a few.

15.7 Concepts 339

LIST 15.3: Some Common Workarounds

Spam filters are a workaround for solving a flaw in the email system. Anyone can forge arbitrary
messages and conceal his or her true identity. The proper solution would be to redesign
the entire email system, even incurring all associated costs and risks.

Virus scanners are a workaround to what is a flaw of some operating systems. By default,
every user has administrator rights, and thus any downloaded program can gain complete
control over the machine. The proper solution would be to assign users limited rights and
ask them for proper authorization before attempting to change the system. Unfortunately,
too many regular programs (and their installation routines) assume administrator rights,
and thus the fundamental problem is not easy to change.

Date windowing is a workaround to the inability of many legacy systems to deal with four-
digit years. The workaround consists of having the systems still keep two-digit years and
resolving ambiguity by defining a 100-year window that contains all years in the data. If the
100-year window begins in 1930, for instance, then 27 refers to the year 2027, whereas
35 means the year 1935. The genuine solution, of course, would be to adapt the legacy
system—but again, this incurs costs and risks.

15.6 CONCEPTS
To isolate the infection chain, transitively work backward along the infection How To

origins.

To find the most likely origins, focus on:
■ Failing assertions (Chapter 10)
■ Causes in state, code, and input (Chapters 13 and 14)
■ Anomalies (Chapter 11)
■ Code smells (Chapter 7)

Function and package boundaries are good places to check for infection origins.

For each origin, ensure that it is an infection as well as a cause.
If a correction is too costly or too risky,apply a workaround (the defect remains

in the program but the failure no longer occurs).

To correct the defect, wait until you can predict:
■ How your change to the code will break the infection chain.
■ How this will make the failure no longer occur.

To ensure your correction is successful, check whether:
■ The correction makes the failure no longer occur.
■ The correction does not introduce new problems.
■ The mistake leading to the defect has caused other similar defects.

To avoid introducing new problems, useful techniques include:
■ Having corrections peer reviewed.
■ Having a regression test ready.

340 CHAPTER 15 Fixing the Defect

15.7 FURTHER READING
McConnell (1993) is a great read on how to fix programs properly.

EXERCISES
15.1 Sommerville (2001) describes the four stages of the debugging process

(Figure 15.3). Develop a more detailed model in which “Locate Error” is
expanded into at least six stages.

15.2 Consider the bigbang code shown in Example 8.3.Where would you locate
the defect and how would you correct it?

15.3 For the bigbang code, devise three fixes that make the concrete failure no
longer occur, but that do not correct the program—that is, so that minor
variations can still reintroduce the failure.

15.4 In addition to the TRAFFIC model, there can be other systematic processes to
locate the defect. Sketch two.

15.5 Illustrate, using an example, the difference between “good”and “bad”fixes.

15.6 The following piece of code is supposed to read in a number of elements,
and to print their sum.

n = read(); // Number of elements
for (int i = 0; i < n; i = i + 1)

a[i] = read();

// sum up elements in a[0]..a[n --- 1]
sum = computeSum(a, n --- 1);
print(sum);

Unfortunately, this program has a defect. If you read in the numbers

2 // n
2 // a[0]
2 // a[1]

the program prints 2 as the sum, rather than 4. It turns out that rather than
summing up the elements from a[0] to a[n — 1], it computes only the sum
of a[0] to a[n — 2].

Locate
error

Design
error repair

Repair
error

Retest
program

FIGURE 15.3
The debugging process. Source: Sommerville (2001).

15.7 Further Reading 341

1. The following are suggestions for fixing the bug. Which one of these
actually causes the failure to disappear?

(a) Replace the computeSum() call by the following piece of code.

sum = 0;
for (int i = 0; i < n; i = i + 1)

sum += a[i];

(b) Add the following piece of code after the computeSum call.

if (n == 2 && a[0] == 2 && a[1] == 2)
sum = 4;

(c) Fix computeSum() such that it conforms to its specification.

(d) Replace the computeSum(a, n — 1) call with computeSum(a, n)
and fix the specification such that it conforms to the actual behavior
of computeSum.

2. How do these fixes rate in terms of generality (fixing as many failures
as possible) and maintainability (preventing as many future failures as
possible)? Rank the alternatives, justifying your choices.

15.7 Consider the “fix” to the sample program in Section 15.3.2. Is the program
actually correct?

Would that I discover truth as easily as I can uncover falsehood.

– CICERO

(44 BC)

CHAPTER

16Learning from Mistakes

At the end of each debugging session,one wonders how the defect could have come
to be in the first place. This chapter discusses techniques to collect, aggregate, and
locate defect information; techniques to predict where the next defects will be;
and what to do to prevent future errors.

16.1 WHERE THE DEFECTS ARE
In Figure 1.10, we have already seen a visualization of the defect distribution in
ECLIPSE, showing for every single component how frequently it was involved in
fixing a defect. As you can see, the distribution of defects across packages is very
uneven. For instance,compiler components in ECLIPSE have a defect density that is
four to five times higher than in user-interface components.This uneven distribution
of defects is typical for software projects. It is commonly known as Pareto’s law:
80 percent of the defects are found in 20 percent of the modules.

Pareto’s law also holds if one focuses on specific subsets of defects. Figure 16.1
shows the distribution of vulnerabilities across the components of MOZILLA
(commonly known as the FIREFOX Internet browser); here, the darker a com-
ponent is, the more vulnerabilities it has. A vulnerability is a defect in one or
more components that manifests itself as some violation of a security policy; again,
the distribution was obtained by relating the MOZILLA vulnerability advisories to
the MOZILLA change database. Again, the distribution of defects is uneven: While
usual suspects, such as the JAVASCRIPT interpreter (“js,” bottom left in figure),
account for several vulnerabilities, 96 percent of all components never had a single
vulnerability—or at least, none discovered yet.

Once we have such a defect distribution, we can use it to guide the debug-
ging process toward the usual suspects. Suppose we are searching for a defect
and have the choice between multiple components to examine. Then, the pre-
vious defect history becomes an important factor in prioritizing the search: If a
component had several defects in the past, it is likely to have more waiting to be
uncovered.

The main usage of such defect distributions,though,is to use them to learn from
the past. By focusing on those components with the most defects, or otherwise 343

344 CHAPTER 16 Learning from Mistakes

FIGURE 16.1

Vulnerability distribution in MOZILLA. Each rectangle stands for a component; the darker the rectangle,
the more vulnerabilities were discovered (and fixed) in the component after release. Source:
Neuhaus et al. (2007).

investigating the defect history, we can check whether we have multiple defects
with common properties—and learn from such defect patterns to avoid them in
the future. In the remainder of this chapter, we discuss the key question:

HOW CAN WE LEARN FROM PAST DEFECTS TO PREVENT FUTURE ONES?

16.2 MINING THE PAST
Before we discuss how to interpret data on earlier defects, let us first show how
to obtain such data. Generally, past defect data are easily obtained from existing
sources. The first source is the version archive, which records all changes to the
system. Of course,we do not want to investigate these changes manually,but rather
automate as much as we can. Unfortunately, such automation rarely comes as a
turnkey solution—one has to set up or adapt appropriate fact extractors for the
situation at hand. The first task is to distinguish the different types of changes—in

16.2 Mining the Past 345

general,we only want the subset that are fixes. There are a number of ways to extract
just the fixes:

Relate changes to problems. Problem databases (see Chapter 2) store all problems
ever encountered with the software. If a problem is listed as fixed, there should
be a corresponding change in the version database. Such a corresponding change
can be found by

■ Checking the log message of the change against the PR number as stored
in the problem database. Here is a typical log message that contains a PR
number:

Fixed bug #3547.

■ Check the closing time of the problem report. Typically, developers will
commit their fix to the change database immediately before marking the prob-
lem report as closed, so simply checking for the developer’s change activity in
the few minutes before closing the report will likely point you to the related
change.

The advantage of relating bug and change databases is that it provides addi-
tional information about the original defect, such as its severity. (You normally
want to filter out problems classified as trivial or request for enhancement.)
Also, you can check when and by whom the problem was discovered: in-house,
during beta testing, or in production code. The disadvantage is that there will
still be noise:In experiments with ECLIPSE and MOZILLA,Śliwerski et al. (2005a)
could only relate about 50 percent of “closed”problem reports to a fix.

Check for changes in maintenance branches. Once a product is released, many
organizations create a dedicated maintenance branch off the main versioning
trunk—a branch in which only fixes to the released product are committed.
By assessing only such maintenance branches, you obtain the subset of fixes.
The advantage of this approach is that it provides precise information without
requiring a problem database.The disadvantage is that it requires discipline and
effort to set up and keep up the standards.

Check the message log for keywords. A simple way to identify fixes is to just check
the log message for keywords such as “fix,” “bug,” “problem,” “defect,” “crash,”
and so on: If one of these keywords appears in the log message of a change, then
the change is likely a fix:

Program crashed when encountering end-of-file on input.

The advantage of this approach is that it is very lightweight.The disadvantage
is that it does not provide information about the original problem, and where
it was discovered. If the problem was discovered by in-house testing, that is
just fine—that is what in-house testing is there for. If the problem was discov-
ered by one of your biggest customers, you definitively want to improve your
in-house testing such that the problem does not occur again. In practice, such

346 CHAPTER 16 Learning from Mistakes

keyword information is thus typically used together with problem databases or
maintenance branches.

None of these methods is perfect—there will always be problem reports that
cannot be mapped to a fix and vice versa. If you set up a new project, consider
tools and conventions that ensure a tight mapping between tasks and changes—
and while you’re doing that, track effort as well, such that you know how much
effort went into individual tasks.

Even with an imperfect mapping, any of these methods (or even a combination
thereof) will help you map the large majority of problems to fixes—and thus map
defects to individual components. Once you have appropriate tools in place,defect
distributions can be generated and updated at the touch of a button—by mining
and remining the appropriate software archives.

16.3 WHERE DEFECTS COME FROM
Defects that escape into production are typically (and should be) pretty rare events.
Each defect tells its own story, and by examining past defects and where they
occurred,you will be able to determine common origins and cross-cutting concerns.
Here are some first questions you should ask yourself:

■ Which modules have had the most defects? If a module had several defects in
the past, it is likely to have more waiting to be uncovered. Consider subjecting
such a module to thorough quality assurance, or refactor it into smaller, less
error-prone units.

■ When are most defects introduced? Do they originate in the requirements/
design/coding phase? If specific phases are more error prone than others,
you may need to increase quality assurance in these phases, or rework the
development process.

■ Which types of errors occur most often? This can be extracted from descriptions
of the defect—typically with categories such as “use of noninitialized variable,”
“bad control flow,”“heap misuse,” and so on. Consider using (or building) tools
that check for these types of errors.

■ Who introduced the defects? Some people create more defects than others—
simply because they write more code, or because they address the most risky
issues. If you find that some people or groups create more defects than normal,
assign them to less risky tasks, or consider appropriate training.

Note that this is a sensitive issue. If developers find that information in prob-
lem or version archives is used against them, they will no longer use these
tools. Rather than blaming people,create an environment that focuses on finding
errors.

All these measures have the same aim: to fix the development process rather
than just its product. By fixing the process,we can address the ultimate cause of the

16.4 Errors during Specification 347

problem—that is, us as humans and the decisions (and errors) we make. To fix the
process, we must learn what the previous defects have in common such that we
can either fix their common source, or otherwise prevent them in the future. This
is where questions like the ones just noted can help.

Over time, though, practitioners and researchers alike have identified common
sources of errors, as well as ways to avoid them and detect them early. In the next
three sections, we discuss three important stages in the development process that
all can introduce defects:

■ Specification: What is it that makes a specification error prone?
■ Programming: What is it that makes it hard to translate a specification into a

correct program?
■ Quality assurance: How can quality assurance fail to catch the defect?

For each of these stages, we present a short rationale on how the individual
stage can introduce defects, a set of consequences that improve process qual-
ity, and some ways to measure which parts of the product one should focus on
first.

16.4 ERRORS DURING SPECIFICATION
Why is specification hard? Complexity in specification stems from the sheer quantity
of requirements to be fulfilled, as well as the interaction between these require-
ments. The more requirements and constraints there are to be met, the higher the
chance of making a mistake—and the higher the probability of a defect in the
resulting program.

Finally, the specification may be incomplete, inconsistent, frequently changing,
or completely missing. All of these increase the chances of a defect—although in
the absence of precise specification, surprise would be a more adequate term.

16.4.1 What You Can Do
When analyzing defects, assess whether they were introduced during the specifica-
tion phase—that is, they could have been avoided by improving the specification.
If you find that several defects are due to specification issues, following are
measures you can take:

Improve quality assurance. Introduce systematic processes for eliciting require-
ments and software design. Improve better quality assurance on specification
documents. Check specifications early—the earlier you check your artifacts
against the requirements of your clients, the more precise the requirements will
become—in particular, regarding what the product should not do.

Increase the precision. Introduce semiformal or formal methods that allow you to
catch inconsistencies or incomplete specifications early.

348 CHAPTER 16 Learning from Mistakes

Increase the degree of automation. The more development tasks you can auto-
mate, the less chances there are that the humans involved make mistakes.
Consider contracts, assertions, and other forms of specifications that can
be validated automatically (see Chapter 10). Generative techniques such as
model-driven development also take humans out of the loop.

Note that these are general recommendations that have held for several pro-
jects in the past, but may not necessarily hold for yours. You should always go and
validate these recommendations against the true defect distribution in your project,
as obtained from history. Once you do that, though,you will have excellent facts in
your hand when it comes to suggesting or implementing process improvements.

16.4.2 What You Should Focus On
Although it won’t hurt to improve overall specification quality, you would normally
prefer to focus on those problems that hurt most—that is,those components where
the most defects related to specification issues have been found. This requires a
manual classification of the origin of the problem: If the problem is due to a bad
specification, it should be examined further.

However, you may not want to wait with your analysis until the product has
been released—but rather check for early warning signs already during devel-
opment. Unfortunately, checking whether a specification is adequate is hard to
measure directly. If specification comes in natural language (as is mostly the
case), human assessment will always be necessary. Formal specifications can be
checked for internal consistency and completeness—but may still miss the client’s
requirements.

Problems with specifications frequently translate into problems during develop-
ment, though—and these can be measured as follows:

■ A history of frequent changes is a symptom of changing or incomplete speci-
fications, as the component must constantly be adapted. A number of studies
have found that a high number of changes in a component correlates with
the number of defects. Therefore, components that are frequently changed
should be checked whether their specification can be made more stable and
precise.

■ Some problem domains are more complex than others, resulting in more com-
plex specifications, and thus a higher chance of defects. For instance, compiler
components in ECLIPSE have shown a defect density that is four to five times
higher than in user interface components. Be sure to identify these problem
domains and focus on them to improve specification quality.

Again,what has been observed for other projects is likely to hold for yours,too—
but it is much better to have facts in your hand before making decisions. If you can
show that defects correlate with frequent changes in your program, too, you will
know what to focus on.

16.5 Errors during Programming 349

16.5 ERRORS DURING PROGRAMMING
In a program, the functionality as originally specified is spread and detailed across
several components. Again, the more requirements and constraints there are to be
met by a single component, the higher the chance of a defect in this component.

Furthermore, programs show structural complexity:

■ The more possible paths a computation can take (both controlwise and data-
wise),

■ the longer these paths, and
■ the more components involved in the computation,

the greater the chance of introducing an infection in one of these paths—and the
higher the chance of a failure.

16.5.1 What You Can Do
A defect means that code does not match its specification—and if the specification
(Section 16.4) is correct, then the code must be wrong. Here are some measures to
take to avoid errors:

Improve programming as you improve specifying. A complex specification always
translates into a complex program. (If there were a simple program, we could
also come up with a simple specification.) Thus, anything you can do to make
the specification more precise, complete, or better validated, as discussed in
Section 16.4, will also improve the program as follows:

■ Improve quality assurance of specifications.
■ Increase the precision of specifications.
■ Increase the degree of automation.

Reduce complexity. The higher the structural complexity of a program, the more
ways there are for some part of the program to influence another—and the easier
it is for infections to spread. Limiting the information flow and the amount of
interaction between components

■ Reduces the chance of an infection becoming a failure.
■ Makes it easier to validate the possible paths and behaviors.
■ Facilitates program understanding and reviewing.

All this is achieved by good software design, thereby reducing risk and reducing
complexity.

Improve documentation. When writing software, write for humans just as well as
you write for the machine. Misunderstanding how a piece of software works
is a frequent cause of problems when using or changing it. Documentation
should be thorough and precise; if it is too verbose, consider breaking a com-
ponent into simpler pieces. Assertions (see following) combine documentation
and validation in a single attractive package.

350 CHAPTER 16 Learning from Mistakes

Set up assertions. If good software design limits the spread of infections,assertions
catch them right away. If,while debugging,you have inserted assertions to narrow
down the infection,keep them in the code. If some assertion would have helped
catching the infection, go and write one. These assertions will catch similar
infections in the future. At the very least, they will help during the debugging
process. Consider keeping assertions active in production code (see Section 10.9
in Chapter 10).

Improve training. Many defects come to be because of simple mistakes. If you can
characterize and summarize these mistakes to recurring patterns, go and make
sure your programmers know about these patterns, and how to avoid them.

Change your programming language. Most features in new programming lan-
guages are designed to avoid the programming errors as experienced by the
users or older programming languages. This is how great error-avoiding con-
cepts like static typing, garbage collection, synchronized threads, or design by
contract came along. If you can relate problems to features (or missing features)
of a programming language, consider alternatives for your next project.

16.5.2 What You Should Focus On
Development is a stage in which problems with specifications manifest themselves.

■ Recent code changes before release need a special focus,because code changed
at the last minute may not be as thoroughly tested as older code.This risk comes
in addition to the history of frequent changes as an early indicator of potential
problems, as discussed in Section 16.4. Frequency and recency of changes can
be mined from the version archive; focus on those components with the most
and most recent changes.

■ Component imports—that is the set of components interacted with—can char-
acterize the domain of a component, and thus the proneness to errors, as
discussed in Section 16.4.

In a study of MOZILLA vulnerabilities, Neuhaus et al. (2007) found that vul-
nerable components shared similar sets of imports. In the case of MOZILLA,
for instance, they found that of the 14 components importing nsNodeUtils.h,
13 components (93 percent) had to be patched because of security leaks. The
situation is even worse for those 15 components that import nsIContent.h,
nsIInterfaceRequestorUtils.h, and nsContentUtils.h together—they
all had vulnerabilities. Identify those imports that correlated with defects in
the past and focus on them.

The intrinsic problem of development, namely structural complexity of code,
can be measured, too.

Software complexity metrics capture the complexity of programs by counting the
number of classes, functions, variables, parameters, blocks, branches, or paths in

16.6 Errors during Quality Assurance 351

a program: the more items, the higher the complexity. Although such metrics
provide only a crude approximation to complexity, they are easy to compute,
and have been shown multiple times to be related to effort in comprehension
and in testing.

When it comes to defects, though, the picture is less clear. In a study of five
Microsoft projects,Nagappan et al. (2006) found that correlation of metrics and
defects was different in each project, and that complexity metrics should only
be used when validated from past defect history.

Centrality measures pay special attention to interactions between elements, as
most complexity metrics only focus on single components.The idea is to examine
the relation between dependencies and defects.A recent study by Zimmermann
and Nagappan (2008) on Windows Server 2003 has shown that:

■ The more complex the dependencies of a component are, the more defects it
will have.

■ In addition, the presence of cyclic dependencies increases the number of
defects.

■ The more important (central) a component is in the dependency graph, the
more defects it will have.

■ Finally, they also observed a domino effect for binaries: If a component dep-
ends on defect-prone components, the likelihood of a defect is increased.

If you focus on components with such properties, you may also catch those
that are most defect prone. As complexity metrics, centrality measures should
also be validated from past defect history.

16.6 ERRORS DURING QUALITY ASSURANCE
Everyone knows that humans make mistakes. This is why there is quality assur-
ance—to catch defects before they escape into production.Thus,any problem that
escapes into production also implies a problem in quality assurance.

What are the reasons for quality assurance to fail to catch a defect? To start
with, all quality-assurance techniques are limited. By its very nature, testing can
only cover a limited set of executions, and there is always a chance to miss some
specific aspect of the behavior (notably the aspects where the program fails). For-
mal verification and other symbolic techniques can cover all behavior, but only at
a certain abstraction layer, and may therefore miss issues as they occur in real-life
environments. No technique can be both concrete enough to capture all aspects
of real life and abstract enough to capture all possible executions. In the end,
all these problems can be reduced to the undecidability of the halting problem,
which makes it generally impossible to predict what a given program will or will
not do.

352 CHAPTER 16 Learning from Mistakes

This is not to say that one cannot live within these limitations. But again,
complexity in specification or programs directly translates into complexity in qual-
ity assurance, too—there simply is more to test, check, review, or prove. Even if
some of these activities can be automated, humans will have to conduct several
of them, and humans can err during quality assurance just as they can during
development.

16.6.1 What You Can Do
Improve your test suite. Your test suite has failed to detect the problem.Therefore,

you must extend the test suite such that the problem will not occur again. Your
extension should not only test for the particular problem, but for related prob-
lems, too: If you find that the original problem was due to, say, a missing null
pointer check, try to trigger similar errors by additional tests.

Test early, test often. The earlier you test, the more precise your specification will
be,and the more you test,the more defects you will catch.An automated test (as
discussed in Chapter 3) that reproduces the original problem is a good starting
point.

Review your code. Software inspections have been shown to significantly increase
productivity, quality, and project stability. We have already seen how being
explicit helps in debugging (see Section 6.4 in Chapter 6). If you need to
explain what your code does to others (or simply know that others will review
it), you will also be explicit—and clearly formulate both expectations and
contributions.

Improve your analysis tools. Verify whether common tools could have detected
the defect early—in particular, tools that detect code smells (see Section 7.5 in
Chapter 7) or tools that verify system assertions (see Section 10.8 in Chapter 10).
Checking programs statically can help, too—for instance, using the techniques
discussed in Chapter 7.

Calibrate coverage metrics. Many people believe in coverage metrics like “Our test
covered 90 percent of all branches” to express whether a test suite is adequate.
Unfortunately, even a high-coverage metric does not say much about the true
quality of your code, unless you managed to cover those 20 percent of most
of the defects and most of the risk. Therefore, it is better to focus on those
components that need most of your attention rather than spending lots of effort
on some piece of code that never showed any problems so far.

Consider mutation testing. Mutation testing is a technique to evaluate the ade-
quateness of automated quality assurance. It automatically seeds artificial defects
(“mutants”) into the product and then checks whether quality assurance detects
the mutant. If a mutant is not detected, this suggests that real defects may not
be detected either.While being computationally expensive,mutation testing is a
good simulation of a defect’s life cycle—and its results are much more meaningful
than artificial coverage metrics.

16.7 Predicting Problems 353

16.6.2 What You Should Focus On
In quality assurance, you should always focus on those components with the high-
est risk—that is, those with the highest likelihood and the highest severity of a
failure, such as:

Components that have shown risk in the past are obviously the first suspects to
focus on. A defect distribution obtained from version and problem archives, as
discussed in Section 16.2, is a good starting point. To obtain a measure of risk,
you need to also assess

■ The likelihood of a potential defect causing a failure: Will the defect ever
be executed at all? How far will the infection spread?

■ The severity of the induced failure: How much damage will be caused by this
failure? Will it lead to major loss of data, functionality, or valuable assets?

Components that are similar to risky ones are also suspect, as problems tend to
have the same causes. Focus on

■ Similarities in change history or problem domains (Section 16.4).
■ Imports, complexity metrics, or centrality measures (Section 16.5).

Formally, this category also comprises all components that have shown risk in
the past, because the defects reported in the past have been fixed, and thus, the
“fixed”version of the component is similar to the earlier “risky”version.

Code that is not covered yet by quality assurance naturally is more likely to have
undiscovered defects, and thus to fail. Therefore, try to achieve some basic
coverage, such as statement coverage, across the product during quality assur-
ance. Before moving to more advanced coverage criteria,first focus on the risky
components, as described above.

Note that all this focusing applies as long as there is a Pareto effect—that is, as
long as there is an uneven distribution of risk across the program. Once the risk is
spread evenly, quality assurance should be spread evenly too.

By allocating your quality-assurance resources wisely, you will hopefully elim-
inate all of the most risky defects in your product—and, in the process, learn
enough about past defects such that your quality assurance will also catch the
most risky defects in the future.

16.7 PREDICTING PROBLEMS
In the previous sections, we have discussed how to relate features of specifica-
tion, code, or quality assurance to defects. As all data from past defects is readily
available, wouldn’t it be possible to automatically learn which features correlate
with defects, and thus automatically predict problems without the hassle of man-
ual investigation? In the past years, a number of researchers have investigated this

354 CHAPTER 16 Learning from Mistakes

very question—and devised automatic predictors with surprising precision. In this
section, we give four examples for such tools.

16.7.1 Predicting Errors from Imports
TheVULTURE tool by Neuhaus et al. (2007) is a tool for detecting where in a product
security vulnerabilities have occurred in the past. VULTURE mines a vulnerability
database (a special kind of problem database) as well as a version database; using
the techniques from Section 16.2, it then maps vulnerabilities to fixes and thus to
components.The vulnerability distribution in MOZILLA (Figure 16.2) was obtained
using VULTURE.

During the work with VULTURE, Neuhaus et al. discovered that vulnerabilities
could be linked to specific imports, as discussed in Section 16.5.2: Components
importing nsNodeUtils.h were all prone to vulnerabilities.They set up a machine
learner (more specifically, a support vector machine) that was trained with the
number of vulnerabilities and the set of imports for each component.The resulting
support vector model would then also be used for predicting vulnerabilities by feed-
ing in the imports;the model would then produce an estimate for the vulnerability. In
an evaluation, Neuhaus et al. found that of all components flagged as vulnerable by
the model,70 percent turned out to be vulnerable;among those 30 components flag-
ged as most vulnerable and 88 percent were vulnerable.

FIGURE 16.2

How VULTURE works. By mapping vulnerabilities to fixes and thus to components, VULTURE
can assign an individual vulnerability for each component. By learning which imports correlate
with vulnerabilities, VULTURE can predict the vulnerability of further components.

16.7 Predicting Problems 355

16.7.2 Predicting Errors from Change Frequency
In the past three years, Microsoft has conducted extensive research on how to
predict defects in software. In 2005,Nagappan and Ball mined the change and prob-
lem databases ofWindows Server 2003 to examine the relation between code churn,
the extent of change made to a component over a period of time, and defect den-
sity. Using statistical regression models, they found that relative measures of code
churn were high predictors of defect density—that is, those components that were
changed most (in comparison to others) were also the most defect prone.

Their model is also able to discriminate between defect-prone and non-defect-
prone components—that is, based on the change history, it would predict whether
a component would be defect prone or not. In their experiment,the model reached
an accuracy of 89 percent.

16.7.3 A Cache for Bugs
When a defect is found, it is likely that related locations also contain defects. But
what does “related” mean? In a 2007 study of the defect and change history of
seven open-source projects, Kim et al. (2007) formulated four hypotheses on how
individual defects may be related:

1. Changed components. If a component was changed recently,it will tend to show
defects soon.

2. New components. If a component has been added recently, it will tend to show
defects soon.

3. Related time. If a component showed a defect recently,it will tend to show other
defects soon.

4. Related location. If a component showed a defect recently, “nearby” compo-
nents will also tend to show defects soon. A “nearby” component is a logically
coupled component—that is,a component that is frequently changed at the same
time.

Based on these hypotheses, Kim et al. built a model that would help in pre-
dicting defects. The model is called “bug cache” because it “caches” the most
defect-prone components.The basic idea is as follows:Starting with an empty cache,
the model processes the event history. Every time an event is detected to satisfy
one of the hypotheses, the concerned components are loaded into the cache; if the
component already is in the cache, its entry is refreshed.

The cache only holds up to 10 percent of all components; if the cache is full,
the least recently refreshed components are discarded.Thus,the cache always holds
those components that are new, most frequently changed, most recently found to
have a defect, or logically coupled with another component that satisfies one of
these criteria. At any time, the cache holds those components predicted to be most
defect prone. In their evaluation, Kim et al. found that the 10 percent of cached
components accounted for 73–95 percent of all defects,which places it among the
most precise defect predictors.

356 CHAPTER 16 Learning from Mistakes

FIGURE 16.3

HATARI warns against risky changes. When a change to a location is likely to introduce
a defect, HATARI annotates the code with a red bar. The redder the bar, the higher the risk.
Source: Śliwerski et al. (2005).

16.7.4 Recommendation Systems
Since both mining change and defect data as well as predictions can be made
automatically, one could go and integrate the appropriate prediction right into the
development environment.This is what Śliwerski et al. (2005b) did: They explored
whether predictions could be made live while the programmer is working. Their
resulting HATARI tool does this for the risk of change—that is, the risk that some
change introduces a defect.

Figure 16.3 shows HATARI in action, integrated into the ECLIPSE programming
environment. Code that is risky to change is annotated with a red bar (1); the redder
the bar, the higher the risk of introducing a defect. Additionally, HATARI also lists
the locations that are most risky to change (2), as well as the risk history—the list
of all fixes and other changes applied to the current location.

In Figure 16.3, HATARI is showing the risk of an ECLIPSE method, namely
resolveClassPath(). It is shown in deep red,because out of nine previous fixes,
eight introduced a new defect, which places it among the most risky methods to
change within ECLIPSE. If you attempt to change it, HATARI will warn you against
it; indeed, HATARI means “risk” in Swahili.

16.7.5 A Word of Warning
Although automatic predictions are compelling, we should remind ourselves that
predictions can only rely on correlations, not on causations. If a specific feature of

16.8 Fixing the Process 357

process or product is related to defects, this does not mean that removing the fea-
ture will make the defect go away. The feature may just be a symptom of some
underlying, not yet recognized factor, which will still persist even if the symptom
is eliminated or worked around. Such a symptom is called “fool’s gold,” as it is
easily mistaken for true gold—that is, the actual cause.Thus,with every correlation
you observe, you should have a good theory on why this correlation might be a
causation—and how removing the supposed cause would change the effect, too.

As an example, consider one of the first mining experiments that I conducted
with my then Ph.D. student, Thomas Zimmermann. We wanted to know which
ECLIPSE developers had the highest defect density in the code they produced. To
our surprise, Erich Gamma, the master developer of ECLIPSE (and probably one of
the most influential programmers and program architects on this planet), on a list
of more than 50 developers, showed up as number 2. In other words, the code
produced by Erich Gamma was the second most defect prone.

From this fact, one could deduce that Erich Gamma is a lousy programmer, pro-
ducing code that is littered with defects. However, this is “fool’s gold.” The true
cause, as he confirmed to me later when we were sitting together on a plane, is
simply that within ECLIPSE development, there are a number of tasks that nobody
wants to do,because they are too risky.These tasks end up on the desk of the most
experienced developers, and the most risky tasks end up with the boss—that is,
Erich Gamma himself. With this in mind, it is no surprise if you find that the most
experienced developers make the most mistakes—this happens because they get
the riskiest jobs, and this again is because they are experienced. Assigning risky
tasks to novices would increase the overall risk, and this is why the relationship
between experience and defects is only a correlation, not a causation. Whatever
correlation an automated mechanism discovers and recommends, always perform
such a causality check before basing decisions on it.

16.8 FIXING THE PROCESS
There are so many ways a program can go wrong—and so many ways the production
process can be wrong, too. It may turn out that the software erroneously was not
tested before release. It may be that the wrong version was shipped to customers.
It may be that some critical part was not reviewed at all. If the history of the prob-
lem indicates there is something wrong with the process, go and fix it. To achieve
perfection, never stop thinking about how you could improve the process.

Of course, to improve the process, you need to have the means to measure
the state of the art. In this chapter, I have given you some ideas on what could be
measured, and how this can be leveraged to reduce the risk of defects. The more
data you gather, and the better the data are organized, the more you will be able
to discover about your code’s strengths and weaknesses and of your development
process. Gather data on problems, tasks,defects, and effort as much as you can,and
use it to continuously review and improve.

358 CHAPTER 16 Learning from Mistakes

This approach—gathering as much data as you can—is also used in places where
the highest quality standards are to be met. The following excerpt from Fishman
(1996) tells how the people who build the space shuttle software achieve quality:

The database records when the error was discovered; what set of commands
revealed the error; who discovered it; what activity was going on when it was
discovered—testing, training, or flight. It tracks how the error was introduced
into the program;how the error managed to slip past the filters set up at every
stage to catch errors—Why wasn’t it caught during design? During develop-
ment inspections? During verification? Finally, the database records how the
error was corrected, and whether similar errors might have slipped through
the same holes in the filters.

All of this is being leveraged to find out how the error came to be—whether by
a programmer or as the result of a flaw in the process. That is, the goal is not just
to find errors in the code, but eventually errors in the process.This leads to a very
disciplined way of building software. As Fishman (1996) explains:

The most important things the shuttle group does—carefully planning the
software in advance, writing no code until the design is complete, making
no changes without supporting blueprints, keeping a completely accurate
record of the code—are not expensive. The process isn’t even rocket science.
It’s standard practice in almost every engineering discipline except software
engineering.

BUG STORY 11

Typing “reboot” Reboots Your Phone
One of the first releases of Google’s Android mobile phone operating system exhi-
bited an unusual “root-console”problem. Google engineers had implemented a way to
attach a remote device over the serial port, thus allowing to execute commands for
diagnostic and debugging purposes. However,when there was no device attached, the
phone would just use the built-in keyboard instead. Accidentally, this feature was left
active in the production release.

As a consequence,any text that people typed (entering a text message,or composing
email,for instance) was also executed as shell commands with superuser privileges.The
defect became apparent when one user exchanged text messages with his girlfriend.
She asked him: “What did you do in the last minutes?” He replied “reboot”. Lo and
behold, this command was interpreted and executed by the shell, effectively rebooting
the phone, to the great astonishment of the user.

The user was lucky. If he had typed, say “rm -rf .”, all of his data would have been
erased. Fortunately, ordinary users rarely type this kind of thing. The Unix command
“yes”, though, puts the computer into a busy loop, eating battery and memory—and
that is a word users indeed type from time to time.

16.10 Further Reading 359

16.9 CONCEPTS
To learn from mistakes, use the problem database to check for frequently fixed How To

code and frequent types of errors.

To map defects to components, relate problems from the problem database to
changes in the version archive.

To reduce the risk of errors in specification, improve its quality assurance, increase
its precision, and increase its automation.

To reduce the risk of errors in the code, do the same as for specifications; in addi-
tion, reduce complexity, improve documentation,set up assertions,and improve
training.

To reduce the risk of errors in quality assurance, improve your test suite; test early,
test often; review your code; improve analysis tools; and calibrate coverage
metrics.

To allocate quality-assurance resources wisely, focus on the components deter-
mined as most defect prone in the past, and the components that are most
similar to these.

The VULTURE tool predicts security vulnerabilities for a component, based on its
set of imports.

The bug cache model retains components that are most defect prone because they
are new, most frequently changed, most recently found to have a defect, or logi-
cally coupled with another component that satisfies one of these criteria.

Recommendation systems like HATARI integrate mining and prediction right into
the programming environment.

When detecting a correlation between product and/or process features, make sure
it is a causation, too.

16.10 FURTHER READING
Mining version and problem archives to uncover defect patterns is a subject that
has recently received a lot of attention. Researchers are currently applying these
techniques to open-source version and problem archives. For up-to-date information,
see the working conference on mining software repositories (MSR). Several of
the papers and studies discussed in this chapter originated at this conference. For
a lightweight introduction to the field, see the special edition of IEEE Software on
Mining Software Repositories (Nagappan et al., 2009) as well as the overview in
(Nagappan et al., 2008).

At its core,mining software repositories is a subject of empirical software engi-
neering, an attempt to make software development more systematic by means of

360 CHAPTER 16 Learning from Mistakes

empirical observations,laws,and theories.The book by Endres and Rombach (2003)
is an excellent introduction to the subject, listing the most important empirical
findings.

Humphrey (1996) introduces the personal software process, a technique to
measure and record what you do during software development—from lines of code
produced per unit time to the time spent watching sports games. Of course, you
also track any mistakes you make. By correlating these data, you find out how to
improve your personal development process.

The Empirical Software Engineering and Measurement group at Microsoft
Research is at the forefront of research when it comes to predicting software qual-
ity. Have a look at its homepage at http://research.microsoft.com/en-us/projects/
esm/.

The article by Fishman (1996) on how the space shuttle software people write
their software is a must-read for anyone who is interested in learning from mis-
takes. It is available online at http://www.fastcompany.com/online/06/writestuff
.html.

EXERCISES
The IBUGS repository at www.ibugs.org/ contains bug repositories extracted
from project history. Each bug (enclosed in <bug>· · ·</bug>), among other
characteristics, lists the file(s) where the bug was fixed, enclosed in
<fixedFiles>· · ·</fixedFiles>. Each <file> has a name attribute listing the file
that was fixed.

A property name="severity" attribute lists the severity of the bug, from
enhancement over minor, normal, and major to critical.

16.1 Find the most defect-prone files. By parsing the ASPECTJ IBUGS repository,
create a top-five list of the most defect-prone files in AspectJ—that is, those
five files in which the most defects were fixed. Ignore all enhancement bugs.
Does Pareto’s law hold for AspectJ, too?

16.2 Find the most defect-prone directories. Every file is part of a directory,which
represents a higher-level component of a system. By parsing the IBUGS data,
create a top-five list of the most defect-prone directories in AspectJ—that
is, those directories in which the most defects were fixed. Again, ignore all
enhancement bugs.

Note: Be sure to count every bug only once per directory.That is,a single
bug of which the fix affects foo/a.c and foo/b.c should be counted only
once for foo/.

16.10 Further Reading 361

16.3 Hypothesize. In your own words, give an assessment of what makes these
files or directories the most defect prone. Use the supplied source code and
bug reports as additional information.

Resolve then, that on this very ground,
with small flags waving and tinny blasts on tiny trumpets,
we shall meet the enemy, and not only may he be ours,
he may be us.

– WALTER CRAWFORD KELLY

The Pogo Papers (1953)

Il faut imaginer Sysyphe heureux.

– ALBERT CAMUS

Le Mythe de Sysyphe (1942)

APPENDIX

AFormal Definitions

A.1 DELTA DEBUGGING
A.1.1 Configurations
Definition A.1: Configurations and runs. We assume that the execution of a specific
program is determined by a number of circumstances. Denote the set of possible
configurations of circumstances by R.

Definition A.2: rtest. The function rtest : R→{�, �, �} determines for a program run
r ∈R whether some specific failure occurs (�) or not (�), or whether the test is
unresolved (�).

Definition A.3: Change. A change � is a mapping � : R→R. The set of changes C is the
set of all mappings from R→R (i.e., C �RR). The relevant change between two runs
r1, r2 ∈R is a change �∈ C such that �(r1)�r2.

Definition A.4: Composition of changes. The change composition ◦: C �C →C is
defined as (�i ◦ �j)(r)��i

(
�j(r)

)
.

A.1.2 Passing and Failing Run
Axiom A.5: Passing and failing run. We assume two runs r�, r� ∈R with rtest(r�)��

and rtest(r�)��.

In the following, we identify r� and r� by the changes applied to r�.

Definition A.6: c�. We define c� ⊆C as the empty set c� �∅, which identifies r� (no
changes applied).

Definition A.7: Failing configuration. The set of all changes c� ⊆C is defined as c� �
{�1, �2, . . . , �n}, identifying r� �(�1 ◦ �2 ◦ · · · ◦ �n)(r�).

A.1.3 Tests
Definition A.8: test. The function test : 2c� →{�, �, �} is defined as follows: Let c ⊆c�

be a configuration with c � {�1, �2, . . . , �n}. Then, test(c)�rtest
(
(�1 ◦�2 ◦· · ·◦�n)(r�)

)
holds.

Corollary A.9: Passing and failing test case. The following holds:

test(c�)� test(∅)�rtest(r�)�� and
test(c�)� test

({�1, �2, . . . , �n})�rtest(r�)�� 363

364 APPENDIX Formal Definitions

A.1.4 Minimality
Definition A.10: n-minimal configuration. A configuration c ⊆c� is n-minimal if �c′ ⊂
c · |c|� |c′|�n⇒(test(c′) 	��) holds.

Definition A.11: Relevant configuration. A configuration is called relevant if it is
1-minimal in the sense of Definition A.10. Consequently, c is relevant if ��i ∈c ·
test

(
c \{�i}

) 	�� holds.

A.1.5 Simplifying
Proposition A.12: ddmin minimizes. For any c ⊆c�, ddmin(c) returns a relevant con-
figuration in the sense of Definition A.11.

Proof. According to the ddmin definition (List 5.2), ddmin(c′
�) returns c′

� only if n � |c′
�|

and test(�i) 	�� for all 	1, . . . , 	n where �i �c′
� \	i . If n � |c′

�|, then |	i |�1 and |�i |�
|c|�1. Because all subsets of c′ ⊂c′

� with |c′
�|� |c′|�1 are in {�1, . . . , �n} and test(�i) 	��

for all �i , the condition of Definition A.10 applies and c is 1-minimal. ■

Proposition A.13: ddmin complexity, worst case. The number of tests carried out by
ddmin(c�) is (|c�|2
3|c�|)/2 in the worst case.

Proof. The worst case can be divided into two phases. First,every test has an unresolved result
until we have a maximum granularity of n� |c�|. Then, testing only the last complement
results in a failure until n�2 holds.

■ In the first phase, every test has an unresolved result. This results in a reinvocation of
ddmin′ with a doubled number of subsets,until |ci |�1 holds.The number of tests t to be
carried out is t �2
4
8
 · · ·
 |c�|� |c�|
 |c�|

2
 |c�|
4
 · · ·�2|c�|.

■ In the second phase, the worst case is that testing the last set c′
� \{cn} fails. Consequently,

ddmin′ is reinvoked with ddmin′(c′
� \{cn}). This results in |c�|�1 calls of ddmin, with

one test per call. The total number of tests t ′ is thus t ′ �(|c�|�1)
(|c�|�2)
 · · ·
1�

1
2
3
 · · ·
(|c�|�1)� |c�|(|c�|�1)
2 � |c�|2�|c�|

2 .

The overall number of tests is thus t
 t ′ �2|c�|
(|c�|2 � |c�|)/2�(|c�|2
3|c�|)/2. ■

Proposition A.14: ddmin complexity, best case. If there is only one failure-inducing
change �i ∈c� and all configurations that include �i cause a failure as well, the number
of tests t is limited by t � log2(|c�|).
Proof. Under the given conditions, the test of either initial subset c1 or c2 will fail. n�2

always holds. Thus, the overall complexity is that of a binary search. ■

A.1.6 Differences
Definition A.15: n-minimal difference. Let c′

� and c′
� be two configurations with ∅�

c� ⊆c′
� ⊂c′

� ⊆c�. Their difference 	�c′
� \c′

� is n-minimal if

�	i ⊂	 · |	i|�n⇒(
test(c′

� ∪	i) 	��∧ test(c′
� \	i) 	��

)

holds.

A.2 Memory Graphs 365

Definition A.16: Relevant difference. A difference is called relevant if it is 1-minimal in
the sense of Definition A.15. Consequently, a difference 	 is 1-minimal if

��i ∈	 · test
(
c′

� ∪{�i}
) 	��∧ test

(
c′

� \{�i}
) 	��

holds.

A.1.7 Isolating
Proposition A.17: dd minimizes. Given (c′

�, c′
�)�dd(c�, c�), the difference 	�c′

� \c′
�

is 1-minimal in the sense of Definition A.15.

Proof. (compare proof of Proposition A.12): According to the dd definition (Figure 13.2),
dd ′(c′

�, c′
�, n) returns (c′

�, c′
�) only if n� |	| where 	�c′

� \c′
� �	1 ∪· · ·∪	n. That is,

|	i |�1 and 	i �{�i} hold for all i.
Furthermore,for dd ′ to return (c′

�, c′
�),the conditions test(c′

� ∪	i) 	��,test(c′
� \	i) 	�

�, test(c′
� ∪	i) 	��, and test(c′

� \	i) 	�� must hold.
These are the conditions of Definition A.15. Consequently, 	 is 1-minimal. ■

Proposition A.18: dd complexity, worst case. The number of tests carried out by
dd(c�, c�) is |	|2
7|	| in the worst case, where 	�c� \c�.

Proof. The worst case is the same as in Proposition A.13, but with a double number of tests.
■

Proposition A.19: dd complexity, best case. If all tests return either � or �, the number
of tests t in dd is limited by t � log2(|c� \c�|).
Proof. We decompose 	�	1 ∪	2 �c′

� \c′
�. Under the given conditions, the test of c′

� ∪
	1 �c′

� \	2 will either pass or fail. n�2 always holds. This is equivalent to a classi-
cal binary search algorithm over a sorted array: with each recursion, the difference is
reduced by 1/2; the overall complexity is the same. ■

Corollary A.20: Size of failure-inducing difference, best case. Let (c′
�, c′

�)�dd(c�, c�).
If all tests return either � or �, then |	|� |c′

� \c′
�|�1 holds.

Proof. Follows directly from the equivalence to binary search,as shown in PropositionA.19.
■

A.2 MEMORY GRAPHS
A.2.1 Formal Structure
Let G �(V , E, root) be a memory graph containing a set V of vertices, a set E of
edges, and a dedicated vertex root (Figure A.1):

Vertices. Each vertex v∈V has the form v�(val, tp, addr), standing for a value
val of type tp at memory address addr. As an example, the C declaration

int i = 42;

results in a vertex vi�(42, int, 0x1234), where 0x1234 is the (hypothetical)
memory address of i.

366 APPENDIX Formal Definitions

Memory Graph Edge Operation

Vertex

1

root 1

2

+value: string
+type: string
+address: void *

+apply(name:string=" "): string

1

0. . *

0. . *

0. . *

FIGURE A.1

UML object model of memory graphs.

<Root> {...} 47
f ().val

FIGURE A.2

Edge construction.

Edges. Each edge e∈E has the form e�(v1, v2, op),where v1, v2 ∈V are the related
vertices. The operation op is used in constructing the expression of a vertex
(see Figure A.2). As an example, the C declaration of the record (“struct”) f,

struct foo { int val; } f = {47};

results in two vertices vf �({. . . }, struct foo, 0x5678) and vf .val �(47, int,
0x5678), as well as an edge ef .val �(vf , vf .val, opf .val) from vf to vf .val .

Root. A memory graph contains a dedicated vertex root ∈V that references all
base variables of the program. Each vertex in the memory graph is accessible
from the root. In the previous examples, i and f are base variables. Thus, the
graph contains the edges ei �(root, vi, opi) and ef �(root, vf , opf).

Operations. Edge operations construct the name of descendants from their par-
ent’s name. In an edge e�(v1, v2, op),each operation op is a function that takes
the expression of v1 to construct the expression of v2. We denote functions by
�x.B — a function that has a formal parameter x and a body B. In our examples,
B is simply a string containing x. Applying the function returns B where x is
replaced by the function argument.

Operations on edges leading from root to base variables initially set the
name. Thus, opi ��x."i" and opf ��x."f" hold.

Deeper vertices are constructed based on the name of their parents. For
instance, opf .val ��x."x .val" holds, meaning that to access the name of the
descendant one must append ".val" to the name of its parent.

A.2 Memory Graphs 367

In our graph visualizations, the operation body is shown as edge label, with
the formal parameter replaced by "()". That is, we use op("()") as label. This
is reflected in the previous figure.

Names. The following function name constructs a name for a vertex v using the
operations on the path from v to the root vertex.As there can be several parents
(and thus several names),we nondeterministically choose a parent v′ of v along
with the associated operation op.

name(v)�

{
op

(
name(v′)

)
if ∃(v′, v, op)∈E

"" otherwise (root vertex)

As an example, see how a name for vf .val is found: name(vf .val)�opf .val
(name(vf))�opf .val(opf (""))�opf .val("f")�"f.val".

A.2.2 Unfolding Data Structures
To obtain a memory graph G �(V , E, root), as formalized in Section A.2.1, we use
the following scheme.

1. Let unfold(parent, op, G) be a procedure (sketched in the following) that takes
the name of a parent expression parent and an operation op and unfolds the
element op(parent), adding new edges and vertices to the memory graph G.

2. Initialize V �{root} and E �∅.

3. For each base variable name in the program, invoke unfold(root, �x."name").

The unfold procedure works as follows. Let (V , E, root)�G be the members of
G, let expr �op(parent) be the expression to unfold, let tp be the type of expr, and
let addr be its address. The unfolding then depends on the structure of expr.

Aliases. If V already has a vertex v′ at the same address and with the same type
[formally, ∃v′ �(val ′, tp′, addr′)∈V · tp� tp′ ∧addr �addr′], do not unfold
expr again. However, insert an edge (parent, v′, op) in the existing vertex.As an
example, consider the C statements:

struct foo f; int *p1; int *p2; p1 = p2 = &f;

If f has already been unfolded,we do not need to unfold its aliases *p1 and *p2.
However, we insert edges from p1 and p2 to f.

Records. Otherwise, if expr is a record containing n members m1, m2, . . . , mn,
add a vertex v�({. . . }, tp, addr) to V , and an edge (parent, v, op) to E. For
each mi ∈{m1, m2, . . . , mn}, invoke unfold(expr, �x."x.mi", G), unfolding the
record members.

As an example, consider the “Edges”example shown in Figure A.2. Here, the
record f is created as a vertex and its member f.val has been unfolded.

Arrays. Otherwise, if expr is an array containing n members m[0], m[1], . . . ,
m[n�1], add a vertex v�([. . .], tp, addr) to V , and an edge (parent, v, op)

368 APPENDIX Formal Definitions

<Root> {...}

p1

p2 *()

*()

f

0x...

0x...

FIGURE A.3

Alias graph.

to E. For each i∈{0, 1, . . . , n}, invoke unfold(expr, �x."x[i]", G), unfolding
the array elements. Arrays are handled very much like records, and thus no
example is given.

Pointers. Otherwise, if expr is a pointer with address value val, add a vertex
v�(val, tp, addr) to V , and an edge (parent, v, op) to E. Invoke unfold
(expr, �x."*(x)", G), unfolding the element expr points to (assuming that ∗p
is the dereferenced pointer p). In the previous “Aliases”example, we would end
up with the graph shown in Figure A.3.

Atomic values. Otherwise, expr contains an atomic value val. Add a vertex v�
(val, tp, addr) to V , and an edge (parent, v, op) to E. As an example, see f in
the previous figure.

A.2.3 Matching Vertices and Edges
Let G� �(V�, E�, root�) and G� �(V�, E�, root�) be two memory graphs.

Matching vertices. Two vertices v� ∈V� and v� ∈V� match (written v� ↔v�) if

■ both are not pointers, and have the same type, value, and size, or
■ both are pointers of the same type and are NULL, or
■ both are pointers of the same type and are non-NULL.

Note that two pointers of the same type, but pointing to different addresses,
match each other. This is exactly the point of memory graphs: to abstract from
concrete addresses.

Matching edges. Two edges e� �(v�, v�
′)∈E� and e� �(v�, v�

′)∈E� match,
written e� ↔e� if

■ the edge expressions are equal,
■ v� ↔v�

′, and
■ v� ↔v�

′ — that is, the vertices match.

A.2.4 Computing the Common Subgraph
To compare two memory graphs G� �(V�, E�, root�) and G� �(V�, E�, root�),we
use the following parallel traversal scheme.

A.2 Memory Graphs 369

1. Initialize M �(root�, root�).

2. For all (v�, v�)∈M , determine the set of reachable matching vertices (v�
′, v�

′)
with v�

′ ∈V�, v�
′ ∈V� such that

■ (v�
′, v�

′) 	∈M
■ (v�, v�

′)∈E� (i.e., there is an edge from v� to v�
′)

■ (v�, v�
′)∈E� (i.e., there is an edge from v� to v�

′)
■ (v�, v�

′)↔(v�, v�
′) (i.e., the edges match, implying v�

′ ↔v�
′)

Set M :�M ∪(v�
′, v�

′) for each matching pair (v�
′, v�

′) so found.

3. Continue with step 2 until no further matching vertices can be found.

The matching vertices in M form a common subgraph of G� and G�. All ver-
tices v� ∈V� ·(¬∃v ·(v�, v)∈M) and v� ∈V� ·(¬∃v ·(v, v�)∈M) are nonmatching
vertices and thus form differences between G� and G�.

Note that M as obtained by parallel traversal is not necessarily the largest
common subgraph. To obtain this, use the algorithm of Barrow and Burstall
(1976), starting from a correspondence graph as computed by the algorithm
of Bron and Kerbosch (1973).

A.2.5 Computing Graph Differences
We not only need a means of detecting differences in data structures but a means
of applying these differences.We shall first concentrate on applying all differences
between r� and r� to r� — that is, we compute debugger commands that change
the state of r� such that eventually its memory graph is identical to G�.

For this purpose, we require three graph traversals. During these steps, G� is
transformed to become equivalent to G� and each graph operation is translated
into debugger commands that perform the equivalent operation on r�.

As an example,we consider the two memory graphs shown in FigureA.4,where
the dotted lines indicate the matching M between vertices,obtained from the com-
mon subgraph. (Actually, this matching cannot be obtained from parallel traversal,
as described in Section A.2.4, but would be obtained from the largest common
subgraph.) It is plain to see that element 15 in G� has no match in G�. Likewise,
element 20 in G� has no match in G�.

list ()–>next ()–>next ()–>next
14 18 20 22

list ()–>next ()–>next ()–>next
14 15 18 22

G

G

FIGURE A.4

Graph matchings.

370 APPENDIX Formal Definitions

1. (Set and create variables). For each vertex v� in G� without a matching
vertex in G�, create a new vertex v� as a copy of v�.v� is matched to v�. After
this step, each vertex v� has a matching vertex v�.

Figure A.5 shows our example graphs after this step. To generate debugger
commands, for each addition of a vertex v� we identify the appropriate variable
v in r� and generate a command that

■ creates v in r� if it does not exist yet, and
■ sets v to the value found in r�.

In our example, we would obtain the following GDB commands.

set variable $m1 = (List *)malloc(sizeof(List))
set variable $m1->value = 15
set variable $m1->next = list->next

2. (Adjust pointers). For each pointer vertex p� in G�, determine the matching
vertex p� in G�.Let *p� and *p� be the vertices that p� and p� point to, respec-
tively (reached via the outgoing edge). If *p� does not exist, or if *p� and *p�

do not match, adjust p� such that it points to the matching vertex of *p�.
In our example, the next pointers from 14 to 18 and from 18 to 20 must be

adjusted. The resulting graphs are shown in Figure A.6. Again, any adjustment
translates into appropriate debugger commands.

3. (Delete variables). Each remaining vertex v� in G� that is not matched
in G� must be deleted, including all incoming and outgoing edges. After this
last step, G� is equal to G�.

In our example, vertex 20 must be deleted. The resulting graphs are shown
in Figure A.7.

Such a deletion of a vertex v translates into debugger commands that set all
pointers that point to v to null, such that v becomes unreachable. Additionally,
one might want to free the associated dynamic memory.

()–>next

list

list
14 15

15

18 22

14 18 20 22

()–>next

()–>next

()–>next

()–>next

()–>next

()–>next

FIGURE A.5

Creating new variables.

A.2 Memory Graphs 371

()–>next

list

list
14 15

15

18 22

14 20 22

()–>next

()–>next()–>next ()–>next

()–>next

()–>next

18

FIGURE A.6

Adjusting pointers.

()–>next

list

list
14 15

15

18 22

14 20 22

()–>next

()–>next()–>next ()–>next

()–>next

18

FIGURE A.7

Deleting variables.

After these three steps, we have successfully transferred the changes in a data
structure from a run r� to a run r�.

A.2.6 Applying Partial State Changes
For the purpose of delta debugging, transferring all changes is not sufficient. We
need to apply partial state changes as well. For this purpose,we associate a delta �v

with each vertex v in G� or G� that is not contained in the matching. If v is in G�

only, applying �v is supposed to delete it from G�. If v is in G� only, applying �v

must add it to G�.
Let c� be the set of all deltas so obtained. As always, c� �∅ holds. In Figure A.4,

for instance, we would obtain two deltas c� �{�15, �20}. The idea is that �15 is
supposed to add vertex 15 to G�. �20 should delete vertex 20 from G�. Applying
both �15 and �20 should change G� to G�.

372 APPENDIX Formal Definitions

To apply a subset 	⊆c′
� \c′

� only, we run the state transfer method of
Section A.2.5, but with the following differences:

■ In steps 1 and 3 we generate or delete a vertex v only if �v is in 	.
■ In step 2 we adjust a pointer p� with a matching p� only if �*p�

is in 	 or �*p�

is in 	.

As an example, apply 	� {�15} only. Step 1 generates the new vertex. Step 2
adjusts the pointer from 14 such that it points to 15. However, the pointer from
18 to 20 is not changed,because �20 is not in c. We obtain a graph (and appropriate
GDB commands) where only element 15 has been inserted (Figure A.8).

Likewise, if we apply 	� {�20} only step 1 does not generate a new vertex.
However, step 2 adjusts the pointer from 18 such that it points to 22, and step 3
properly deletes element 20 from the graph.

A.2.7 Capturing C State
In the programming language C (and its sibling C++),pointer accesses and type con-
versions are virtually unlimited,which makes extraction of data structures difficult.
The following are challenges and how one can deal with them.

Invalid pointers. In C, uninitialized pointers can contain arbitrary addresses.
A pointer referencing invalid or uninitialized memory can quickly introduce a
lot of garbage into the memory graph.

()–>next

list

list
14 15

15

18 22

14 18 20 22

()–>next

()–>next

()–>next

()–>next

()–>next

()–>next

()–>next

list

list
14 15

15
�20�20

�15

�15

18 22

14 20 22

()–>next

()–>next()–>next ()–>next

()–>next

18

()–>next

()–>nextlist

list
14 15 18 22

14 20 22

()–>next

()–>next

()–>next

18

list ()–>next ()–>next ()–>next
14 18 20 22

list ()–>next ()–>next ()–>next
14 15 18 22

G

G

FIGURE A.8

Applying partial state changes.

A.2 Memory Graphs 373

To distinguish valid from invalid pointers, we use a memory map. Using
debugger information, we detect individual memory areas such as stack frames,
heap areas requested via the malloc function,or static memory.A pointer is valid
only if it points within a known area.

Dynamic arrays. In C, one can allocate arrays of arbitrary size on the heap via
the malloc function. Although the base address of the array is typically stored
in a pointer, C offers no means of finding out how many elements were actually
allocated. Keeping track of the size is left to the discretion of the programmer
(and can thus not be inferred by us).

A similar case occurs when a C struct contains arrays that grow beyond its
boundaries, as in

struct foo {
int num_elements;
int array[1];

}.

Although array is declared to have only one element, it is actually used as a
dynamic array, expanding beyond the struct boundaries. Such structs are allo-
cated such that there is sufficient space for both the struct and the desired
number of array elements.

To determine the size of a dynamic array, we again use the memory map as
described earlier. An array cannot cross the boundaries of its memory area. For
instance, if we know the array lies within a memory area of 1,000 bytes the array
cannot be longer than 1,000 bytes.

Unions. The biggest obstacle in extracting data structures are C unions. Unions
(also known as variant records) allow multiple types to be stored at the same
memory address. Again, keeping track of the actual type is left to the discretion
of the programmer. When extracting data structures, this information is not gen-
erally available.

To disambiguate unions, we employ a couple of heuristics, such as expand-
ing the individual union members and checking which alternative contains
the smallest number of invalid pointers. Another alternative is to search for a
type tag — an enumeration type within the enclosing struct the value of which
corresponds to the name of a union member. Although such heuristics mostly
make good guesses, it is safer to provide explicit disambiguation rules — either
handcrafted or inferred from the program.

Strings. A char array in C has several uses. It can be used for strings, but is also
frequently used as placeholder for other objects. For instance, the malloc()
function returns a char array of the desired size. It may be used for strings, but
also for other objects.

Generally,we interpret char arrays as strings only if no other type claims the
space. Thus, if we have both a char array pointer and pointer of another type
both pointing to the same area, we use the second pointer for unfolding.

374 APPENDIX Formal Definitions

In languages with managed memory such as JAVA or C#, none of these prob-
lems exist, as the garbage collector must be able to resolve them at any time. Most
languages are far less ambiguous when it comes to interpreting memory contents.
In object-oriented languages, for instance, dynamic binding makes the concept of
unions obsolete.

A.3 CAUSE–EFFECT CHAINS
A program run r is a sequence of states r � [s1, s2, . . . , sn]. Each state si consists of
at least a memory graph Gi as well as a backtrace bi—that is, si �(Gi, bi).

Let s� be a program state from a failing run r�. Let r� be a passing run. Then,
s� �match(s�) is a matching state.

Matching states. Two states s� �(G�, b�) and s� �(G�, b�) match if their back-
traces are identical (b� �b�).This implies that the set of local variables is equal.
The function match : (r� →r� ∪{⊥}) assigns each state s�t ∈r� a matching state
s�t ∈r�, or ⊥, if no such match can be found.

Individual state differences, as determined by delta debugging, can be compo-
sed into a cause–effect chain.

Relevant deltas. For each s�t ∈r�, let a relevant delta 	t be a failure-
inducing difference, as determined by delta debugging: let s�t �match(s�t). If
match(s�t)�⊥ holds,then 	t �⊥. Otherwise,let c�t be the difference between
s�t and s�t , and let c�t �∅. Let (c′

�t , c′
�t)�dd(c�t , c�t). Then, 	t �c′

�t \c′
�t is

a relevant delta.

Cause – effect chains. A sequence of relevant deltas C � [t1 , 	t2 , . . .] with
ti � ti
1 is called a cause–effect chain if each 	ti causes the subsequent
	ti
1 , 	ti
2 , . . . as well as the failure.

Within a cause–effect chain, cause transitions occur as follows.

Cause transitions. Let var(t) be the set of variables affected by a state differ-
ence 	t . var(⊥)�∅ holds.Then,two moments in time (t1, t2) are called a cause
transition if

■ t1 � t2,
■ a cause–effect chain C with [t1 , 	t2]⊆C exists, and
■ var(t1) 	�var(t2).

A cause transition is called direct if ¬∃t : t1 � t � t2.

To isolate direct cause transitions, we use a divide-and-conquer algorithm. The
basic idea is to start with the interval (1, |r�|), reflecting the first and last state of r�.
If a cause transition has occurred,we examine the state at the middle of the interval
and check whether the cause transition has occurred in the first half and/or in the
second half. This is continued until all cause transitions are narrowed down.

A.3 Cause–Effect Chains 375

Isolating cause transitions. For a given cause–effect chain C , the algorithm
cts(t1, t2) narrows down the cause transitions between the moments in time
t1 and t2:

cts(t1, t2)�

⎧⎪⎨
⎪⎩

∅ if var(t1)�var(t2)

cts(t1, t)∪cts(t, t2) if ∃t : t1 � t � t2{
(t1, t2)

}
otherwise

where [t1 , 	t2]⊆C holds.

Our actual implementation computes C (and in particular, 	t) on demand. If
we isolate a 	t between 	t1 and 	t2 , but find that 	t was not caused by 	t1 , we
recompute 	t1 such that the cause–effect chain property is preserved.

We think in generalities, but we live in detail.

– ALFRED NORTH WHITEHEAD

(1861–1947)

GLOSSARY

This glossary gives definitions for important terms as used in this book. If multiple
definitions are given, definition 1 is the one as used in this book (definition 2 and
later are found in other places). References within the glossary always refer to
definition 1.

Accident An unplanned event or series of events resulting in death, injury, occupational
illness, damage to or loss of data and equipment or property, or damage to the
environment. Synonym of mishap.

Adaptive testing Executing a sequence of tests in which later tests depend on the outcome
of earlier tests.

Algorithmic debugging An automated technique that narrows down an error by querying
the correctness of intermediate results.

Anomaly A program behavior that deviates from expectations based on other runs or other
programs. Also known as incident.

Backward slice The slice that may influence a specific statement.

Bug 1. Synonym of defect. 2. Synonym of failure. 3. Synonym of problem. 4. Synonym of
infection.

Bug report Synonym of problem report.

Cause An event preceding the effect without which the effect would not have occurred.

Cause–effect chain A sequence of events in which each event is a cause of the following
event.

Change request Synonym of problem report.

Circumstance An event or aspect that may affect the function of a system.

Code smell A program property likely to be a defect. See also Defect pattern.

Configuration An arrangement of circumstances that affect the function of a system.

Correction A fix to the code that removes a defect from the program. See also Debugging.
Compare Workaround.

Correctness The degree to which software is free from errors in its specification, design,
and coding.

Crash The sudden and complete failure of a computer system or component.

Debuggee The program that is subject to debugging.

Debugger Tool to facilitate debugging.

Debugging 1. Relating a failure or an infection to a defect (via an infection chain) and
subsequent fixing of the defect. 2. Removing defects from software. See alsoValidation
and Verification. 377

378 Glossary

Deduction Reasoning from the abstract to the concrete. See also Static analysis. Compare
Induction.

Defect An error in the program—especially one that can cause an infection and thus a
failure. Also known as bug or fault. Compare Flaw.

Defect pattern A pattern matching a code smell.

Delta Difference between (or change to) configurations—especially code, states, or
circumstances.

Delta debugging An automatic technique that narrows down a cause by running auto-
mated experiments.

Diagnosis A theory that explains a failure.

Dynamic analysis Runtime techniques for observing or inducing abstractions to the set
of values or behaviors seen so far when executing a program. Compare Static analysis.

Effect An event following the cause that would not have occurred without the cause.

Error 1. An unwanted and unintended deviation from what is correct, right, or true. 2.
Synonym of infection. 3. Synonym of mistake.

Exception An event that causes suspension of normal program operation.

Experiment A set of actions and observations,performed to verify or falsify a hypothesis.

Experimental analysis A dynamic analysis in which program executions are initiated
and/or conducted by the technique, typically within experiments.

Failure An externally visible error in the program behavior. Also known as malfunction.
See also Problem.

Fallacy An error in logical argument that is independent of the truth of the premises.

Fault Synonym of defect.

Feature An intended property or behavior of a program. Compare Problem.

Fix A delta such that the failure in question no longer occurs. See also Correction and
Workaround.

Fixing The act of applying a fix.

Flaw A defect that cannot be attributed to some specific location within the program, but
rather its overall design or architecture.

Forward slice The slice that may be influenced by a specific statement.

Hanging Waiting for an event that will never occur.

Heisenbug A failure that is altered or disappears when one attempts to probe or isolate it.

Hypothesis A proposed explanation for a phenomenon. See also Theory and Diagnosis.

Incident Synonym of anomaly.

Induction Reasoning from the concrete to the abstract. Compare Deduction.

Inductive analysis A dynamic analysis technique that uses induction over multiple
program executions to find common abstractions.

Infection An error in the program state—especially one that can cause a failure.

Glossary 379

Infection chain A cause–effect chain from defect to failure along infections.

Invariant A property that does not change under a set of transformations, such as loop
iterations (for loop invariants) or method calls (for class invariants).

Issue Synonym of problem.

Malfunction Synonym of failure.

Mishap Synonym of accident.

Mistake A human act or decision resulting in an error.

Observation Watching something and taking note of anything it does—for instance,
observing a program run using a debugger.

Observational analysis A dynamic-analysis technique that observes a single program
execution to gather findings.

Oracle A device that is able to decide any problem of a certain type—in particular,
correctness.

Patch 1. Synonym of fix. 2.A change made directly to an object program without reassem-
bling or recompiling from the source program.

Problem A questionable property or behavior of a program. Also known as issue. See also
Failure. Compare Feature.

Problem report The information required to reproduce a problem.

Regression testing Testing that functionality present in the past is still working in the
present.

Scientific method A collection of processes that are considered characteristic for the
acquisition of new scientific knowledge based on physical evidence.

Slice A subset of a program; either a forward slice or a backward slice.

Specification A document that specifies in a complete, precise, and verifiable manner the
behavior and other characteristics of a program.

Static analysis Compile-time techniques for deducing safe and computable approxima-
tions to the set of values or behaviors arising dynamically at runtime when executing
a program. Compare Dynamic analysis.

Surprise A property or behavior of a program that cannot be classified as feature or
problem, due to the lack of specification.

Test case A documentation specifying inputs, predicted results, and a set of execution
circumstances for a program.

Testing The execution of a program with the intent to produce some problem—especially
a failure. In the context of debugging, testing is typically intended to produce a given
problem.

Theory A hypothesis offering valid predictions that can be observed.

Validation Producing evidence that the program meets its specification for a specific
intended use. In other words,“You built the right thing.”Compare Verification.

380 Glossary

Verification Proving the absence of defects with regard to a specification. In other words,
“You built it right.”Compare Validation.

Workaround A fix to the code where the defect remains in the program. Compare
Correction.

“And hast thou slain the Jabberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!”
He chortled in his joy.

– LEWIS CARROLL

Through the Looking-Glass (1872)

BIBLIOGRAPHY

Agrawal, H., and Horgan, J.R. (1990). “Dynamic Program Slicing,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, 25(6),
ACM SIGPLAN Notices, pp. 246–256,White Plains, NY.

Aho, A.V., Sethi, R., and Ullman, J.D. (1986). Compilers—Principles, Techniques and Tools,
Addison-Wesley.

Ammons, G., Bodik, R., and Larus, J.R. (2002). “Mining Specifications,” in Proceedings of
the ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
Portland, OR.

Artzi, S., Kim, S., and Ernst, M.D. (2008). “ReCrash: Making Software Failures Reproducible by
Preserving Object States,”in Proceesings of ECOOP 2008, Object-Oriented Programming,
22nd European Conference, Paphos, Cyprus.

Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., and Schulte, W. (2004). “Verification
of Object-Oriented Programs with Invariants,” Journal of Object Technology 3(6):27–56.
Special Issue: ECOOP 2003 Workshop on Formal Techniques for Java-like Programs.

Barron, C.A. (2002). “High Tech’s Missionaries of Sloppiness,” Salon Magazine, December
2000.

Barrow, H.G., and Burstall, R.M. (1976). “Subgraph Isomorphism, Matching Relational Struc-
tures and Maximal Cliques,” Information Processing Letters 4(4):83–84.

Beizer, B. (1990). Software Testing Techniques. International Thomson Computer Press.

Beizer, B. (1999). “Unbanning the ‘Bug.’” Posting 79q48lncc1@fir.prod.itd.earthlink.net
to comp.software.testing.

Beizer, B. (2000). “Definition of the Word Bug.” Posting 8kcV4.4008$S31.103769
@newsread2.prod.itd.earthlink.net to comp.software.testing.

Beveridge,W.I.B. (1957). The Art of Scientific Investigation, 3rd ed.,Vintage Books.

Binkley, D., and Harman, M. (2003). “A Large-Scale Empirical Study of Forward and Backward
Static Slice Size and Context Sensitivity,” in Proceedings of the International Conference
on Software Maintenance, IEEE Computer Society.

Bloch, A., ed. (1980). Murphy’s Law Book Two: More Reasons Why Things Go Wrong!
Price/Stern/Sloan Publishers.

Booch, G. (1994). Object-Oriented Analysis and Design, 2nd ed., Addison-Wesley.

Bron, C., and Kerbosch, J. (1973). “Algorithm 457—Finding All Cliques of an Undirected
Graph,”Communications of the ACM 16(9):575–577.

Brun,Y.,and Ernst,M. (2004).“Finding Latent Code ErrorsVia Machine Learning over Program
Executions,” in Proceedings of the International Conference on Software Engineering,
pp. 480–490, Edinburgh.

381

382 Bibliography

Burdy,L.,Cheon,Y.,Cok,D.,Ernst,M.,Kiniry, J.,Leavens,G.T.,Leino,K.R.M.,and Poll,E. (2003).
“An Overview of JML Tools and Applications,” in Proceedings of the Eighth International
Workshop on Formal Methods for Industrial Critical Systems, Trondheim, Norway.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-Oriented
Software Architecture: A System of Patterns, volume 1, Pattern-Oriented Software
Architecture, John Wiley & Sons.

Chaki, S., Groce, A., and Strichman, O. (2004). “Explaining Abstract Counterexamples,” in
Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 73–82, Newport Beach, CA.

Chelf, B. (2004). “Squashing Bugs at the Source,”Linux Magazine 55:16–20.

Choi, J.-D., and Srinivasan, H. (1998). “Deterministic Replay of Java Multithreaded Applica-
tions,” in Proceedings of the ACM SIGMETRICS Symposium on Parallel and Distributed
Tools, pp. 48–59.

Choi, J.-D., and Zeller, A. (2002). “Isolating Failure-Inducing Thread Schedules,” in Proceed-
ings of the International Symposium on Software Testing and Analysis, pp. 201–220,
Rome.

Cleve, H., and Zeller, A. (2005). “Locating Causes of Program Failures,” in Proceedings of the
International Conference on Software Engineering, St. Louis, MO.

Cohn, R., and Muth, R. (2004). Pin 2.0 User Guide. Available at: http://rogue.colorado.
edu/Pin/documentation.php.

Condit, J., Harren, M., McPeak, S., Necula, G.C., and Weimer, W. (2003). “Cured in the Real
World,” in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 232–244, San Diego.

Dallmeier, V., Lindig, C., and Zeller, A. (2005). “Lightweight Defect Localization for Java,”
in Proceedings of the 19th European Conference on Object-Oriented Programming,
Glasgow.

DeMillo, R.A., Pan, H., and Spafford, E.H. (1996). “Critical Slicing for Software Fault Localiza-
tion,” in Proceedings of the International Symposium on Software Testing and Analysis,
pp. 121–134.

Demsky, B., and Rinard, M. (2003). “Automatic Detection and Repair of Errors in Data Struc-
tures,” in Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 78–95, Anaheim, CA.

Dickinson,W., Leon,D., and Podgurski,A. (2001). “Finding Failures by Cluster Analysis of Exe-
cution Profiles,”in Proceedings of the International Conference on Software Engineering,
pp. 339–348, Toronto.

Dijkstra, E.W. (1972). “Notes on Structured Programming,” in Dahl, O.-J., Dijkstra, E.W., and
Hoare, C.A.R., eds., Structured Programming, pp. 1–82, Academic Press.

Dijkstra, E.W. (1982). “On Webster, Users, Bugs, and Aristotle,” in Selected Writings on
Computing: A Personal Perspective, pp. 288–291, Springer-Verlag. (Originally published
as EWD 618 in 1977.)

Dijkstra,E.W. (1989).“On the Cruelty of ReallyTeaching Computer Science,”Communications
of the ACM 32(12):1398–1404.

Bibliography 383

Ducassé, M. (1999). “Coca: An Automated Debugger for C,” in Proceedings of the Interna-
tional Conference on Software Engineering, pp. 504–513, Los Angeles.

Dunlap,G.W.,King,S.T.,Cinar,S.,Basrai,M.A.,and Chen,P.M. (2002).“Revirt:Enabling Intrusion
Analysis through Virtual-Machine Logging and Replay,” in Proceedings of the Symposium
on Operating Systems Design and Implementation, Boston.

Dustin, E., Rashka, J., and Paul, J. (2001). Automated Software Testing: Introduction,
Management, and Performance, Addison-Wesley.

Eisenstadt, M. (1997). “My Hairiest Bug War Stories,” Communications of the ACM 40(4):
30–37.

Endres, A., and Rombach, D. (2003). A Handbook of Software and Systems Engineering,
Pearson/Addison-Wesley.

Ernst, M.D., Cockrell, J., Griswold, W.G., and Notkin, D. (2001). “Dynamically Discovering
Likely Program Invariants to Support Program Evolution,” IEEE Transactions on Software
Engineering 27(2):1–25.

ESEC/FSE 99 (1999). Proceedings of ESEC/FSE’99—7th European Software Engineering
Conference/7th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
volume 1687, Lecture Notes in Computer Science. Toulouse, France.

Fewster, M., and Graham, D. (1998). Software Test Automation, Addison-Wesley.

Fishman, C. (1996). “They Write the Right Stuff,”Fast Company Magazine 6.

Fritzson, P., Shahmehri, N., Kamkar, M., and Gyimothy, T. (1992). “Generalized Algorithmic
Debugging and Testing,” ACM Letters on Programming Languages and Systems 1(4):
303–322.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

Geiger, L., and Zündorf, A. (2002). “Graph-Based Debugging with Fujaba,” in Workshop on
Graph Based Tools, International Conference on Graph Transformations, Barcelona.

Gould, J.D. (1975). “Some Psychological Evidence on How People Debug Computer
Programs,” International Journal of Man-Machine Studies 7:151–182.

Graves, T.L., Karr, A.F., Marron, J.S., and Siy, H. (2000). “Predicting Fault Incidence Using
Software Change History,” IEEE Transactions on Software Engineering 26(7):653–661.

Groce, A., and Visser, W. (2003). “What Went Wrong: Explaining Counterexamples,” in
Proceedings of the SPIN Workshop on Model Checking of Software, pp. 121–135,
Portland, OR.

Gyimóthy, T., Beszédes, Á., and Forgács, I. (1999). “An Efficient Relevant Slicing Method for
Debugging,” in ESEC/FSE’ 99, pp. 303–321.

Hailpern, B., and Santhanam, P. (2002). “Software Debugging, Testing, and Verification,” IBM
Systems Journal 41(1):4–12.

Hangal, S., and Lam, M.S. (2002). “Tracking Down Software Bugs Using Automatic Anomaly
Detection,” in ICSE-2002, pp. 291–302.

Hopper, G.M. (1981). “The First Bug,” Annals of the History of Computing 3(3):
285–286.

384 Bibliography

Hovemeyer,D., and Pugh,W. (2004). “Finding Bugs Is Easy,” in Proceedings of the Conference
on Object-Oriented Programming Systems Languages and Applications, pp. 132–136,
Vancouver, BC.

Hume, D. (1748). An Enquiry Concerning Human Understanding, A. Millar.

Humphrey, W.S. (1996). Introduction to the Personal Software Process,Addison-Wesley.

Humphrey, W.S. (1999). “Bugs or Defects?” Technical Report, Volume 2, Issue 1. Carnegie
Mellon Software Engineering Institute.

ICSE (2002). Proceedings of the International Conference on Software Engineering,
Orlando, FL.

Jacky, J. (1996). The Way of Z: Practical Programming with Formal Methods, Cambridge
University Press.

Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., and Wang,Y. (2002). “Cyclone:
A Safe Dialect of C,” in Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pp. 275–288.

Jones, J.A.,Harrold,M.J.,and Stasko, J. (2002).“Visualization ofTest Information toAssist Fault
Localization,” in ICSE 2002, pp. 467–477.

Kaner, C., Falk, J., and Nguyen, H.Q. (1999). Testing Computer Software, John Wiley & Sons.

Kernighan, B.W., and Pike, R. (1999). The Practice of Programming, Addison-Wesley.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.G. (2001). “An
Overview of AspectJ,” in Proceedings of the 15th European Conference on Object-
Oriented Programming, pp. 327–353, Budapest.

Kidder, T. (1981). The Soul of a New Machine. New York: Atlantic Monthly Press.

Kim, S., Zimmermann, T., Whitehead Jr., E.J., and Zeller, A. (2007). “Predicting Faults from
Cached History,” in Proceedings of the 29th International Conference on Software
Engineering, pp. 489–498,Washington, DC.

Knight, J.C., and Leveson, N.G. (1986). “An Experimental Evaluation of the Assumption
of Independence in Multiversion Programming,” IEEE Transactions on Software Engi-
neering 12(1):96–109.

Ko, A.J., and Myers, B.A. (2004). “Designing the Whyline: A Debugging Interface for Asking
Questions about Program Behavior,” in CHI ’04: Proceedings of the 2004 Conference on
Human Factors in Computing Systems, pp. 151–158,Vienna.

Ko,A.J., and Myers, B.A. (2005). “A Framework and Methodology for Studying the Causes of
Software Errors in Programming Systems,” Journal of Visual Languages and Computing
16(1–2):41–84.

Ko, A. J., and Myers, B.A. (2008). “Debugging Reinvented: Asking and Answering Why and
Why Not Questions about Program Behavior,” in Proceedings of the 30th International
Conference on Software Engineering, Leipzig, Germany.

Ko, A. J., and Myers, B.A. (2009). “Finding Causes of Program Output with the Java Why-
line,” in Proceedings of the ACM Conference on Human Factors in Computing Systems,
Boston.

Bibliography 385

Kolawa, A. (2002). “Using Bug-Tracking Systems as Idea Repositories.” Available at: www.
stickyminds.com.

Konuru, R., Srinivasan, H., and Choi, J.-D. (2000). “Deterministic Replay of Distributed Java
Applications,” in Proceedings of the International Parallel and Distributed Processing
Symposium, Cancun.

Korel, B., and Laski, J. (1990). “Dynamic Slicing of Computer Programs,” The Journal of
Systems and Software 13(3):187–195.

Larman, C. (2002). Applying UML and Patterns, Prentice Hall.

Leavens, G.T., Baker, A.L., and Ruby, C. (1999). “JML: A Notation for Detailed Design,” in
Behavioral Specifications of Businesses and Systems, pp. 175–188, Kluwer Academic
Publishers.

Leavens, G.T., and Cheon,Y. (2004). “Design by Contract with JML,”Technical Report, Iowa
State University. Available at: http://www.jmlspecs.org/ .

Leitner, A.,Ciupa, I.,Oriol,M.,Meyer,B., and Fiva, A. (2007) “Contract Driven Development =
Test Driven Development–WritingTest Cases,” in Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Dubrovnik, Croatia.

Lencevicius, R. (2000). Advanced Debugging Methods, Kluwer Academic Publishers.

Leveson, N.G., Cha, S.S., Knight, J.C., and Shimeall, T.J. (1990). “The Use of Self-Checks and
Voting in Software Error Detection:An Empirical Study,” IEEE Transactions on Software
Engineering 16(4):432–443.

Lewis, B. (2003). “Debugging Backward in Time,” in Ronsse, M., ed., Proceedings of
the Fifth International Workshop on Automated and Algorithmic Debugging, Ghent,
Belgium.

Lewis, D. (1973).“Causation,” Journal of Philosophy 70:556–567. Reprinted in Lewis (1986).

Lewis, D. (1986). Philosophical Papers:Volume II, Oxford University Press.

Liblit, B.,Aiken,A., Zheng,A.X., and Jordan, M.I. (2003). “Bug Isolation Via Remote Program
Sampling,”in Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, San Diego.

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., and Jordan, M.I. (2005). “Scalable Statistical Bug
Isolation,”in Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, Chicago.

Martin, R.C. (1996). “The Dependency Inversion Principle,”C++ Report, May 8, 1996.

McConnell, S.C. (1993). Code Complete: A Practical Handbook of Software Construction,
Microsoft Press.

Meyer, B. (1997). Object-Oriented Software Construction, 2nd ed., Prentice-Hall.

Miller, B.P., Fredrikson, L., and So, B. (1990). “An Empirical Study of the Reliability of UNIX
Utilities,”Communications of the ACM 33(12):32–44.

Mirrer, B. (2000). “Organize Your Problem Tracking System,” Software Testing & Quality
Engineering Magazine 2(5).

386 Bibliography

Mockus, A., and Votta,L. G. (2000). “Identifying Reasons for Software Changes Using Historic
Databases,” in Proceedings of the International Conference on Software Maintenance,
pp. 120–130, San Jose.

Mockus, A., and Weiss, D.M. (2000). “Predicting Risk of Software Changes,” Bell Labs Techni-
cal Journal 5(2):169–180.

Morgenstern, C. (1964). “The Impossible Fact,” in Knight, M., ed., The Gallows Songs.
University of California Press. (Original poem published in 1905.)

Muchnik, S.S. (1997). Advanced Compiler Design and Implementation,Morgan Kaufmann.

Müller, M.M., Typke, R., and Hagner, O. (2002). “Two Controlled Experiments Concerning
the Usefulness of Assertions as a Means for Programming,” in Proceedings of the 18th
International Conference on Software Maintenance, pp. 84–92, San Jose.

Myers, G.J. (1979). The Art of Software Testing, John Wiley & Sons.

Nagappan, N., and Ball, T. (2005). “Use of Relative Code Churn Measures to Predict Sys-
tem Defect Density,” in Proceedings of the 27th International Conference on Software
Engineering, St. Louis, MO.

Nagappan, N., Ball, T., and Zeller, A. (2006). “Mining Metrics to Predict Component
Failures,” in Proceedings of the 28th International Conference on Software Engineering,
pp. 452–461, Shong Hai.

Nagappan, N., Zeller, A., and Zimmermann, T. (2008). “Predicting Bugs from History,” in Tom
Mens and Serge Demeyer, eds., Software Evolution, pp. 69–88, Springer.

Nagappan, N., Zeller, A., and Zimmermann, T., eds. (2009). IEEE Software—Special Issue on
Mining Software Repositories, January.

Naish, L. (1997). “A Declarative Debugging Scheme,”The Journal of Functional and Logic
Programming 3.

Necula, G.C., McPeak, S., and Weimer, W. (2002). “Cured: Type-Safe Retrofitting of Legacy
Code,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 128–139, Portland, OR.

Ness, B., and Ngo, V. (1997). “Regression Containment through Source Code Isolation,”
in Proceedings of the 21st Annual International Computer Software & Applications
Conference, pp. 616–621,Washington, DC.

Nethercote, N. (2004). “Dynamic Binary Analysis and Instrumentation,” Ph.D. Thesis, Univer-
sity of Cambridge, UK.

Nethercote, N., and Seward, J. (2003). “Valgrind: A Program Supervision Framework,”
Electronic Notes in Theoretical Computer Science 89(2).

Neuburg, M. (2003). AppleScript:The Definitive Guide, O’Reilly.

Neuhaus, S., Zimmermann, T., Holler, C., and Zeller, A. (2007). “Predicting Vulnerable Soft-
ware Components,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security, Alexandria,VA.

Ogawa, M. (2007). “Visualizing the Eclipse Bug Data.” Available at: http://vis.cs.ucdavis.
edu/ogawa/eclipse/.

Bibliography 387

Orso, A., Apiwattanapong, T., and Harrold, M.J. (2003). “Leveraging Field Data for Impact
Analysis and Regression Testing,” in Proceedings of the 9th European Software Engi-
neering Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 128–137.

Ostrand, T., and Weyuker, E. (2002). “The Distribution of Faults in a Large Industrial Software
System,” in Frankl, P.G., ed., Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis,Volume 27(4),Software Engineering Notes, pp. 55–64.

Ostrand, T. J., Weyuker, E.J., and Bell, R.M. (2004). “Where the Bugs Are,” in Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 86–96.

Ottenstein,K.J., and Ottenstein,L.M. (1984). “The Program Dependence Graph in a Software
Development Environment,”in Proceedings of theACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments,Volume 19, ACM
SIGPLAN Notices, pp. 177–184.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference, Cambridge University Press.

Pezzè, M., and Young, M. (2005). Software Testing and Analysis: Process, Principles, and
Techniques, John Wiley & Sons.

Pirsig, R.M. (1974). Zen and the Art of Motorcycle Maintenance,William Morrow.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., and Wang, B. (2003). “Auto-
mated Support for Classifying Software Failure Reports,” in Proceedings of the 25th
International Conference on Software Engineering, pp. 465–475, Portland, OR.

Popper, K. (1959). The Logic of Scientific Discovery, Hutchinson. (Translation of Logik der
Forschung,Vienna, 1935.)

Purushothaman, R., and Perry, D.E. (2004). “Towards Understanding the Rhetoric of Small
Changes,” in Proceedings of the International Workshop on Mining Software Reposi-
tories, pp. 90–94, Edinburgh.

Raymond, E.S., ed. (1996). New Hacker’s Dictionary, 3rd ed., MIT Press. See also http://
www.jargon.org/.

Renieris, M., and Reiss, S.P. (2003). “Fault Localization with Nearest Neighbor Queries,” in
Proceedings of the 18th International Conference on Automated Software Engineering,
Montreal.

Ronsse, M., Bosschere, K.D., Christiaens, M., de Kergommeaux, J.C., and Kranzlmüller, D.
(2003). “Record/Replay for Nondeterministic Program Executions,” Communications of
the ACM 46(9):62–67.

Rosenberg, J.B. (1996). How Debuggers Work—Algorithms, Data Structures, and Architec-
ture, John Wiley & Sons.

RTI (2002). “The Economic Impacts of Inadequate Infrastructure for Software Testing,”
Technical Report, Planning Report 02-3, National Institute of Standards and Technology.

Saff, D., and Ernst, M. (2004a). “Automatic Mock Object Creation for Test Factoring,” in
Flanagan, C. and Zeller, A., eds., Proceedings of the ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,Washington, DC.

388 Bibliography

Saff, D., and Ernst, M. (2004b). “An Experimental Evaluation of Continuous Testing During
Development,” in Proceedings of the International Symposium on Software Testing and
Analysis, pp. 76–85, Boston.

Schmidt, D.C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-Oriented Software
Architecture:Patterns for Concurrent and Networked Objects,Volume 2,Pattern-Oriented
Software Architecture, John Wiley & Sons, New York.

Shapiro, E.Y. (1982). “Algorithmic Program Debugging,” Ph.D. Thesis, MIT Press, ACM
Distinguished Dissertation.

Shapiro, F.R. (1994). “Exposing the Myth Behind the First Bug Reveals a Few Tales,”BYTE.

Shore, J. (2004). “Fail Fast,” IEEE Software 21(5):21–25.

Śliwerski, J., Zimmermann, T., and Zeller, A. (2005a). “When Do Changes Induce Fixes?” in
Proceedings of the Workshop on Mining Software Repositories, St. Louis, MO.

Śliwerski, J., Zimmermann, T., and Zeller, A. (2005b). “HATARI: Raising Risk Awareness,” in
Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Lisbon.

Sommerville, I. (2001). Software Engineering, 6th ed., Addison-Wesley.

Sosic̆, R., and Abramson, D. (1997). “Guard: A Relative Debugger,” Software—Practice and
Experience 27(2):185–106.

Stallman, R.M., and Pesch, R.H. (1994). Debugging with GDB, 4th ed., Free Software
Foundation; distributed with GDB 4.13.

Tip,F. (1995).“A Survey of Program SlicingTechniques,”Journal of Programming Languages
3(3):121–189.

Viega, J., and McGraw, G. (2001). Building Secure Software, Addison-Wesley.

Voas, J.M. (1992). “PIE:A Dynamic Failure-based Technique,” IEEE Transactions on Software
Engineering 18(8):717–727.

Wahbe,R. (1992).“Efficient Data Breakpoints,”in Proceedings of the Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pp. 200–212.

Wattenberg, M. (1998). “Map of the Market.”Available at: http://www.bewitched.com/ .

Weinberg,G.M. (1971). The Psychology of Computer Programming,Van Nostrand Reinhold.

Weiser,M. (1982). “Programmers Use Slices When Debugging,”Communications of the ACM
25(7):446–452.

Weiser, M. (1984). “Program Slicing,” IEEE Transactions on Software Engineering 10(4):
352–357.

Whalley, D.B. (1994). “Automatic Isolation of Compiler Errors,” ACM Transactions on
Programming Languages and Systems 16(5):1648–1659.

Wilson, E.B. (1952). An Introduction to Scientific Research, McGraw-Hill.

Bibliography 389

Xie,Y.,and Engler,D. (2002).“Using Redundancies to Find Errors,”in Proceedings of the 10th
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 51–60.

Zachary, G.P. (1994). Showstopper!: The Breakneck Race to Create Windows NT and the
Next Generation at Microsoft, Free Press.

Zalta, E.N., ed. (2002). Stanford Encyclopedia of Philosophy. Stanford University. Available
at: http://plato.stanford.edu/.

Zeller, A. (1999). “Yesterday, My Program Worked. Today, It Does Not. Why?” in ESEC/FSE 99,
pp. 253–267.

Zeller, A. (2000). Debugging with DDD,Version 3.2, Universität Passau and Free Software
Foundation; distributed with GNU DDD.

Zeller, A. (2002).“Isolating Cause–Effect Chains from Computer Programs,”in Griswold,W. G.,
ed.,Proceedings of the Tenth ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 1–10, Charleston, SC.

Zeller, A., and Hildebrandt,R. (2002). “Simplifying and Isolating Failure-Inducing Input,” IEEE
Transactions on Software Engineering 28(2):183–200.

Zeller, A.,and Lütkehaus,D. (1996).“DDD—A Free Graphical Front-end for UNIX Debuggers,”
SIGPLAN Notices 31(1):22–27.

Zhang, X., and Gupta, R. (2004). “Cost-Effective Dynamic Program Slicing,” in Proceed-
ings of the 2004 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 94–106,Washington, DC.

Zimmermann, T., and Nagappan, N. (2008). “Predicting Defects Using Network Analysis on
Dependency Graphs,” in Proceedings of the 30th International Conference on Software
Engineering, pp.531–540, Leipzig, Germany.

Zimmermann, T., Premraj, R., and Zeller, A. (2007). “Predicting Defects for ECLIPSE,” in
Proceedings of the Third International Workshop on Predictor Models in Software
Engineering, p. 9, Minneupolis, MN.

Zimmermann, T.,and Zeller, A. (2002).“Visualizing Memory Graphs,”in Diehl,S.,ed.,Proceed-
ings of the International Dagstuhl Seminar on Software Visualization, Volume 2269,
Lecture Notes in Computer Science, pp. 191–204, Dagstuhl, Germany.

	Cover Page
	Copyright
	Copyright

	Foreword
	Foreword

	Preface
	Preface
	Acknowledgments

	1 How Failures Come to Be
	1 How Failures Come to Be
	My Program Does Not Work!
	From Defects to Failures
	Lost in Time and Space
	From Failures to Fixes
	Track the Problem
	Reproduce the Failure
	Automate and Simplify the Test Case
	Find Possible Infection Origins
	Focus on the Most Likely Origins
	Isolate the Origin of the Infection
	Correct the Defect

	Automated Debugging Techniques
	Bugs, Faults, or Defects?
	Concepts
	Tools
	Further Reading
	Exercises

	2 Tracking Problems
	2 Tracking Problems
	Oh! All These Problems
	Reporting Problems
	Problem Facts
	Product Facts
	Querying Facts Automatically

	Managing Problems
	Classifying Problems
	Severity
	Priority
	Identifier
	Comments
	Notification

	Processing Problems
	Managing Problem Tracking
	Requirements as Problems
	Managing Duplicates
	Relating Problems and Fixes
	Relating Problems and Tests
	Concepts
	Tools
	Further Reading
	Exercises

	3 Making Programs Fail
	3 Making Programs Fail
	Testing for Debugging
	Controlling the Program
	Testing at the Presentation Layer
	Low-Level Interaction
	System-Level Interaction
	Higher-Level Interaction
	Assessing Test Results

	Testing at the Functionality Layer
	Testing at the Unit Layer
	Isolating Units
	Designing for Debugging
	Preventing Unknown Problems
	Concepts
	Tools
	Further Reading
	Exercises

	4 Reproducing Problems
	4 Reproducing Problems
	The First Task in Debugging
	Reproducing the Problem Environment
	Reproducing Program Execution
	Reproducing Data
	Reproducing User Interaction
	Reproducing Communications
	Reproducing Time
	Reproducing Randomness
	Reproducing Operating Environments
	Reproducing Schedules
	Physical Influences
	Effects of Debugging Tools

	Reproducing System Interaction
	Focusing on Units
	Setting Up a Control Layer
	A Control Example
	Mock Objects
	Controlling More Unit Interaction

	Reproducing Crashes
	Concepts
	Tools
	Further Reading
	Exercises

	5 Simplifying Problems
	5 Simplifying Problems
	Simplifying the Problem
	The Gecko BugAThon
	Manual Simplification
	Automatic Simplification
	A Simplification Algorithm
	Simplifying User Interaction
	Random Input Simplified
	Simplifying Faster
	Caching
	Stop Early
	Syntactic Simplification
	Isolate Differences, Not Circumstances

	Concepts
	Tools
	Further Reading
	Exercises

	6 Scientific Debugging
	6 Scientific Debugging
	How to Become a Debugging Guru
	The Scientific Method
	Applying the Scientific Method
	Debugging sample---Preparation
	Debugging sample---Hypothesis 1
	Debugging sample---Hypothesis 2
	Debugging sample---Hypothesis 3
	Debugging sample---Hypothesis 4

	Explicit Debugging
	Keeping a Logbook
	Debugging Quick-and-Dirty
	Algorithmic Debugging
	Deriving a Hypothesis
	The Description of the Problem
	The Program Code
	The Failing Run
	Alternate Runs
	Earlier Hypotheses

	Reasoning About Programs
	Concepts
	Further Reading
	Exercises

	7 Deducing Errors
	7 Deducing Errors
	Isolating Value Origins
	Understanding Control Flow
	Tracking Dependences
	Effects of Statements
	Affected Statements
	Statement Dependences
	Following Dependences
	Leveraging Dependences

	Slicing Programs
	Forward Slices
	Backward Slices
	Slice Operations
	Leveraging Slices
	Executable Slices

	Deducing Code Smells
	Reading Uninitialized Variables
	Unused Values
	Unreachable Code

	Limits of Static Analysis
	Concepts
	Tools
	Further Reading
	Exercises

	8 Observing Facts
	8 Observing Facts
	Observing State
	Logging Execution
	Logging Functions
	Logging Frameworks
	Logging with Aspects
	Logging at the Binary Level

	Using Debuggers
	A Debugging Session
	Controlling Execution
	Postmortem Debugging
	Logging Data
	Invoking Functions
	Fix and Continue
	Embedded Debuggers
	Debugger Caveats

	Querying Events
	Watchpoints
	Uniform Event Queries

	Hooking into the Interpreter
	Visualizing State
	Concepts
	Tools
	Further Reading
	Exercises

	9 Tracking Origins
	9 Tracking Origins
	Reasoning Backward
	Exploring Execution History
	Dynamic Slicing
	Leveraging Origins
	Tracking Down Infections
	Concepts
	Tools
	Further Reading
	Exercises

	10 Asserting Expectations
	10 Asserting Expectations
	Automating Observation
	Basic Assertions
	Asserting Invariants
	Asserting Correctness
	Assertions as Specifications
	From Assertions to Verification
	Reference Runs
	System Assertions
	Validating the Heap with MALLOC_CHECK_
	Avoiding Buffer Overflows with ELECTRICFENCE
	Detecting Memory Errors with VALGRIND
	Language Extensions

	Checking Production Code
	Concepts
	Tools
	Further Reading
	Exercises

	11 Detecting Anomalies
	11 Detecting Anomalies
	Capturing Normal Behavior
	Comparing Coverage
	Statistical Debugging
	Collecting Data in the Field
	Dynamic Invariants
	Invariants on-the-Fly
	From Anomalies to Defects
	Concepts
	Tools
	Further Reading
	Exercises

	12 Causes and Effects
	12 Causes and Effects
	Causes and Alternate Worlds
	Verifying Causes
	Causality in Practice
	Finding Actual Causes
	Narrowing Down Causes
	A Narrowing Example
	The Common Context
	Causes in Debugging
	Concepts
	Further Reading
	Exercises

	13 Isolating Failure Causes
	13 Isolating Failure Causes
	Isolating Causes Automatically
	Isolating versus Simplifying
	An Isolation Algorithm
	Implementing Isolation
	Isolating Failure-inducing Input
	Isolating Failure-inducing Schedules
	Isolating Failure-inducing Changes
	Problems and Limitations
	Concepts
	Tools
	Further Reading
	Exercises

	14 Isolating Cause--Effect Chains
	14 Isolating Cause--Effect Chains
	Useless Causes
	Capturing Program States
	Comparing Program States
	Isolating Relevant Program States
	Isolating Cause--Effect Chains
	Isolating Failure-Inducing Code
	Issues and Risks
	Concepts
	Tools
	Further Reading
	Exercises

	15 Fixing the Defect
	16 Learning from Mistakes
	16 Learning from Mistakes
	Where the Defects are
	Mining the Past
	Where Defects come from
	Errors during Specification
	What You Can Do
	What You Should Focus On

	Errors during Programming
	What You Can Do
	What You Should Focus On

	Errors during Quality Assurance
	What You Can Do
	What You Should Focus On

	Predicting Problems
	Predicting Errors from Imports
	Predicting Errors from Change Frequency
	A Cache for Bugs
	Recommendation Systems
	A Word of Warning

	Fixing the Process
	Concepts
	Further Reading
	Exercises

	A Formal Definitions
	A Formal Definitions
	Delta Debugging
	Configurations
	Passing and Failing Run
	Tests
	Minimality
	Simplifying
	Differences
	Isolating

	Memory Graphs
	Formal Structure
	Unfolding Data Structures
	Matching Vertices and Edges
	Computing the Common Subgraph
	Computing Graph Differences
	Applying Partial State Changes
	Capturing C State

	Cause--Effect Chains

	Glossary
	Glossary

	Bibliography
	Bibliography

