




Foreword 

I've been a virtual machine addict for precisely as long as I've worked with 
computers. My first real job, which led to my first nontrival computer program, 
was to implement a virtual machine for a high-level programming language. 
There seemed to be something magical about the ability for a computer to 
imitate another computer, or my idea of what a computer ought to be. 

Now almost 20 years later, less starry-eyed and more responsible, I am 
concerned that my work has utility, making it faster or easier to get something 
done than it would be otherwise. But lucky for me, virtual machines have 
proven ideally suited to the needs of the computing industry, where the appre- 
ciation of the virtual machine has expanded dramatically. It's no longer only 
an intellectual challenge to the researcher arguably on the "lunatic fringe" of 
programming language implementation, or the secret weapon of a small cadre 
of mainframe O/S engineers and pioneers of system virtualization. 

Several major trends have contributed to an explosion of interest in virtual 
machine technologies. In particular the rise of the World Wide Web, by far 
the largest and most ubiquitous cross-platform computing environment to 
date, created enormous and visible opportunities for virtual machine-based 
computing. Initially targeting the WWW, VM technology hit the mainstream 
as a means of safely hosting cross-platform binary programs embedded in 
Web pages. From that beachhead it has expanded to become the prevalent 
approach to open platforms from Web and back office servers to cell phones 
and smart cards, where the equivalent benefits ~ cross-platform applications 
that are not tied to the underlying hardware or operating system ~ invariably 
apply. Virtual machines form the basis of Sun's Java and Microsoft's .NET 
platforms, currently the most popular software environments on the planet. 

ix 



x [] Foreword 

As new markets or applications are conceived, virtual machine technologies to 
support them are adapted from these stalwarts. 

In other markets as well, virtual machine technology is seeing a renaissance. 
Companies such as VMware are finding virtual machine platforms to be an 
ideal way to provide greater resource control, scalability and performance 
across variations in host hardware or operating systems. Virtual machines are 
likely to be common at multiple levels of the data center or server farm. 

When I was asked to review this book, it seemed an opportunity to read 
something I might not get to otherwise. I expected to focus on the chapter 
covering virtual machines for high-level languages. Little did I know that I 
would find myself excited by less familiar topics, for instance sending back 
surprised comments expressing admiration for the decades-old IBM AS/400 
architecture, which I'd never understood before. It wasn't just the realization 
of how much those coming far before me had accomplished. Seeing virtual 
machine technology in this broader scope made design decisions in my famil- 
iar Java virtual machine architecture, and their implications, much clearer. 
Such perspective is valuable even to experienced practitioners of a particular 
VM art. 

And I found myself once again thinking how cool it all is. 

Tim Lindholm 
Distinguished Engineer, Sun Microsystems, Inc. 

Palo Alto 
February 28, 2005 



Preface 

Virtual machine (VM) technologies have been developed in a number of 
contexts ~ operating systems, programming languages and compilers, and 
computer architecture ~ to enable new capabilities and to solve a variety of 
problems in interfacing major computer system components. Virtual machines 
for supporting operating systems are receiving renewed interest after years of 
relatively little activity, because they allow effective resource sharing while 
maintaining a high degree of security. Virtualization is becoming popular for 
servers and other network applications especially where security is of crucial 
importance. In the area of programming languages, virtual machines provide 
platform independence, and they support transparent dynamic translation and 
optimization. In processor architectures, virtual machine technologies allow 
the introduction of new instruction sets, as well as dynamic optimization for 
power reduction and/or performance improvement. 

Because of industry consolidation around a small number of standard inter- 
faces, virtual machine technology will likely be an important enabling feature 
for innovations in all of the above fields. Any new instruction set, oper- 
ating system, or programming language will almost certainly require some 
accompanying virtual machine technology if it is to become widely accepted. 
Not coincidentally, much of the impetuses for virtual machine technolo- 
gies, and most of the more significant recent developments, have come from 
industry. 

Historically, the various VM techniques have been spread across computer 
science and engineering disciplines. However, there are a number of under- 
lying, cross-cutting technologies, and there is much to be gained by pulling 
them together so that VM implementations can be studied and engineered 
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in a well-structured way. This book is an outgrowth of the idea that virtual 
machines should be studied as a unified discipline. 

This book is also about computer architecture in its purist sense. As classi- 
cally defined, an architecture is an interface. Virtual machines couple interfaces 
and extend the flexibility and functionality of the interfaces. Understanding 
architecture is key to understanding virtual machines, and this book is written 
from an architect's perspective, keeping interface issues clear and at the fore- 
front. A goal is for the reader to come away with a much deeper understanding 
of the important computer system interfaces and the role these interfaces play 
when the major components interact. 

The breadth of VM applications implies the audience for this book is fairly 
diverse. Although it is not currently recognized as a discipline with a targeted 
set of university courses, virtual machines makes an excellent topic for a grad- 
uate level course because it ties together the key disciplines of computer science 
and engineering: architecture, operating systems, and programming languages. 
Preliminary versions of this book have already been used, quite successfully, in 
graduate courses at four different universities. The book can also be used as a 
supplementary text for a compiler course on dynamic optimization or an oper- 
ating system course covering classic system VMs. Virtual machine technologies 
are rapidly gaining broad acceptance in industry, and practicing professionals 
will find the book useful for self-education on this leading edge technology. The 
book can also serve as a useful reference as it collects material from a number 
of fields into one place. 

The book begins by surveying the variety of VMs, putting them into perspec- 
tive and building a framework for discussing VMs. The subsequent chapters 
describe the major types of VMs in an organized way, emphasizing the com- 
mon, underlying technologies. Following is a rough outline summarizing each 
chapter. 

In Chapter 1 we introduce the concept of abstraction and define the inter- 
faces that are prevalent in today's computer systems. This is followed by a 
discussion of virtualization and its relationship to the interfaces. The notion 
of computer architecture is introduced next, followed by a survey of different 
types of virtual machines. VMs are shown to fall into two main categories, 
process virtual machines and system virtual machines. We end the chapter 
by refining this categorization further and suggesting a taxonomy for virtual 
machines. 

In Chapter 2 we address issues related to the emulation of a source instruc- 
tion set architecture (ISA) on a target ISA. We demonstrate the workings of a 
basic interpreter and show how threaded interpretation can help improve per- 
formance. The techniques developed are demonstrated using a CISC source 
ISA, the Intel IA-32, and a RISC target ISA, the IBM PowerPC. We then 
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introduce the notion of binary translation, and discuss the problems of code 
discovery and code location. This is followed by a discussion of the handling of 
control transfers. Many ISAs have special features (in some cases, they might 
be called "quirks") that must be handled in special ways. These are discussed 
next. The chapter is rounded out with a case study of emulation in the Shade 
simulation system. 

Chapter 3 discusses the implementation of process virtual machines. A pro- 
cess virtual machine supports an individual guest application program on a host 
platform consisting of an operating system and underlying hardware. We dis- 
cuss the implications of VM compatibility and show how the state of a machine, 
consisting ofthe register state and the memory state, is mapped and maintained 
in a process virtual machine. We address the issues of self-modifying code and 
of protecting the region of memory used by the VM runtime software. VM 
emulation consists of two parts. First, the emulation of the instruction set is 
discussed, with reference to interpretation and binary translation discussed 
in Chapter 2. This leads to a discussion of code caching techniques. Next, 
the emulation of the interface to the host operating system is addressed. We 
end the chapter by describing the FX!32 system, which embodies many of the 
fundamental ideas discussed in the chapter. 

Chapter 4 focuses on techniques for the optimization of translated code 
for better emulation performance. It discusses the framework needed to per- 
form such optimizations and the profile information that must be gathered at 
program execution time in order to facilitate optimizations. Various profiling 
techniques are discussed. Because optimizations often work better on larger 
code blocks, the concepts of dynamic basic blocks, superblocks, traces, and 
tree groups are introduced. The chapter includes an extensive discussion on 
code re-ordering and its limitations. Various types of code optimizations, both 
local and inter-block, are presented. The chapter concludes with a case-study of 
Dynamo, a dynamic binary optimizer, which applies optimization techniques 
in a system where the source and target ISAs are identical. 

Chapter 5 introduces high-level language virtual machines and traces the 
transition from the early Pascal P-code VMs to object-oriented VMs. The 
emphasis in this chapter is on the architecture of high-level language VMs, 
especially those features supporting object-oriented programming and security. 
The two important object-oriented VMs of today, namely the Java Virtual 
Machine and the Microsoft CLI, are described. The features of their bytecode, 
stack-oriented instruction sets are described. In both cases, the description of 
the instruction set is supplemented by a discussion of the overall platform that 
augments the virtual machines with a set of libraries and APIs. 

Chapter 6 continues the discussion of high-level language VMs by focusing 
on their implementation. As in the preceding chapter, more attention is given 



xiv �9 Preface 

to Java because of its widespread usage and the variety in its implementations. 
Two aspects given special consideration are security and memory manage- 
ment. The importance of garbage collection is discussed along with techniques 
for performing garbage collection. The interaction of Java objects with pro- 
grams written natively outside the Java environment is discussed next. We then 
describe how the performance of Java can be enhanced through optimizations 
of code using techniques described in Chapter 4 as well as new techniques that 
are specific to the object-oriented paradigm. The concepts in the chapter are 
brought together using a case-study of the Jikes Research Virtual Machine. 

In Chapter 7 we discuss co-designed virtual machines where a conventional 
ISA is implemented through a combination of an implementation-specific ISA 
and translation software that runs in concealed memory. We discuss techniques 
for mapping the state of the original ISA onto the implementation ISA and for 
maintaining the code cache containing translated code. Various sticky aspects, 
including the implementation of precise interrupts and page faults, are also 
discussed. We end the chapter with two case studies: the Transmeta Crusoe 
processor and the IBM AS/400 processor. 

Chapter 8 deals with the classic system virtual machines. A system virtual 
machine supports a complete guest operating system and all its applications 
on a host platform. We provide a motivation for these virtual machines and 
outline the basic ways for implementing system virtual machines, including 
native and hosted VMs. We discuss techniques for the virtualization of the 
three main system resources: processors, memory, and I/O. The conditions for 
virtualizability of a processor, as first enunciated by Popek and Goldberg in 
the early '70s, are developed. Also discussed are techniques for virtualization 
when these conditions are not satisfied by an ISA. Memory virtualization is 
discussed with attention given both to systems with architected page tables and 
architected TLBs. Then virtualization is discussed for a variety of I/O devices. 
We next turn our attention to hardware assists to improve the performance of 
VM systems with the IBM z/VM as a running example. We end the chapter 
with two case studies, that of a hosted VM system developed by VMware, and 
that of the VT-x (Vanderpool) technology developed by Intel for their IA-32 
architecture. 

In Chapter 9 we shift our attention to the virtualization of multiprocessor 
systems. We introduce the notion of system partitioning and develop a taxon- 
omy for different types of partitioning. We then discuss the principles behind 
physical partitioning and logical partitioning. The IBM LPAR feature is pre- 
sented as a case study in logical partitioning. Following this is a discussion about 
logical partitioning using hypervisors. We then turn to a system VM-based 
approach to multiprocessor virtualization using a research system, Cellular 
Disco, as a case study. We end the chapter with a discussion of multiprocessor 
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virtualization where the guest and host platforms have different ISAs, with 
special attention on bridging the differences in memory models between a host 
and a guest. 

Chapter 10 is a discussion of emerging applications for virtual machine tech- 
nology. We focus on three application areas which we feel will be important in 
the coming years. The first is security. We discuss the vulnerability to attacks of 
modern computer systems and outline the principles behind intrusion detec- 
tion systems. The potential of VM technology in protecting and recovering 
from attacks is discussed. The role of binary rewriting technology in security 
is also discussed with reference to the RIO system. The second application we 
focus on is that of migrating computing environments from one machine to 
another. The techniques used in two systems, the Internet Suspend/Resume 
system and the Stanford Collective system, are described. The commercial 
application of this technology in VMware's VMotion is also discussed. Our 
third emerging application is computational grids. We outline the motivation 
behind the emergence of the grid as a computing infrastructure and compare it 
to the motivations behind other types of virtual machines. We end the chapter 
by showing how classic system virtual machines are proving to be an important 
enabler for emerging grid systems. 

The Appendix is essentially a condensed course in computer systems, pro- 
viding background material for the main chapters. It discusses the roles of 
the processor, memory, and I/O in a computer system. This is followed by 
a discussion of ISAs, including support for user applications as well as for 
the operating system. Page tables and TLBs are discussed next. We follow 
this with a discussion of the major components of an operating system and 
the system call interface between an application and the operating system. 
Finally we discuss multiprocessor architectures, including cluster architectures 
and shared-memory multiprocessor systems. Memory coherence and memory 
consistency issues in shared-memory systems are also addressed. 

The book may be used in a course in a variety of ways. Overall, the book 
is structured for a course focused on virtual machines as a topic in itself (an 
approach we advocate). For an operating system oriented treatment of virtual 
machines, an instructor can go straight to Chapters 8 through 10 after intro- 
ducing the taxonomy of virtual machines in Chapter 1. Chapters 2 through 5 
can then be discussed to get an idea of implementation details. A more hard- 
ware oriented course can, however, go through Chapters 1 through 4 and then 
skip Chapters 5 and 6, before covering the remaining chapters. A language- 
oriented course can go straight to Chapter 5 from Chapter 1, and then backtrack 
to do Chapters 2 through 4, ending with Chapter 6 to put everything together. 
Chapter 10 should be of interest to virtually any course using the material in 
the book. 
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The specific interests of practitioners will largely determine the order in 
which they cover the material in the book. We have written the book in such 
a way that an interested reader can start at the beginning of any chapter of 
interest and follow the material in the complete chapter with only occasional 
excursions to sections in other chapters referred to in the text. 

There are many people we would like to thank for having made this book 
possible. We would particularly like to thank the many reviewers. Michael 
Hind of IBM Research, Jan Hoogerbrugge of Philips Research, Jim Larus of 
Microsoft Research, Tim Lindholm of Sun Microsystems, Bernd Mathiske 
of Sun Microsystems, and Mike Smith of Harvard University patiently went 
through the text of the entire book and provided us with valuable feedback, 
sometimes critical, but always useful. We also thank a number of reviewers 
who went through specific chapters or sets of chapters and provided us with 
their valuable insights and comments. These reviewers include Erik Altman, 
Peter Capek, Evelyn Duesterwald, and Michael Gschwind, all of IBM Research, 
Renato Figueiredo of the Univ. of Florida, Michael Franz of UC Irvine, Wei 
Hsu of the Univ. of Minnesota, Toni Juan of UPC-Barcelona, Main K~igi 
of Intel, Beng-Hong Lim of VMware, Eliot Moss of Univ. of Massachusetts, 
Amherst, Frank Soltis of IBM Rochester, Richard Uhlig of Intel, Romney 
White of IBM Endicott, Wayne Wolf of Princeton University, and Ben Zorn 
of Microsoft Research. We also appreciate the discussions with Vas Bala, Ek 
Ekanadham, Wolfram Sauer, and Charles Webb of IBM, on various aspects of 
virtualization. 

The authors would also like to acknowledge Sriram Vajapeyam for his 
contributions during the early development of this material, and the students at 
the University of Wisconsin-Madison and Universitat Polithcnica de Catalunya 
in Barcelona for their valuable feedback while participating in VM courses and 
conducting VM research. At the risk of omitting someone, the past and current 
students who have been particularly helpful are Nidhi Aggarwal, Todd Bezenek, 
Jason Cantin, Wooseok Chang, Ashutosh Dhodapkar, Timothy Heil, Shiliang 
Hu, Tejas Karkhanis, Ho-Seop Kim, Kyle Nesbit, and Subramanya Sastry. 

This book owes a lot to the guidance, persistence, and encouragement 
provided by our publisher, Denise Penrose, and the support provided by her 
excellent staff at Morgan-Kaufmann Publishers, including Kimberlee Honjo, 
Angela Dooley, Alyson Day, and Summer Block. 

First author: I would like to thank the people at IBM Research, and Dan 
Prener in particular, for their support during my 2000-2001 sabbatical- the 
time this book had its genesis. I am especially grateful to Erik Altman for being 
a sounding board throughout the writing of the book. I also thank my graduate 
students for their support and helpful suggestions. Finally, I am grateful to 
my children Barbara, Carolyn, and Jim, for their encouragement and patience 
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during the writing of the book, and in general for putting up with a frequently 
distracted father. 

Second author: I would like to thank Dan Prener, Eric Kronstadt, and Jaime 
Moreno for their encouragement and support in undertaking this project. 
Thanks also to Peter Capek, Dan Prener, Peter Oden, Dick Attanasio, and 
Mark Mergen for many interesting tea-time discussions. Finally, I would like 
to thank my wife, Indira, and my daughters, Rohini and Nandini, for their love 
and understanding at all times; they have given me more than I could have ever 
hoped for or imagined. 

The authors are mutually grateful for the opportunity to renew a friendship 
that stretches back 30 years. We have had tremendous fun and have learnt a 
great deal in the process of writing this book. If you, the reader, experience just 
a fraction of what we have experienced, this book will have been worthwhile. 

]ames E. Smith 

Ravi Nair 











M odern computers are among the most advanced human-engineered 
structures, and they are possible only because of our ability to manage 

extreme complexity. Computer systems contain many silicon chips, each with 
hundreds of millions of transistors. These are interconnected and combined 
with high-speed input/output (I/O) devices and networking infrastructure to 
form the platforms upon which software can operate. Operating systems, 
application programs and libraries, and graphics and networking software all 
cooperate to provide a powerful environment for data management, education, 
communication, entertainment, and many other applications. 

The key to managing complexity in computer systems is their division into 
levels of abstraction separated by well-defined interfaces. Levels of abstraction 
allow implementation details at lower levels of a design to be ignored or sim- 
plified, thereby simplifying the design of components at higher levels. The 
details of a hard disk, for example, that it is divided into sectors and tracks, are 
abstracted by the operating system (OS) so that the disk appears to application 
software as a set ofvariable-size files (see Figure 1.1). An application program- 
mer can then create, write, and read files, without knowledge of the way the 
hard disk is constructed and organized. 

The levels of abstraction are arranged in a hierarchy, with lower levels imple- 
mented in hardware and higher levels in software. In the hardware levels, all the 
components are physical, have real properties, and their interfaces are defined 
so that the various parts can be physically connected. In the software levels, 
components are logical, with fewer restrictions based on physical characteris- 
tics. In this book, we are most concerned with the abstraction levels that are at 
or near the hardware/software boundary. These are the levels where software 
is separated from the machine on which it runs. 

1 



Chapter 1--Introduction to Virtual Machines 

Figure 1.1 
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Files Are an Abstraction of a Disk. A level of abstraction provides a simplified interface to underlying 
resources. 

Computer software is executed by a machine (a term that dates back to 
the beginning of computers; plat form is the term more in vogue today). From 
the perspective of the operating system, a machine is largely composed of 
hardware, including one or more processors that run a specific instruction set, 
some real memory, and I/O devices. However, we do not restrict the use of 
the term machine to just the hardware components of a computer. From the 
perspective of application programs, for example, the machine is a combina- 
tion of the operating system and those portions of the hardware accessible 
through user-level binary instructions. 

Let us now turn to the other aspect of managing complexity: the use of 
well-defined interfaces. Well-defined interfaces allow computer design tasks to 
be decoupled so that teams of hardware and software designers can work more 
or less independently. The instruction set is one such interface. For exam- 
ple, designers at Intel and AMD develop microprocessors that implement the 
Intel IA-321 instruction set, while software engineers at Microsoft develop 
compilers that map high-level languages to the same instruction set. As long 
as both groups satisfy the instruction set specification, compiled software 
will execute correctly on a machine incorporating an IA-32 microprocessor. 
The operating system interface, defined as a set of function calls, is another 
important standardized interface in computer systems. As the Intel/Microsoft 
example suggests, well-defined interfaces permit development of interacting 
computer subsystems at different companies and at different times, some- 
times years apart. Application software developers do not need to be aware 
of detailed changes inside the operating system, and hardware and software 

1. Sometimes referred to informally as x86. 
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can be upgraded according to different schedules. Software can run on different 
platforms implementing the same instruction set. 

Despite their many advantages, well-defined interfaces can also be confin- 
ing. Subsystems and components designed to specifications for one interface 
will not work with those designed for another. There are processors with dif- 
ferent instruction sets (e.g., Intel IA-32 and IBM PowerPC), and there are 
different operating systems (e.g., Windows and Linux). Application programs, 
when distributed as program binaries, are tied to a specific instruction set and 
operating system. An operating system is tied to a computer that implements 
specific memory system and I/O system interfaces. As a general principle, 
diversity in instruction sets, operating systems, and application programming 
languages encourages innovation and discourages stagnation. However, in 
practice, diversity also leads to reduced interoperability, which becomes restric- 
tive, especially in a world of networked computers, where it is advantageous to 
move software as freely as data. 

Beneath the hardware/software interface, hardware resource considera- 
tions can also limit the flexibility of software systems. Memory and I/O abstrac- 
tions, both in high-level languages and in operating systems, have removed 
many hardware resource dependences; some still remain, however. Many 
operating systems are developed for a specific system architecture, e.g., for 
a uniprocessor or a shared-memory multiprocessor, and are designed to man- 
age hardware resources directly. The implicit assumption is that the hardware 
resources of a system are managed by a single operating system. This binds 
all hardware resources into a single entity under a single management regime. 
And this, in turn, limits the flexibility of the system, not only in terms of avail- 
able application software (as discussed earlier), but also in terms of security 
and failure isolation, especially when the system is shared by multiple users or 
groups of users. 

Virtualization provides a way of relaxing the foregoing constraints and 
increasing flexibility. When a system (or subsystem), e.g., a processor, memory, 
or I/O device, is virtualized, its interface and all resources visible through the 
interface are mapped onto the interface and resources of a real system actu- 
ally implementing it. Consequently, the real system is transformed so that 
it appears to be a different, virtual system or even a set of multiple virtual 
systems. Formally, virtualization involves the construction of an isomorphism 
that maps a virtual guest system to a real host (Popek and Goldberg 1974). This 
isomorphism, illustrated in Figure 1.2, maps the guest state to the host state 
(function V in Figure 1.2), and for a sequence of operations, e, that modifies 
the state in the guest (the function e modifies state Si to state Sj) there is a 
corresponding sequence of operations e ~ in the host that performs an equiv- 
alent modification to the host's state (changes S I to S;). Although such an 
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Figure 1.2 Virtualization. Formally, virtualization is the construction of  an isomorphism between a guest 

system and a host; e t o V ( Si ) = V o e( Si ). 

isomorphism can be used to characterize abstraction as well as virtualization, 
we distinguish the two: Virtualization differs from abstraction in that virtual- 
ization does not necessarily hide details; the level of detail in a virtual system is 
often the same as that in the underlying real system. 

Consider again the example of a hard disk. In some applications, it may be 
desirable to partition a single large hard disk into a number of smaller virtual 
disks. The virtual disks are mapped to a real disk by implementing each of the 
virtual disks as a single large file on the real disk (Figure 1.3). Virtualizing soft- 
ware provides a mapping between virtual disk contents and real disk contents 
(the function V in the isomorphism), using the file abstraction as an interme- 
diate step. Each of the virtual disks is given the appearance of having a number 
of logical tracks and sectors (although fewer than in the large disk). A write to 
a virtual disk (the function e in the isomorphism) is mirrored by a file write 
and a corresponding real disk write, in the host system (the function e ~ in the 
isomorphism). In this example, the level of detail provided at the virtual disk 
interface, i.e., sector/track addressing, remains the same as for a real disk; no 
abstraction takes place. 

The concept of virtualization can be applied not only to subsystems such 
as disks, but to an entire machine. A v i r t u a l  m a c h i n e  (VM) is implemented 
by adding a layer of software to a real machine to support the desired virtual 
machine's architecture. For example, virtualizing software installed on an 
Apple Macintosh can provide a Windows/IA-32 virtual machine capable of 
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I m p l e m e n t i n g  V i r t u a l  Disks .  Virtualizat ion provides a different interface and~or resources at the 

same level o f  abstraction. 

running PC application programs. In general, a virtual machine can circum- 
vent real machine compatibility constraints and hardware resource constraints 
to enable a higher degree of software portability and flexibility. 

A wide variety of virtual machines exist to provide an equally wide variety 
of benefits. Multiple, replicated virtual machines can be implemented on a 
single hardware platform to provide individuals or user groups with their own 
operating system environments. The different system environments (possibly 
with different operating systems) also provide isolation and enhanced security. 
A large multiprocessor server can be divided into smaller virtual servers, while 
retaining the ability to balance the use of hardware resources across the system. 

Virtual machines can also employ emulation techniques to support cross- 
platform software compatibility. For example, a platform implementing the 
PowerPC instruction set can be converted into a virtual platform running the 
IA-32 instruction set. Consequently, software written for one platform will 
run on the other. This compatibility can be provided either at the system level 
(e.g., to run a Windows OS on a Macintosh) or at the program or process level 
(e.g., to run Excel on a Sun Solaris/SPARC platform). In addition to emulation, 
virtual machines can provide dynamic, on-the-fly optimization of program 
binaries. Finally, through emulation, virtual machines can enable new, propri- 
etary instruction sets, e.g., incorporating very long instruction words (VLIWs), 
while supporting programs in an existing, standard instruction set. 

The virtual machine examples just described are constructed to match 
the architectures of existing real machines. However, there are also virtual 
machines for which there are no corresponding real machines. It has become 
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common for language developers to invent a virtual machine tailored to a 
new high-level language. Programs written in the high-level language are com- 
piled to "binaries" targeted at the virtual machine. Then any real machine on 
which the virtual machine is implemented can run the compiled code. The 
power of this approach has been clearly demonstrated with the Java high- 
level language and the Java virtual machine, where a high degree of platform 
independence has been achieved, thereby enabling a very flexible network 
computing environment. 

Virtual machines have been investigated and built by operating system 
developers, language designers, compiler developers, and hardware designers. 
Although each application of virtual machines has its unique characteristics, 
there also are underlying concepts and technologies that are common across 
the spectrum of virtual machines. Because the various virtual machine archi- 
tectures and underlying technologies have been developed by different groups, 
it is especially important to unify this body of knowledge and understand the 
base technologies that cut across the various forms of virtual machines. The 
goals of this book are to describe the family of virtual machines in a unified 
way, to discuss the common underlying technologies that support them, and 
to demonstrate their versatility by exploring their many applications. 

As will become evident, a discussion of virtual machines is also a discussion 
about computer architecture in a broad sense. Virtual machines often bridge 
architectural boundaries, and a major consideration in constructing a virtual 
machine is the fidelity with which a virtual machine implements architected 
interfaces. Therefore, it is useful to define and summarize computer architecture. 

The architecture of a building describes its functionality and appearance to 
users of the building but not the details of its construction, such as the specifics 
of its plumbing system or the manufacturer of the bricks. Analogously, the 
term architecture, when applied to computers, refers to the functionality and 
appearance of a computer system or subsystem but not the details of its imple- 
mentation. The architecture is often formally described through a specification 
of an interface and the logical behavior of resources manipulated via the inter- 
face. The term implementation will be used to describe the actual embodiment 
of an architecture. Any architecture can have several implementations, each 
one having distinct characteristics, e.g., a high-performance implementation 
or a low-power implementation. 

The levels of abstraction in a computer system correspond to implemen- 
tation layers in both hardware and software. There is an architecture for each 



1.1 Computer Architecture �9 7 

of these implementation layers (although the term architecture is not always 
used). Figure 1.4 shows some of the important interfaces and implementation 
layers as found in a typical computer system. In software, for example, there is 
an interface between an application program and standard libraries (interface 
2 in Figure 1.4). Another software interface is at the boundary of the operating 
system (interface 3). The interfaces in hardware include an I/O architecture 
that describes the signals that drive I/O device controllers (interface 11), a 
hardware memory architecture that describes the way addresses are translated 
(interface 9), an interface for the memory access signals that leave the processor 
(interface 12), and another for the signals that reach the DRAM chips in mem- 
ory (interface 14). The OS communicates with I/O devices through a sequence 
of interfaces: 4, 8, 10, 11, and 13. Of these interfaces and architectures, we are 
most interested in those at or near the hardware/software boundary. 

The instruction set architecture (ISA), which marks the division between 
hardware and software, is composed of interfaces 7 and 8 in Figure 1.4. The 
concept of an ISA was first clearly articulated when the IBM 360 family of 
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Figure 1.4 Computer System Architectures. Implementation layers communicate vertically via the shown 
interfaces. This view of architecture is styled after one given by Glenford Myers (1982). 
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mainframe computers was developed in the early 1960s (Amdahl, Blaauw, and 
Brooks 1964). With that project, the importance of software compatibility 
was fully recognized. The IBM 360 series had a number of models that could 
incorporate a wide range of hardware resources, thereby covering a broad 
spectrum of price and performance levels ~ yet they were designed to run 
the same software. To successfully accomplish this, the interface between the 
hardware and software had to be precisely defined and controlled, and the ISA 
serves this purpose. 

There are two parts of an ISA that are important in the definition of virtual 
machines. The first part includes those aspects of the ISA that are visible to 
an application program. This will be referred to as the user ISA. The second 
part includes those aspects visible to supervisor software, such as the operating 
system, which is responsible for managing hardware resources. This is the 
system ISA. Of course, the supervisor software can also employ all the elements 
of the user ISA. In Figure 1.4, interface 7 consists of the user ISA only, and 
interface 8 consists of both the user ISA and the system ISA. 

In this book we will also be concerned with interfaces besides the ISA. The 
application binary interface (ABI) consists of interfaces 3 and 7 in Figure 1.4. 
An important related interface is the application program interface (API), 
which consists of interfaces 2 and 7. 

The application binary interface, which provides a program with access 
to the hardware resources and services available in a system, has two major 
components. The first is the set ofall user instructions (interface 7 in Figure 1.4); 
system instructions are not included in the ABI. At the ABI level, all application 
programs interact with the shared hardware resources indirectly, by invoking 
the operating system via a system call interface (interface 3 in Figure 1.4), 
which is the second component of the ABI. System calls provide a specific 
set of operations that an operating system may perform on behalf of a user 
program (after checking to make sure the user program should be granted its 
request). The system call interface is typically implemented via an instruction 
that transfers control to the operating system in a manner similar to a procedure 
or subroutine call, except the call target address is restricted to a specific address 
in the operating system. Arguments for the system call are typically passed 
through registers and/or a stack held in memory, following specific conventions 
that are part ofthe system call interface. A program binary compiled to a specific 
ABI can run unchanged only on a system with the same ISA and operating 
system. 

The application programming interface is usually defined with respect to a 
high-level language (HLL). A key element of an API is a standard library (or 
libraries) that an application calls to invoke various services available on the 
system, including those provided by the operating system. An API, typically 



1.2 Virtual Machine Basics �9 9 

defined at the source code level, enables applications written to the API to be 
ported easily (via recompilation) to any system that supports the same API. 
The API specifies an abstraction of the details of implementation of services, 
especially those that involve privileged hardware. For example, c] i b is a well- 
known library that supports the UNIX/C programming language. The cl i b 
API provides a memory model consisting of text (for code) and a heap and 
stack (for data). A routine belonging to an API typically contains one or more 
ABI-level operating system calls. Some API library routines are simply wrappers, 
i.e., code that translates directly from the HLL calling convention to the binary 
convention expected by the OS. Other API routines are more complex and may 
include several OS calls. 

To understand what a virtual machine is, we must first discuss what is meant 
by machine, and, as pointed out earlier, the meaning of"machine" is a matter 
of perspective. From the perspective of a process executing a user program, the 
machine consists of a logical memory address space that has been assigned to 
the process, along with user-level registers and instructions that allow the exe- 
cution of code belonging to the process. The I/O part of the machine is visible 
only through the operating system, and the only way the process can inter- 
act with the I/O system is via operating system calls, often through libraries 
that execute as part of the process. Processes are usually transient in nature 
(although not always). They are created, execute for a period of time, perhaps 
spawn other processes along the way, and eventually terminate. To summa- 
rize, the machine, from the prospective of a process, is a combination of the 
operating system and the underlying user-level hardware. The ABI provides 
the interface between the process and the machine (Figure 1.5a). 

From the perspective of the operating system, an entire system is supported 
by the underlying machine. A system is a full execution environment that 
can simultaneously support a number of processes potentially belonging to 
different users. All the processes share a file system and other I/O resources. The 
system environment persists over time (with occasional reboots) as processes 
come and go. The system allocates physical memory and I/O resources to the 
processes and allows the processes to interact with their resources via an OS 
that is part of the system. Hence, the machine, from the perspective of a system, 
is implemented by the underlying hardware alone, and the ISA provides the 
interface between the system and the machine (Figure 1.5b). 

In practical terms, a virtual machine executes software (either an individual 
process or a full system, depending on the type of machine) in the same manner 



1 0  �9 Chapter l~Introduction to Virtual Machines 

Figure 1.5 Machine Interfaces. (a) Application binary interface (ABI); (b) instruction set architecture (ISA) interface. 

as the machine for which the software was developed. The virtual machine is 
implemented as a combination of a real machine and virtualizing software. The 
virtual machine may have resources different from the real machine, either 
in quantity or in type. For example, a virtual machine may have more or 
fewer processors than the real machine, and the processors may execute a 
different instruction set than does the real machine. It is important to note that 
equivalent performance is usually not required as part of virtualization; often 
a virtual machine provides less performance than an equivalent real machine 
running the same software, i.e., software developed for the real machine. 

As characterized by the isomorphism described earlier, the process of vir- 
tualization consists of two parts: (1) the mapping of virtual resources or state, 
e.g., registers, memory, or files, to real resources in the underlying machine 
and (2) the use of real machine instructions and/or system calls to carry out 
the actions specified by virtual machine instructions and/or system calls, e.g., 
emulation of the virtual machine ABI or ISA. 

Just as there is a process perspective and a system perspective of machines, 
there are also process-level and system-level virtual machines. As the name 
suggests, a process virtual machine is capable of supporting an individual 
process. A process virtual machine is illustrated in Figure 1.6. In this figure 
and the figures that follow, compatible interfaces are illustrated graphically as 
"meshing" boundaries. In process VMs, the virtualizing software is placed at 
the ABI interface, on top of the OS/hardware combination. The virtualizing 
software emulates both user-level instructions and operating system calls. 

With regard to terminology (see Figure 1.6), we usually refer to the under- 
lying platform as the host and to the software that runs in the VM environment 
as the guest. The real platform that corresponds to a virtual machine, i.e., the 
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Figure 1.6 A Process Virtual Machine. Virtualizing software translates a set of OS and user-level instructions 
composing one platform to another, forming a process virtual machine capable of executing programs 
developed for a different OS and a different ISA. 

real machine being emulated by the virtual machine, is referred to as the native 

machine. The name given to the virtualizing software depends on the type of 
virtual machine being implemented. In process VMs, virtualizing software is 
often referred to as the runtime,  which is short for "runtime software. ''2 The 
runtime is created to support a guest process and runs on top of an operating 
system. The VM supports the guest process as long as the guest process executes 
and terminates support when the guest process terminates. 

In contrast, a system virtual machine provides a complete system environ- 
ment. This environment can support an operating system along with its poten- 
tially many user processes. It provides a guest operating system with access to 
underlying hardware resources, including networking, I/O, and, on the desk- 
top, a display and graphical user interface. The VM supports the operating 
system as long as the system environment is alive. 

A system virtual machine is illustrated in Figure 1.7; virtualizing software is 
placed between the underlying hardware machine and conventional software. 
In this particular example, virtualizing software emulates the hardware ISA 
so that conventional software "sees" a different ISA than the one supported 
by hardware. In many system VMs the guest and host run the same ISA, 
however. In system VMs, the virtualizing software is often referred to as the 
virtual machine  moni tor  (VMM), a term coined when the VM concept was first 
developed in the late 1960s. 

2. Throughout this book, we will use the single-word form runtime as a noun to describe the 
virtualizing runtime software in a process VM; run time (two words) will be used in the more 
generic sense: the time during which a program is running. 
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Figure 1.8 Examples of Virtual Machine Applications. (a) Emulating one instruction set with another; (b) replicating 
a virtual machine so that multiple operating systems can be supported simultaneously; (c) composing virtual 
machine software to form a more complex, flexible system. 

Virtualizing software can be applied in several ways to connect and adapt 
the major computer subsystems (see Figure 1.8). Emula t ion  adds considerable 
flexibility by permitting "mix and match" cross-platform software portability. 
In this example (Figure 1.8a), one ISA is emulated by another. Virtualizing 
software can enhance emulation with optimizat ion,  by taking implementation- 
specific information into consideration as it performs emulation. Virtualizing 
software can also provide resource replication, for example, by giving a single 
hardware platform the appearance of multiple platforms (Figure 1.8b), each 
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capable of running a complete operating system and/or a set of applications. 
Finally, the virtual machine functions can be composed (Figure 1.8c) to form 
a wide variety of architectures, freed of many of the traditional compatibility 
and resource constraints. 

We are now ready to describe some specific types of virtual machines. 
These span a fairly broad spectrum of applications, and we will discuss them 
according to the two main categories: process VMs and system VMs. Note that 
because the various virtual machines have been developed by different design 
communities, different terms are often used to describe similar concepts and 
features. In fact, it is sometimes the practice to use some term other than virtual 
machine to describe what is in reality a form of virtual machine. 

Process-level VMs provide user applications with a virtual ABI environ- 
ment. In their various implementations, process VMs can provide replication, 
emulation, and optimization. The following subsections describe each of these. 

1.3.1 Multiprogramming 

The first and most common virtual machine is so ubiquitous that we don't 
even think of it as being a virtual machine. The combination of the OS call 
interface and the user instruction set forms the machine that executes a user 
process. Most operating systems can simultaneously support multiple user 
processes through multiprogramming, where each user process is given the 
illusion of having a complete machine to itself. Each process is given its own 
address space and is given access to a file structure. The operating system time- 
shares the hardware and manages underlying resources to make this possible. In 
effect, the operating system provides a replicated process-level virtual machine 
for each of the concurrently executing applications. 

1.3.2 Emulators and Dynamic Binary Translators 

A more challenging problem for process-level virtual machines is to support 
program binaries compiled to a different instruction set than the one exe- 
cuted by the host's hardware, i.e., to emulate one instruction set on hardware 
designed for another. An example emulating process virtual machine is illus- 
trated in Figure 1.9. Application programs are compiled for a source ISA, but 
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Figure 1.9 A Process VM That Emulates Guest Applications. The Digital FX!32 system allows Windows IA-32 
applications to be run on an Alpha Windows platform. 

the hardware implements a different target ISA. As shown in the example, the 
operating system may be the same for both the guest process and the host 
platform, although in other cases the operating systems may differ as well. 
The example in Figure 1.9 illustrates the Digital FXI32 system (Hookway and 
Herdeg 1997). The FX]32 system can run Intel IA-32 application binaries com- 
piled for Windows NT on an Alpha hardware platform also running Windows 
NT. More recent examples are the Aries system (Zheng and Thompson 2000) 
which supports PA-RISC programs on an IPF (Itanium) platform, and the 
Intel IA-32 EL (execution layer) which supports IA-32 programs on an IPF 
platform (Baraz et al. 2003). 

The most straightforward emulation method is interpretation. An inter- 
preter program executing the target ISA fetches, decodes, and emulates the 
execution of individual source instructions. This can be a relatively slow pro- 
cess, requiring tens of native target instructions for each source instruction 
interpreted. 

For better performance, binary translation is typically used. With binary 
translation, blocks of source instructions are converted to target instructions 
that perform equivalent functions. There can be a relatively high overhead 
associated with the translation process, but once a block of instructions is 
translated, the translated instructions can be cached and repeatedly executed 
much faster than they can be interpreted. Because binary translation is the most 
important feature of this type of process virtual machine, they are sometimes 
called dynamic binary translators. 

Interpretation and binary translation have different performance charac- 
teristics. Interpretation has relatively low startup overhead but consumes 
significant time whenever an instruction is emulated. On the other hand, 
binary translation has high initial overhead when performing the translations 
but is fast for each repeated execution. Consequently, some virtual machines 
use a staged emulation strategy combined with profiling, i.e., the collection of 
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statistics regarding the program's behavior. Initially, a block of source instruc- 
tions is interpreted, and profiling is used to determine which instruction 
sequences are frequently executed. Then a frequently executed block may be 
binary translated. Some systems perform additional code optimizations on the 
translated code if profiling shows that it has a very high execution frequency. 
In most emulating virtual machines the stages of interpretation and binary 
translation can both occur over the course of a single program's execution. 
In the case of FX!32, translation occurs incrementally between program runs. 

1.3.3 Same-ISA Binary Optimizers 

Most dynamic binary translators not only translate from source to target code 
but also perform some code optimizations. This leads naturally to virtual 
machines where the instruction sets used by the host and the guest are the 
same, and optimization of a program binary is the primary purpose of the 
virtual machine. Thus, same-lSA dynamic binary optimizers are implemented 
in a manner very similar to emulating virtual machines, including staged opti- 
mization and software caching of optimized code. Same-ISA dynamic binary 
optimizers are most effective for source binaries that are relatively unopti- 
mized to begin with, a situation that is fairly common in practice. A dynamic 
binary optimizer can collect a profile and then use this profile information to 
optimize the binary code on the fly. An example of such a same-ISA dynamic 
binary optimizer is the Dynamo system, originally developed as a research 
project at Hewlett-Packard (Bala, Duesterwald, and Banerjia 2000). 

1.3.4 High-Level Language Virtual Machines: Platform Independence 

For the process VMs described earlier, cross-platform portability is clearly a 
very important objective. For example, the FX!32 system enabled portabil- 
ity of application software compiled for a popular platform (IA-32 PC) to a 
less popular platform (Alpha). However, this approach allows cross-platform 
compatibility only on a case-by-case basis and requires a great deal of program- 
ming effort. For example, if one wanted to run IA-32 binaries on a number of 
hardware platforms currently in use, e.g., SPARC, PowerPC, and MIPS, then 
an FX!32-1ike VM would have to be developed for each of them. The prob- 
lem would be even more difficult if the host platforms run different operating 
systems than the one for which binaries were originally compiled. 

Full cross-platform portability is more easily achieved by taking a step back 
and designing it into an overall software framework. One way of accomplishing 
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this is to design a process-level VM at the same time as an application devel- 
opment environment is being defined. Here, the VM environment does not 
directly correspond to any real platform. Rather, it is designed for ease of 
portability and to match the features of a high-level language (HLL) used for 
application program development. These high-level language VMs (HLL VMs) 
are similar to the process VMs described earlier. However, they are focused on 
minimizing hardware-specific and OS-specific features because these would 
compromise platform independence. 

High-level language VMs first became popular with the Pascal program- 
ming environment (Bowles 1980). In a conventional system, Figure 1.10a, the 
compiler consists of a frontend that performs lexical, syntax, and semantic 
analysis to generate simple intermediate code ~ similar to machine code but 
more abstract. Typically the intermediate code does not contain specific reg- 
ister assignments, for example. Then a code generator takes the intermediate 
code and generates a binary containing machine code for a specific ISA and 
OS. This binary file is distributed and executed on platforms that support the 
given ISA/OS combination. To execute the program on a different platform, 
however, it must be recompiled for that platform. 

In HLL VMs, this model is changed (Figure 1.10b). The steps are similar to 
the conventional ones, but the point at which program distribution takes place 
is at a higher level. As shown in Figure 1.10b, a conventional compiler frontend 
generates abstract machine code, which is very similar to an intermediate form. 
In many HLL VMs, this is a rather generic stack-based ISA. This virtual ISA 
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is in essence the machine code for a virtual machine. The portable virtual ISA 
code is distributed for execution on different platforms. For each platform, 
a VM capable of executing the virtual ISA is implemented. In its simplest form, 
the VM contains an interpreter that takes each instruction, decodes it, and then 
performs the required state transformations (e.g., involving memory and the 
stack). I/O functions are performed via a set of standard library calls that are 
defined as part of the VM. In more sophisticated, higher performance VMs, the 
abstract machine code may be compiled (binary translated) into host machine 
code for direct execution on the host platform. 

An advantage of an HLL VM is that software is easily portable, once the VM 
is implemented on a target platform. While the VM implementation would 
take some effort, it is a much simpler task than developing a compiler for 
each platform and recompiling every application when it is ported. It is also 
simpler than developing a conventional emulating process VM for a typical 
real-world ISA. 

The Sun Microsystems Java VM architecture (Lindholm and Yellin 1999) 
and the Microsoft common language infrastructure (CLI), which is the 
foundation of the .NET framework (Box 2002), are more recent, widely used 
examples of riLL VMs. Platform independence and high security are central to 
both the Java VM and CLI. The ISAs in both systems are based on bytecodes; 
that is, instructions are encoded as a sequence of bytes, where each byte is an 
opcode, a single-byte operand, or part of a multibyte operand. These byte- 
code instruction sets are stack based (to eliminate register requirements) and 
have an abstract data specification and memory model. In fact, the memory 
size is conceptually unbounded, with garbage collection as an assumed part of 
the implementation. Because all hardware platforms are potential targets for 
executing Java- or CLI-based programs, applications are not compiled for a 
specific OS. Rather, a set of standard libraries is provided as part of the overall 
execution environment. 

System virtual machines provide a complete system environment in which 
many processes, possibly belonging to multiple users, can coexist. These VMs 
were first developed during the 1960s and early 1970s, and they were the origin 
of the term virtual machine. By using system VMs, a single host hardware plat- 
form can support multiple guest OS environments simultaneously. At the time 
they were first developed, mainframe computer systems were very large and 
expensive, and computers were almost always shared among a large number of 
users. Different groups of users sometimes wanted different operating systems 
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to be run on the shared hardware, and VMs allowed them to do so. Alter- 
natively, a multiplicity of single-user operating systems allowed a convenient 
way of implementing time-sharing among many users. Over time, as hardware 
became much less expensive and much of it migrated to the desktop, interest 
in these classic system VMs faded. 

Today, however, system VMs are enjoying renewed popularity. This is 
partly due to modern-day variations of the traditional motivations for system 
VMs. The large, expensive mainframe systems of the past are now servers or 
server farms, and these servers may be shared by a number of users or user 
groups. Perhaps the most important feature of today's system VMs is that 
they provide a secure way of partitioning major software systems that run 
concurrently on the same hardware platform. Software running on one guest 
system is isolated from software running on other guest systems. Furthermore, 
if security on one guest system is compromised or if the guest OS suffers 
a failure, the software running on other guest systems is not affected. The 
ability to support different operating systems simultaneously, e.g., Windows 
and Linux (as illustrated in Figure 1.11), is another reason for their appeal, 
although it is probably of secondary importance to most users. 

In system VMs, platform replication is the major feature provided by a 
VMM. The central problem is that of dividing a single set of hardware resour- 
ces among multiple guest operating system environments. The VMM has access 
to and manages all the hardware resources. A guest operating system and 
application programs compiled for that operating system are then managed 
under (hidden) control of the VMM. This is accomplished by constructing 
the system so that when a guest OS performs certain operations, such as a 
privileged instruction that directly involves the shared hardware resources, the 
operation is intercepted by the VMM, checked for correctness, and performed 
by the VMM on behalf of the guest. Guest software is unaware of the "behind- 
the-scenes" work performed by the VMM. 

Figure 1.11 A System VM That Supports Multiple OS Environments on the Same Hardware. 
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Implementations of System Virtual Machines 

From the user perspective, most system VMs provide more or less the same 
functionality. The thing that tends to differentiate them is the way in which 
they are implemented. As discussed earlier, in Section 1.2, there are a number 
of interfaces in a computer system, and this leads to a number of choices for 
locating the system VMM software. Summaries of two of the more important 
implementations follow. 

Figure 1.11 illustrates the classic approach to system VM architecture 
(Popek and Goldberg 1974). The VMM is first placed on bare hardware, and 
virtual machines fit on top. The VMM runs in the most highly privileged 
mode, while all the guests systems run with lesser privileges. Then in a com- 
pletely transparent way, the VMM can intercept and implement all the guest 
OS's actions that interact with hardware resources. In many respects, this sys- 
tem VM architecture is the most efficient, and it provides service to all the 
guest systems in a more or less equivalent way. One disadvantage of this type 
of system, at least for desktop users, is that installation requires wiping an 
existing system clean and starting from scratch, first installing the VMM and 
then installing guest operating systems on top. Another disadvantage is that 
I/O device drivers must be available for installation in the VMM, because it is 
the VMM that interacts directly with I/O devices. 

An alternative system VMM implementation builds virtualizing software 
on top of an existing host operating system ~ resulting in what is called a 
hosted VM. With a hosted VM, the installation process is similar to installing 
a typical application program. Furthermore, virtualizing software can rely on 
the host OS to provide device drivers and other lower-level services; they don't 
have to be provided by the VMM. The disadvantage of this approach is that 
there can be some loss of efficiency because more layers of software become 
involved when OS service is required. The hosted VM approach is taken in the 
VMware implementation (VMware 2000), a modern system VM that runs on 
IA-32 hardware platforms. 

1.4.2 Whole System VMs: Emulation 

In the conventional system VMs described earlier, all the system software (both 
guest and host) and application software use the same ISA as the underlying 
hardware. In some important situations, however, the host and guest systems 
do not have a common ISA. For example, the Apple PowerPC-based systems 
and Windows PCs use different ISAs (and different operating systems), and 
they are the two most popular desktop systems today. As another example, 
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Sun Microsystems servers use a different OS and ISA than the Windows PCs 
that are commonly attached to them as clients. Because software systems are 
so closely tied to hardware systems, this may require purchase of multiple 
platform types, even when unnecessary for any other reason, which complicates 
software support and/or restricts the availability of useful software packages to 
users. 

This situation motivates system VMs, where a complete software system, 
both OS and applications, is supported on a host system that runs a different ISA 
and OS. These are called whole-system VMs because they essentially virtualize 
all software. Because the ISAs are different, both application and OS code 
require emulation, e.g., via binary translation. For whole-system VMs, the most 
common implementation method is to place the VMM and guest software on 
top of a conventional host OS running on the hardware. 

Figure 1.12 illustrates a whole-system VM built on top of a conventional 
system with its own OS and application programs. An example of this type of 
VM is Virtual PC (Traut 1997), which enables a Windows system to run on 
a Macintosh platform. The VM software executes as an application program 
supported by the host OS and uses no system ISA operations. It is as if the 
VM software, the guest OS, and guest application(s) are one very large appli- 
cation implemented on the host OS and hardware. Meanwhile the host OS can 
also continue to run applications compiled for the native ISA; this feature is 
illustrated in the right-hand section of the drawing. 

To implement a system VM of this type, the VM software must emulate 
the entire hardware environment. It must control the emulation of all the 

Figure 1.12 A Whole-System VM That Supports a Guest OS and Applications, in Addition to Host 
Applications. 
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instructions, and it must convert the guest system ISA operations to equivalent 
OS calls made to the host OS. Even if binary translation is used, it is tightly 
constrained because translated code often cannot take advantage of underlying 
system ISA features such as virtual memory management and trap handling. 
In addition, problems can arise if the properties of hardware resources are 
significantly different in the host and the guest. Solving these mismatches is the 
major challenge of implementing whole-system VMs. 

1.4.3 Codesigned Virtual Machines: Hardware Optimization 

In all the VM models discussed thus far, the goal has been functionality and 
portability either to support multiple (possibly different) operating sys- 
tems on the same host platform or to support different ISAs and operating 
systems on the same platform. In practice, these virtual machines are imple- 
mented on hardware already developed for some standard ISA and for which 
native (host) applications, libraries, and operating systems already exist. By 
and large, improved performance (i.e., going beyond native platform perfor- 
mance) has not been a g o a l -  in fact minimizing performance losses is often 
the performance goal. 

Codesigned VMs have a different objective and take a different approach. 
These VMs are designed to enable innovative ISAs and/or hardware imple- 
mentations for improved performance, power efficiency, or both. The host's 
ISA may be completely new, or it may be based on an existing ISA with some 
new instructions added and/or some instructions deleted. In a codesigned VM, 
there are no native ISA applications. It is as if the VM software is, in fact, part 
of the hardware implementation. 

In some respects, codesigned virtual machines are similar to a purely 
hardware virtualization approach used in many high-performance superscalar 
microprocessors. In these designs, hardware renames architected registers to 
a larger number of physical registers, and complex instructions are decom- 
posed into simpler, RISC-like instructions (Hennessy and Patterson 2002). 
In this book, however, we focus on software-implemented codesigned virtual 
machines; binary translation is over a larger scope and can be more flexible 
because it is done in software. 

Because the goal is to provide a VM platform that looks exactly like a 
native hardware platform, the software portion of a codesigned VM uses a 
region of memory that is not visible to any application or system software. 
This concealed memory is carved out of real memory at boot time and the 
conventional guest software is never informed of its existence. VMM code 
that resides in the concealed memory can take control of the hardware at 
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practically any time and perform a number of different functions. In its more 
general form, the VM software includes a binary translator that converts guest 
instructions into native ISA instructions and caches the translated instructions 
in a region of concealed memory. Hence, the guest ISA never directly executes 
on the hardware. Of course, interpretation can also be used to supplement 
binary translation, depending on performance tradeoffs. To provide improved 
performance, translation is coupled with code optimization. Optimization of 
frequently executed code sequences is performed at translation time, and/or it 
is performed as an ongoing process while the program runs. 

Perhaps the best-known example of a codesigned VM is the Transmeta 
Crusoe (Halfhill 2000). In this processor, the underlying hardware uses a 
native VLIW instruction set, and the guest ISA is the Intel IA-32. In their 
implementation, the Transmeta designers focused on the power-saving advan- 
tages of simpler VLIW hardware. An important computer system that relies on 
many codesigned VM techniques is the IBM AS/400 system (Soltis 1996). The 
AS/400 differs from the other codesigned VMs, because the primary design 
objective is support for an object-oriented instruction set that redefines the 
hardware/software interface in a novel fashion. The current AS/400 imple- 
mentations are based on an extended PowerPC ISA, although earlier versions 
used a considerably different, proprietary CISC ISA. 

We have just described a rather broad array of VMs, with different goals and 
implementations. To put them in perspective and organize the common imple- 
mentation issues, we introduce a taxonomy illustrated in Figure 1.13. First, 
VMs are divided into the two major types: process VMs and system VMs. 
In the first type, the VM supports an ABI ~ user instructions plus system 
calls; in the second, the VM supports a complete ISA ~ both user and system 
instructions. Finer divisions in the taxonomy are based on whether the guest 
and host use the same ISA. 

On the left-hand side of Figure 1.13 are process VMs. These include VMs 
where the host and guest instruction sets are the same. In the figure, we identify 
two examples. The first is multiprogrammed systems, as already supported on 
most of today's systems. The second is same-ISA dynamic binary optimizers, 
which transform guest instructions only by optimizing them and then execute 
them natively. 

For process VMs where the guest and host ISAs are different, we also give 
two examples. These are dynamic translators and HLL VMs. HLL VMs are 
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Figure 1.13 
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connected to the VM taxonomy via a "dotted line" because their process-level 
interface is at a different, higher level than the other process VMs. 

On the right-hand side of the figure are system VMs. If the guest and 
host use the same ISA, examples include "classic" system VMs and hosted 
VMs. In these VMs, the objective is providing replicated, isolated system 
environments. The primary difference between classic and hosted VMs is the 
VMM implementation rather than the function provided to the user. 

Examples of system VMs where the guest and host ISAs are different include 
whole-system VMs and codesigned VMs. With whole-system VMs, perfor- 
mance is often of secondary importance compared to accurate functionality, 
while with codesigned VMs, performance (and power efficiency) are often 
major goals. In the figure, codesigned VMs are connected using dotted lines 
because their interface is typically at a lower level than other system VMs. 

1o6 Summary: The Versatility of Virtual Machines 

A good way to summarize this chapter is with an example of a realistic system 
that could conceivably be in use today (Figure 1.14). The example clearly 
illustrates the versatility of virtual machine technologies. A computer user 
might have a Java application running on a laptop PC. This is nothing special; 
it is done via a Java virtual machine developed for IA-32/Linux. However, the 
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Figure 1.14 

Java application 

I JVM 

Linux IA-32 

~ VMwaro 

Windows IA-32 

I Code Morphin 9 

Crusoe VLIW 

Three Levels of VMs. A Java application running on a Java VM, running on a system VM, 
running on a codesigned VM. 

user happens to have Linux installed as an OS VM via VMware executing on 
a Windows PC. And, as it happens, the IA-32 hardware is in fact a Transmeta 
Crusoe, a codesigned VM implementing a VLIW ISA with binary translation 
(what Transmeta calls code morphing) to support the IA-32 ISA. By using 
the many VM technologies, a Java bytecode program is actually executing as 
native VLIW. 

The book can be divided into two major sections, along the lines of the VM 
taxonomy just described. Chapters 2 through 6 deal primarily with process 
virtual machines, and Chapters 7 through 9 deal primarily with system virtual 
machines. 

It should now be evident that instruction set emulation is an important 
enabling technology for many virtual machine implementations. Because of 
its importance, we begin, in Chapter 2, with a detailed discussion of emula- 
tion. Emulation encompasses both interpretation, where guest instructions are 
emulated one by one in a simple fashion, and binary translation, where blocks 
of guest instructions are translated to the ISA of the host platform and saved 
for multiple executions. In many of the VM implementations, the need to use 
emulation is obvious (i.e., the guest and host ISAs are different), but, as we 
will see, the same techniques are important in other VMs, for nonobvious rea- 
sons (even in cases where the guest and host ISAs are the same). A case study 
is the Shade simulation system, which incorporates a number of emulation 
techniques. 
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Chapter 3 uses emulation as a starting point and describes the overall archi- 
tecture and implementation of process VMs. Included are the management 
of cached binary translations and the handling of complicating issues such as 
precise traps and self-modifying code. The DEC/Compaq FX!32 system is used 
as a case study. The FX!32 system supports Windows/IA-32 guest binaries on 
a Windows/Alpha platform. 

Performance is almost always an issue in VM implementations because 
performance is often lost during the emulation process. This loss can be miti- 
gated by optimizing translated binaries, and Chapter 4 deals with ways of 
dynamically optimizing translated code. First, ways of increasing the size of 
translated code blocks are discussed, and then specific code optimizations 
are covered. Code optimizations include reordering instructions, to improve 
pipeline efficiency, for example, and a number of classical compiler optimiza- 
tions, adapted to dynamically translated binary code. A special case occurs 
when the source ISA and target ISA are the same and optimization is the pri- 
mary function provided by the VM. Consequently, Chapter 4 concludes with a 
discussion of special-case features of these same-ISA dynamic binary optimizers 
and includes the HP Dynamo system as a case study. 

Chapters 5 and 6 discuss high-level language virtual machines. These vir- 
tual machines are designed to enable platform independence. To give some 
historical perspective, Chapter 5 begins with a description of Pascal P-code. 
Because modern HLL VMs are intended to support network-based computing 
and object-oriented programming, the features important for supporting these 
aspects are emphasized. The Java virtual machine architecture is described in 
some detail. Also included is a shorter discussion of the Microsoft common 
language infrastructure (CLI); where the goals and applications are somewhat 
broader than with Java, and the discussion is focused on those features that 
provide the added breadth. Chapter 6 describes the implementation of HLL 
VMs, beginning with basic implementation approaches and techniques. High- 
performance HLL VM implementations are then described, and the IBM Jikes 
research virtual machine is used as a case study. 

Codesigned VMs, the first system-level virtual machines to be discussed, 
are the topic of Chapter 7. The codesigned VM paradigm includes special 
hardware support to enhance emulation performance. Consequently, much 
of the chapter focuses on hardware-based performance enhancements. The 
chapter includes case studies of the Transmeta Crusoe and IBM AS/400 
system. 

Chapter 8 covers conventional system VMs ~ that is, VMs that support 
multiple operating systems simultaneously, primarily relying on software 
techniques. Basic mechanisms for implementing system VMs and for enhanc- 
ing their performance are discussed. Some ISAs are easier to virtualize than 



26 �9 Chapter l~Introduct ion to Virtual Machines 

others, so features of instruction sets that make them more efficiently virtual- 
ized are discussed. The IBM 360-390+ series of VMs are described and used 
as a case study throughout the chapter. The more recently developed VMware 
hosted virtual machine, which is targeted at IA-32 platforms, is an important 
second case study. 

Applying virtualization to multiprocessor systems is the topic of Chapter 9. 
Of major interest are techniques that allow the partitioning of resources in 
large shared-memory multiprocessors to form a number of smaller, virtual 
multiprocessors. These techniques can be implemented in a number of ways, 
ranging from those relying on microcode support to purely software solutions. 
Then ISA emulation in a multiprocessor context is discussed. Although most 
emulation techniques are the same as with uniprocessors, memory-ordering 
(consistency) constraints pose some new problems. In this chapter IBM logical 
partitioning (LPAR) and the Stanford Disco research VM are used as case 
studies. 

Finally, Chapter 10, the concluding chapter, looks toward the future and 
considers a number of evolving VM applications that hold promise. These 
include support for system security, grid computing, and virtual system 
portability. 

The book also includes an Appendix that reviews the important properties 
of real machines. The focus is on those aspects of architecture and implemen- 
tation that are important when virtualization is performed. For some readers 
this will be familiar material, but other readers may benefit from browsing 
through the Appendix before proceeding with the book. The Appendix con- 
cludes with a brief overview of the IA-32 and PowerPC ISAs, on which many 
of the examples are based. 



M any virtual machine implementations are based on emulation. We 
define emulation as the process of implementing the interface and 

functionality of one system or subsystem on a system or subsystem having 
a different interface and functionality. For example, a VT100 terminal emu- 
lator running inside a window on a PC presents to the user an interface and 
functionality that is nearly identical to that of a real VT100 terminal. In fact, 
taken in this general sense, one could argue that virtualization itself is simply 
a form of emulation. In this chapter, however, we give emulation a narrower 
meaning by applying it specifically to instruction sets. 

Instruction set emulation is a key aspect ofmanyvirtual machine implemen- 
tations because the virtual machine must support a program binary compiled 
for an instruction set that is different from the one implemented by the host 
processor(s). For example, Intel IA-32 program binaries are more widely 
available than binaries for any other instruction set. Consequently, a user 
may wish to use a virtual machine to execute an IA-32 program binary on 
some other platform, for example, an Apple Macintosh, which incorporates a 
PowerPC processor. For high-level virtual machines, binary classes (using the 
Java terminology) incorporate a stack-based, bytecode instruction set that can 
be emulated on any of a number of different host platforms. 

In terms of instruction sets, emulation allows a machine implementing 
one instruction set, the target instruction set, to reproduce the behavior of 
software compiled to another instruction set, the source instruction set. This is 
illustrated in Figure 2.1. Note that we use the terms source and target specifically 
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Figure 2.1 Terms Describing the Emulation Process. Emulation allows a guest to support a source instruction 
set while running on a host platform executing a target instruction set. 

for instruction set emulation, and we use the terms gues tand  h o s t w h e n  referring 
to complete virtual machine environments and supporting platforms (which 
often involve more than just ISAs). The reader should also be aware that the 
literature often does not use consistent terminology when describing guest/host 
and source/target relationships. 

For many virtual machine applications, it is important that the emulation 
of the instruction set be performed efficiently. The lower the overhead of emu- 
lation, the more attractive the virtual machine will be. This chapter will focus 
on techniques for emulation of conventional instruction sets that already have 
hardware implementations rather than those designed specifically for virtual 
machine implementation, such as the lava bytecode instruction set. The latter 
virtual instruction sets can be implemented with similar emulation techniques as 
conventional instruction sets, but they also have special properties and there- 
fore can take advantage of other emulation techniques. High-level language 
VM-specific instruction sets will be discussed in Chapter 5. 

A complete ISA consists of many parts, including the register set and 
memory architecture, the instructions, and the trap and interrupt architecture. 
A virtual machine implementation is usually concerned with all aspects of 
ISA emulation. In this chapter, however, we focus primarily on emulating 
the operation of user-level instructions in the absence of exceptions (traps and 
interrupts). The emulation of the memory addressing architecture, traps, inter- 
rupts, and other features are discussed in this chapter only as is necessary to 
understand instruction emulation, in Chapters 3 and 4, we extend the discus- 
sion to emulation of memory architecture, traps, and interrupts in the context 
of process virtual machines. In later chapters (primarily Chapters 7 and 8) we 
discuss emulation of system instructions and other ISA issues that are specific 
to system virtual machines. 

To some degree, instruction emulation techniques can be applied to every 
type of VM we discuss in this book. Although we are interested primarily in the 
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case where the source and target instruction sets are different, there are some 
virtual machine applications where the instruction sets are the same. In these 
situations, emulation may not be performed, strictly speaking, but the very 
same techniques are used for other purposes. One such application is same-ISA 
dynamic binary optimization, where a program binary is optimized at run time 
on the same platform for which it was originally compiled. Another example 
is in system VMs where the VMM must control and manage the execution 
of certain privileged guest OS instructions, and emulation-like techniques are 
used for this purpose. 

Instruction set emulation can be carried out using a variety of methods 
that require different amounts of computing resources and offer different 
performance and portability characteristics. At one end of the spectrum is 
the straightforward technique of interpretation, while on the other is binary 
translation. Interpretation involves a cycle of fetching a source instruction, 
analyzing it, performing the required operation, and then fetching the next 
source instruction ~ all in software. Binary translation, on the other hand, 
attempts to amortize the fetch and analysis costs by translating a block of 
source instructions to a block of target instructions and saving the translated 
code for repeated use. In contrast to interpretation, binary translation has a 
bigger initial translation cost but a smaller execution cost. The choice of one or 
the other depends on the number of times a block of source code is expected 
to be executed by the guest software. Predictably, there are techniques that lie 
in between these extremes. For example, threaded interpretation eliminates the 
interpreter loop corresponding to the cycle mentioned earlier, and efficiency 
can be increased even further by predecoding the source instructions into a 
more efficiently interpretable intermediate form. 

............ Bas ic  I n t e r p r e t a t i o n  

Interpreters have a long and rich history. Some programming languages, e.g., 
the functional language LISP, rely on an interpreted implementation. Perl is a 
widely used language that is commonly implemented through interpretation. 
The FORTH language is probably better known for its "threaded code" inter- 
pretation model than for any other feature. A good reference is Debaere and 
Van Campenhout (1990). In this chapter, however, we are more interested in 
applying interpretation techniques to program binaries (machine code) rather 
than high-level languages. 

In our narrower context, an interpreter program emulates and operates 
on the complete architected state of a machine implementing the source ISA, 
including all architected registers and main memory (Figure 2.2). The image 
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Interpreter Overview. An interpreter manages the complete architected state of a machine 
implementing the source ISA. 

of the guest memory, including both program code and program data, is 
kept in a region of memory maintained by the interpreter. The interpreter's 
memory also holds a table we call the context block, which contains the various 
components of the source's architected state, such as general-purpose registers, 
the program counter, condition codes, and miscellaneous control registers. 

A simple interpreter operates by stepping through the source program, 
instruction by instruction, reading and modifying the source state according 
to the instruction. Such an interpreter is often referred to as a decode-and- 
dispatch interpreter, because it is structured around a central loop that decodes 
an instruction and then dispatches it to an interpretation routine based on the 
type of instruction. The structure of such an interpreter is shown in Figure 2.3 
for the PowerPC source ISA. 

The main interpreter loop is depicted at the top of Figure 2.3, and rou- 
tines for interpreting the Load Word and Zero and ALUinstructions are shown 
below the main loop. The Load Word and Zero instruction loads a 32-bit 
word into a 64-bit register and zeroes the upper 32-bits of the register; it is 
the basic PowerPC load word instruction. Note that in this example routine 
(and others to follow), for brevity we have omitted any checks for memory 
addressing errors; these would be included in most VMs. Sections 3.3 and 3.4 
describe emulation of the memory-addressing architecture more completely. 
The ALU"instruction" is actually a stand-in for a number of PowerPC instruc- 
tions that have the same primary opcode but are distinguished by different 
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w h i l e  ( ! h a l t  && ! i n t e r r u p t )  { 
i n s t  = code [PC] ; 
opcode = extract( inst,31,6); 
s w i t c h  ( o p c o d e )  { 

case LoadWordAndZero :  LoadWordAndZero(inst) ; 
case ALU: ALU(inst); 
case B ranch :  Branch(inst); 

�9 , ,} 

Figure 2.3 

Instruction function l i s t  

LoadWo rdAndZe ro ( i n s t )  { 
RT = extract(inst,25,5) ; 
RA = extract( inst,20,5); 
d i s p l a c e m e n t  = extract(inst,15,16); 
i f  (RA == O) s o u r c e  = O; 
e l s e  s o u r c e  = r e g s [ R A ] ;  
a d d r e s s  = s o u r c e  + d i s p l a c e m e n t ;  
r e g s [ R T ]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
PC = PC + 4; 

A L U ( i n s t ) {  
RT = extract( inst,25,5); 
RA = extract(inst,20,5) ; 
RB = extract( inst,15,5); 
s o u r c e 1  = r e g s [ R A ] ;  
s o u r c e 2  = r e g s [ R B ] ;  
e x t e n d e d _ o p c o d e  = extract(i n s t ,  1 0 , 1 0 )  ; 
s w i t c h  ( e x t e n d e d _ o p c o d e )  { 

case Add: Add(inst); 
case A d d C a r r y i n g :  AddCarrying(inst); 
case A d d E x t e n d e d :  AddExtended(inst); 

�9 ,} 
PC = PC + 4; 

Code for Interpreting the PowerPC Instruction Set Architecture. A decode-and-dispatch loop uses 
a switch statement to call a number of routines that emulate individual instructions. The extract(inst, 
i, j) function extracts a bit field of length j from inst, beginning at bit i. 

extended opcodes. For instructions of this type, two levels of decoding (via 
switch statements) are used. The decode-and-dispatch loop is illustrated here 
in a high-level language, but it is easy to see how the same routines could be 
written in assembly language for higher performance. 

In Figure 2.3, the architected source program counter is held in a variable 
called PC. This variable is used as an index into an array that holds the source 
binary image. The word addressed by this index is the source instruction that 
needs to be interpreted. The opcode field of the instruction, represented by 
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the 6-bit field starting at bit 31,1 is extracted using shift and mask operations 
contained in the ex t r ac t  function. The opcode field is used in a switch state- 
ment to determine a routine for interpreting the specific instruction. Register 
designator fields and immediate data in the instruction are decoded simi- 
larly using the ex t r ac t  function. The register designator fields are used as 
indices into the context block to determine the actual source operand values. 
The interpreter routine then emulates the operation specified by the source 
instruction. Unless the instruction itself modifies the program counter, as 
in a branch, the program counter must be explicitly incremented to point 
to the next sequential instruction before the routine returns back to the 
decode-dispatch loop of the interpreter. 

The example of Figure 2.3 shows that, while the process of interpretation 
is quite straightforward, the performance cost of interpretation can be quite 
high. Even if the interpreter code were written directly in assembly language, 
interpreting a single instruction like the Load Word and Zero instruction could 
involve the execution of tens of instructions in the target ISA. 

While simple to write and understand, a decode-and-dispatch interpreter can 
be quite slow. In this and subsequent sections, we will identify techniques to 
reduce or eliminate some of its inefficiencies. We begin by looking at threaded 
interpretation (Klint 1981). 

The central dispatch loop of a decode-and-dispatch interpreter contains 
a number of branch instructions, both direct and indirect. Depending on 
the hardware implementation, these branches tend to reduce performance, 
particularly if they are difficult to predict (Ertl and Gregg 2001, 2003). Besides 
the test for a halt or an interrupt at the top ofthe loop, there is a register indirect 
branch for the switch statement, a branch to the interpreter routine, a second 
register indirect branch to return from the interpreter routine, and, finally, 
a branch that terminates the loop. By appending a portion of the dispatch 
code to the end of each of the instruction interpretation routines, as shown in 
Figure 2.4, it is possible to remove three of the branches just listed. A remaining 
branch is register indirect and replaces the switch statement branch found in 
the central dispatch loop. That is, in order to interpret the next instruction it is 

1. PowerPC actually numbers the most significant bit (msb) 0; we use the convention that the 
msb is 31. 
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Figure 2.4 

Instruct ion function l i s t  

LoadWordAndZero : 
RT = extract( inst,25,5) ; 
RA = extract( inst,20,5) ; 
d i s p l a c e m e n t  = extract( inst,15,16); 
i f  (RA == O) s o u r c e  = O; 
e l s e  s o u r c e  = r e g s [ R A ] ;  
a d d r e s s  = s o u r c e  + d i s p l a c e m e n t ;  
r e g s [ R T ]  = ( d a t a ( a d d r e s s ) < <  32) >> 32; 
PC = PC + 4; 
I f  ( h a l t  I I  i n t e r r u p t )  g o t o  e x i t ;  
i n s t  = code [PC] ; 
opcode = extract( inst,31,6);  
e x t e n d e d _ o p c o d e  = extract( i  n s t ,  1 0 , 1 0 )  ; 
r o u t i n e  = d i s p a t c h  [ o p c o d e ,  e x t e n d e d _ o p c o d e ]  ; 
g o t o  * r o u t i n e ;  

Add" 
RT = extract( inst,25,5);  
RA = extract( inst,20,5);  
RB = extract( inst,15,5);  
s o u r c e 1  = r e g s [ R A ] ;  
s o u r c e 2  = r e g s [ R B ] ;  
sum = s o u r c e 1  + s o u r c e 2 ;  
r e g s [ R T ]  = sum; 
PC = PC + 4; 
I f  ( h a l t  i l i n t e r r u p t )  g o t o  e x i t ;  
i n s t  = code [PC] ; 
opcode = extract( inst,31,6);  
e x t e n d e d _ o p c o d e  = extract( i  n s t ,  1 0 , 1 0 )  ; 
r o u t i n e  = d i s p a t c h  [ o p c o d e ,  e x t e n d e d _ o p c o d e ]  ; 
g o t o  * r o u t i n e ;  

Two Threaded Interpreter Routines for PowerPC Code. With threaded interpretation, the central 
dispatch loop is no longer needed. 

necessary to load the opcode of the next instruction, look up the address of the 
relevant interpreter routine using the dispatch table, and jump to the routine. 

Figure 2.5 illustrates the differences in data and control flow between 
the decode-and-dispatch method and the threaded interpreter technique just 
described. Figure 2.5a shows native execution on the source ISA, Figure 2.5b 
shows the decode-and-dispatch method, and Figure 2.5c illustrates threaded 
interpretation. The centralized nature of the dispatch loop is evident from 
Figure 2.5b. Control flow continually exits from, and returns to, the central 
dispatch loop. On the other hand, with threaded interpretation (Figure 2.5c) 
the actions of the dispatch loop in fetching and decoding the next instruction 
are replicated in each of the interpreter routines. The interpreter routines are 
not subroutines in the usual sense; they are simply pieces of code that are 
"threaded" together. 
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Figure 2.5 Interpretation Methods. Control flow is indicated via solid arrows and data accesses with dotted 
arrows. The data accesses are used by the interpreter to read individual source instructions. 
(a) Native execution; (b) decode-and-dispatch interpretation; (c) threaded interpretation. 

A key property of threaded interpretation, as just described, is that dispatch 
occurs indirectly through a table. Among the advantages of this indirection is 
that the interpretation routines can be modified and relocated independently. 
Because the jump through the dispatch table is indirect, this method is called 
indirect  threaded interpretation (Dewar 1975). 

2~ Predecoding and Direct Threaded Interpretation 

Although the centralized dispatch loop has been eliminated in the indirect 
threaded interpreter, there remains the overhead created by the centralized 
dispatch table. Looking up an interpreter routine in this table still requires a 
memory access and a register indirect branch. It would be desirable, for even 
better efficiency, to eliminate the access to the centralized table. 

A further observation is that an interpreter routine is invoked every time an 
instruction is encountered. Thus, when the same source instruction is inter- 
preted multiple times, the process of examining the instruction and extracting 
its various fields must be repeated for each dynamic instance of the instruc- 
tion. For example, as shown in Figure 2.3, extracting instruction fields takes 
several interpreter instructions for a Load  W o r d  a n d  Zero instruction. It would 
appear to be more efficient to perform these repeated operations just once, 
save away the extracted information in an intermediate form, and then reuse 
it each time the instruction is emulated. This process, called predecoding,  is 
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discussed in the following subsections. It will be shown that predecoding 
enables a more efficient threaded interpretation technique, direct threaded 
interpretation (Bell 1973; Kogge 1982). 

2.3.1 Basic Predecoding 

Predecoding involves parsing an instruction and putting it in a form that sim- 
plifies interpretation. In particular, predecoding extracts pieces of information 
and places them into easily accessible fields (Magnusson and Samuelsson 1994; 
Larus 1991). For example, in the PowerPC ISA, all the basic ALU instructions, 
such as and, or, add, and subt rac t ,  are specified using a combination of the 
opcode bits and extended opcode bits. They all have the same primary opcode 
(31) and are distinguished by the extended opcode bits that appear at the low- 
order end of the instruction word, far away from the opcode. Predecoding can 
combine this information into a single operation code. Also, register specifiers 
can be extracted from the source binary and placed into byte-aligned fields so 
that they may be accessed directly with byte load instructions. 

Basic predecoding ofthe PowerPC ISA is illustrated in Figure 2.6. Figure 2.6a 
contains a small PowerPC code sequence. This sequence loads a data item from 
memory and adds it to a register, accumulating a sum. The sum is then stored 

lwz r l ,  8 ( r2)  ; load word and zero 
add r3, r3, r l  ; r3 = r3 + r l  
stw r3, O(r4) ; s to re  word 

(a) 

Figure 2.6 

07 
 121 o8 

( load word and zero) 

08 (add) 
3 1 1 1  03 

37 
3141 oo 

( s to re  word) 

(b) 

Predecoded PowerPC Instructions. The extended opcode and opcode of the add instruction are 
merged into a single predecoded opcode. (a) PowerPC source code. (b) PowerPC program in 
predecoded intermediate form. 
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back to memory. Figure 2.6b is the same code, in a predecoded intermediate 
form. This predecoded format uses a single word to encode the operation, 
found by combining the opcode and function codes as discussed earlier. 
Consequently, these codes need not be the same as the source ISA opcodes, 
and in the example given they are not. A second predecode word is used for 
holding the various instruction fields, in a sparse, byte-aligned format. When 
immediate or offset data are given, a 16-bit field is available. Overall, this 
yields an intermediate instruction format that is less densely encoded than the 
original source instructions but more easily accessed by an interpreter. 

The Load Word and Zero interpreter routine operating on the predecoded 
intermediate code of Figure 2.6 is given in Figure 2.7. Here, we predecode into 
an array ofi n s t  r u c t i  on structs, which is adequate for the example instructions 
but would be more elaborate for the full PowerPC ISA. In this example, the 
interpreter routines for the predecoded intermediate form are slightly simpler 
than the corresponding routines given earlier in Figure 2.3, and the benefits 
of predecoding for the PowerPC ISA appear to be relatively small. However, 
for CISC ISAs, with their many varied formats, the benefits can be greater. In 
addition, predecoding enables an additional performance optimization, direct 
threading, to be described in the next subsection. 

Figure 2.7 

s t r u c t  i n s t r u c t i o n  { 
uns igned long  op; 
uns igned char  des t ;  
uns igned char  s r c l ;  
uns igned i n t  s r c2 ;  
} code [CODE_SIZE] 

Load Word and Zero �9 
RT = code [TPC]. des t  ; 
RA = code [TPC]. s r c l ;  
di  spl  acement = code [TPC], src2 ; 
i f  (RA == 0) source = 0; 
e l s e  source = regs[RA]  ; 
address = source + d i s p l a c e m e n t ;  
regs [RT]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
SPC = SPC + 4; 
TPC = TPC + 1; 
I f  ( h a l t  II i n t e r r u p t )  go to  e x i t ;  
opcode = code [TPC]. op; 
r o u t i n e  = d i s p a t c h  [opcode]  ; 
go to  * r o u t i n e ;  

Threaded Interpreter Code for PowerPC Load Word And Zero Instruction After Predecoding. 
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Because the intermediate code exists separately from the original source 
binary, a separate target program counter (TPC) is added for sequencing 
through the intermediate code. However, the source ISA program counter 
(SPC) is also maintained. The SPC keeps the correct architected source state, 
and the TPC is used for actually fetching the predecoded instructions. In gen- 
eral, with CISC variable-length instructions, the TPC and SPC values at any 
given time may bear no clear relationship, so it is necessary to maintain them 
both. With fixed-length RISC instructions, however, the relationship can be 
relatively easy to calculate, provided the intermediate form is also of fixed 
length. 

2.3.2 Direct Threaded Interpretation 

Although it has advantages for portability, the indirection caused by the dis- 
patch table also has a performance cost: A memory lookup is required whenever 
the table is accessed. To get rid of the level of indirection caused by the dispatch 
table lookup, the instruction codes contained in the intermediate code can be 
replaced with the actual addresses of the interpreter routines (Bell 1973). This 
is illustrated in Figure 2.8. 

Interpreter code for direct threading is given in Figure 2.9. This code is 
very similar to the indirect threaded code, except the dispatch table lookup is 
removed. The address of the interpreter routine is loaded from a field in the 
intermediate code, and a register indirect jump goes directly to the routine. 
Although fast, this causes the intermediate form to become dependent on the 
exact locations of the interpreter routines and consequently limits portability. 
If the interpreter code is ported to a different target machine, it must be regen- 
erated for the target machine that executes it. However, there are programming 
techniques and compiler features that can mitigate this problem to some extent. 
For example, the gcc compiler has a unary operator (&&) that takes the address 

Figure 2.8 

I 001048d0 
1 ] 2  I 08 

00104800 
3 1 1 1  03 

I 00104910 I 
3 _l_ 4 I _ 0 o _  _l 

(load word and zero) 

(add) 

(store word) 

Intermediate Form for Direct Threaded Interpretation. The opcode in the intermediate form is 
replaced with the address of the interpreter routine. 
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Figure 2.9 

Load Word and Zero :  
RT = code [TPC].  d e s t  ; 
RA = code [TPC].  s r c l ;  
d i s p l a c e m e n t  = code[TPC] . s r c 2 ;  
i f  (RA == 0) sou rce  = 0; 
e l s e  sou rce  = regs [RA]  ; 
add ress  = sou rce  + d i s p l a c e m e n t ;  
r egs [RT ]  = ( d a t a [ a d d r e s s ] < <  32) >> 32; 
SPC = SPC + 4; 
TPC = TPC + 1; 
I f  ( h a l t  I I i n t e r r u p t )  go to  e x i t ;  
r o u t i  ne = code [TPC].  op; 
go to  * r o u t i n e ;  

Example of Direct Threaded Interpreter Code. 

of a label. This operator can then be used to generate portable direct threaded 
code by finding the addresses of the labels that begin each of the interpreter 
routines and placing them in the predecoded instructions. The interpreter 
can also be made relocatable by replacing the absolute routine addresses with 
relative addresses (with respect to some routine base address). 

Thus far, when describing basic interpretation techniques, it has been useful 
to center the discussion on fairly simple instruction sets. A RISC ISA, the 
PowerPC, was used in our examples. Similarly, virtual instruction sets, such 
as Pascal P-code and Java bytecodes ~ to be discussed in Chapter 5 ~ are 
designed specifically for emulation and can be interpreted using the techniques 
described above in a straightforward manner. In practice, however, one of the 
most commonly emulated instructions sets is not a RISC or a simple virtual 
ISA; rather it is a CISC ~ the Intel IA-32. In this section we consider the 
additional aspects (and complexities) of interpretation that are brought about 
by a CISC ISA, using the IA-32 as the example. 

One of the hallmarks of a modern RISC ISA such as the PowerPC is the 
regular instruction formats. That is, all instructions have the same length, typ- 
ically 32 bits, and the instruction formats are fairly regular, for example, the 
register specifiers usually appear in the same bit positions across instruction 
formats. It is this regularity that makes many of the steps of interpretation 
straightforward. For example, the interpreter can extract the opcode and then 
immediately dispatch to the indicated instruction interpreter routine. Simi- 
larly, each of the instruction interpretation routines can extract operands and 
complete the emulation process simply. 
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Many CISC instruction sets, on the other hand, have a wide variety of for- 
mats, variable instruction lengths, and even variable field lengths. In some ISAs 
the variability in instruction formats was intended to increase code density and 
"orthogonality" ofthe instruction set. The VAX ISA is a good example (Brunner 
1991); in the VAX, every operand can be specified with any ofthe many address- 
ing modes. In other ISAs, the variability reflects the evolution of the instruction 
set over time, where a number of extensions and new features have been added, 
while maintaining compatibility with older versions. The IA-32 is a good exam- 
ple ofthis evolutionary process. The IA-32 started as an instruction set for 16-bit 
microcontroller chips with physical addressing and dense instruction encod- 
ings and eventually evolved into a high-performance, 32-bit general-purpose 
processor supporting virtual memory. This evolutionary process continues, 
and it has recently been further extended to 64 bits. 

2.4.1 Interpretation of the IA-32 ISA 

Figure 2.10 illustrates the general form of an IA-32 instruction. It begins with 
from zero to four prefix bytes. These indicate if there is repetition for string 
instructions and/or if there are overrides for addressing segments, address 
sizes, and operand sizes. Then after the prefix byte(s) (if any), there is an 
opcode byte, which may be followed by a second opcode byte, depending 
on the value of the first. Next comes an optional addressing-form specifier 
ModR/M. The specifier is optional, in the sense that it is present only for 
certain opcodes and generally indicates an addressing mode and register. The 
SIB byte is present for only certain ModR/M encodings, and it indicates a 
base register, an index register, and a scale factor for indexing. The optional, 
variable-length displacement field is present for certain memory-addressing 
modes. The last field is a variable-length immediate operand, if required by the 
opcode. 

Because of all the variations and the presence or absence of some fields, 
depending on the values in others, a straightforward approach to interpreting a 
CISC ISA, and the IA-32 ISA in particular, is to divide instruction interpretation 
into two major phases, as illustrated in Figure 2.11. The first phase scans 
and decodes the various instruction fields. As it does so, it fills in fields of a 

Prefixes Opcode Opcode ,, ,, 

0 to 4 optional 

ModR/M SIB I Displacement I Immediate 

optional optional 0,1,2,4 bytes 0,1,2,4 bytes 
Figure 2.10 General Format for IA-32 Instructions. 
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General 
Decode 

(fill-in instruction 
structure) 

Figure 2.11 

u 

I Dispatch I 

Inst. 1 Inst. 2 
specialized specialized 

routine routine 

Inst. n 
�9 ~ ~ specialized 

routine 

Program Flow for a Basic CISC ISA Interpreter. 

general instruction template. This template, in essence, contains a superset 
of the possible instruction options. Then there is a dispatch step that jumps 
to routines specialized for each instruction type. These routines emulate the 
specified instruction, reading values from the relevant instruction template 
fields as needed. 

Figure 2.12 is a three-page figure that contains pseudo C code for such an 
interpreter, styled after the approach used in the Bochs free software IA-32 
interpreter (Lawton). Not all procedures used in the example are given, but 
where their code is not present, they are given mnemonic names that sum- 
marize their function. Interpretation is focused on an instruction template, 
the structure IA-32ins t r ,  which is defined at the top of Figure 2.12a. The 
major CPU interpreter loop is at the bottom of Figure 2.12b. This loop begins 
interpreting an instruction by filling in the instruction template. Included in 
the instruction template is a pointer to an instruction interpreter routine. After 
the template is built, the CPU loop uses the pointer to jump to the indicated 
routine. Some instructions can be repeated (based on a prefix byte), and this is 
determined by the "need_to_repeat"  test. 

The IA-32i ns t r  structure consists ofthe opcode (up to two bytes), a mask 
that collects the prefixes (up to a total of 12 possible prefixes), a value that 
contains the instruction length and a pointer to the instruction interpretation 
routine. Then there are a number of substructures used for collecting operand 
information. As is the case with the structure as a whole, these are defined to 
contain a superset of the operand information for all the instructions. The total 
size of the structure is on the order of 6 words. 
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The code that fills in the template structure is given at the top of 
Figure 2.12b. This code scans an instruction from left to right, first looking 
for prefix bytes and filling in the prefix mask. It then determines whether the 
opcode is one or two bytes, and uses the opcode to do a table lookup to find 
a decode action and a pointer to the routine that will eventually be used to 
interpret the instruction. The lookup table is the second of the major data 
structures used for interpretation, shown at the bottom of Figure 2.12a. The 
lookup table returns a pair: <DecodeActi on, I n t e rp re te rFunc t i  onPoi nter>. 
DecodeActi on contains addressing mode information, the presence or absence 

struct  IA-32instr  { 
unsigned short opcode; 
unsigned short prefixmask; 
char i len;  / /  ins t ruct ion length. 

InterpreterFunct ionPointer execute; / /  semantic routine for  th is  ins t r .  

s t ruct  { 
/ /  general address computation: [Rbase + (Rindex << shmt) + displacement] 
char mode; / /  operand addressing mode, including register operand. 
char Rbase; / /  base address register 
char Rindex; / /  index register 
char shmt; / /  index scale factor 
long displacement; 

} operandRM; 

st ruct  { 
char mode; / /  e i ther register or immediate. 
char regname; / /  register  number 
long immediate;// immediate value 

} operandRI ; 
} i ns t r ;  

/ /  
/ /  BIG fetch_decode table indexed by the opcode 
/ /  
IA-32OpcodeInfo_t IA-32_fetch_decode_table[] = 
{ 

{ DecodeAction, InterpreterFunct ionPointer} ,  
{ DecodeAction, InterpreterFunct ionPointer} ,  
{ DecodeAction, InterpreterFunct ionPointer} ,  
. . . . . . . . . . . .  ~ . . . . . .  

}; 

Figure 2.12a Major Data Structures for an IA-32 Interpreter. Instruction template and decode table. 
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I A - 3 2 i n s t r  
IA- 32_FetchDecode (PC) { 

f e t c h _ p t r  = PC; 

/ /  1. parse prefixes 
byte = code [++fetch_pt r] ; 
while ( is_IA-32_pref ix(byte)) { 

add_pref ix_attr ibute(byte, ins t r )  ; 
byte = code[++fetch_ptr] ; 

} 

/ /  2. parse opcode 
instr.opcode = byte; / /  i t s  code[fetch_ptr];  
i f  ( instr.opcode == OxOf){ 

instr.opcode = OxlO0 i code[++fetch_ptr]; / /  2 Byte opcode. 
} 

// 3. Table Look up based on opcode to find action and function pointer. 
decode_acti on = IA- 32_fetch_decode_tabl e [instr. opcode]. DecodeActi on; 
i nstr.execute = 

IA- 
32_fetch_decode_tabl e [i nstr. opcode]. InterpreterFuncti  onPoi nter; 

/ /  Semantic routines for IA-32 inst rs ,  e.g.,  ADD_RX_32b(IA-32instr i ) ;  

// 4. Operand Resolution -- setup the operandRl and operandRM fields above. 
if (need_Mod_RM(decode_action)) { 

parse_Mod_RM_byte (i nstr) ; 
i f (need_SIB_byte(i nstr->operandRM.mode)) fetch_SIB_byte(i nstr) ; 
i f (need_di spl acement (i nstr->operandRM, mode)) fetch_di spl acement (i nstr) ; 

} 
i f (need_immedi ate(decode_action)) fetch_immedi ate(i  nstr) ; 

/ /  5. bookkeeping and return. 
i nstr. i I en = bytes_fetched_for_thi s_i nstr; 
return ins t r ;  

void cpu_l oop() 
{ 

while ( !ha l t )  { 
ins t r  = IA-32_FetchDecode(PC); 
i f  ( ! IA-32_str ing_instruct ion) { 

i nstr.  execute() ; 
} 
else { 

whi I e (need_to_repeat ( ins t r .  prefi  xmas k) ) 
i ns t r ,  execute() ; 
handl e_asyn_event() ; / /  i . e .  an i nterrupt 

} 
} 
PC = PC + i n s t r . i l e n ;  
handl e_asyn_event () ; 

} 
} 

Figure 2.12b Template-Filling Routine and Major Emulation Loop for IA-32 Interpreter. 
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Instruction function list 

/ /  ADD: r e g i s t e r  + Reg/Mem --> r e g i s t e r  
void 
ADD_RX_32b(IA-32instr i n s t r )  / /  X means: e i t h e r  Reg or Mem{ 

unsigned op1_32, op2_32, sum_32; 
op1_32 = IA-32_GPR[instr .operandRI.  regname] ; 
i f  (mem_operand(instr.operandRM.mode)) { 

unsigned mem_addr = resolve_mem_address( instr ) ;  
op2_32 = vi rtual_mem[mem_addr] ; 

else { 
op2_32 = IA-32_GPR[instr.operandRM.Rbase]; 

} 
sum_32 = op1_32 + op2_32; 
IA-32_GPR[ instr .operandRI.  regname] = sum_32; 
SET_IA-32_CC_FLAGS(op1_32, op2_32, sum_32, IA-32_INSTR_ADD32); 

void 
ADD_XR_32b ( IA-  32i nst r i n s t r )  
{ 

void 
ADD_RI_32b ( IA-  32i nst r i n s t r )  
{ 

Figure 2.12c 

} 

Instruction Interpretation Routines for an IA-32 Decode-and-Dispatch Interpreter. 

of immediate values, etc., and the I n s t r u c t i  onFunc t i  onPoi n t e r  is a pointer 
to a specific interpreter routine. Finally, the operand specifiers are decoded and 
displacement and immediate values are filled in. 

Figure 2.12c illustrates the instruction function list, with one (of the many) 
instructions, a 32-bit add instruction, being given in detail. This interpreter 
routine uses information from the IA-32 ins t r  template as it executes. After 
interpretation is complete, the CPU loop increments the program counter and 
proceeds to the next instruction. 

A basic decode-and-dispatch interpreter as just described is well structured 
and relatively easy to understand, but it will be quite slow. One reason for 
this slowness is its generality. That is, it does all the sequential decoding first, 
covering all possible cases, before it proceeds to an instruction interpretation 
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Figure 2.13 
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Interpreter Based on Optimization of Common Cases. 

routine. A more efficient interpreter can be built around the principle: "make 
the common case fast." For the IA-32 ISA, the common case is: (1) no pre- 
fix bytes, (2) a single-byte opcode, (3) simple operand specifiers, often just 
registers. Based on these observations, an interpreter can be structured along 
the lines illustrated in Figure 2.13. This interpreter first dispatches to a routine 
based on the first instruction byte (alternatively, two bytes could be used, with 
a much larger dispatch table). Then these simpler, common instructions are 
interpreted immediately via specialized routines that decode the remainder of 
the instruction bytes. For the less common cases, there are more complex inter- 
pretation routines that may share routines for the more involved operations. If 
the first byte should happen to be a prefix, then its value can be recorded, with 
control returning to the dispatch code. With this implementation, a sequence 
of simple IA-32 instructions will be emulated relatively quickly, very much like 
an equivalent sequence of RISC instructions. 

2.4.2 Threaded Interpretation 

Recall that with threaded interpretation, decode-and-dispatch code is 
appended to the end of every instruction interpretation routine. For a RISC, 
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as we saw earlier, this is a relatively small amount of code and results in the 
removal of several branch instructions. However, if the complex decode rou- 
tine for the IA-32 ISA, illustrated in Figure 2.12b, were to be appended to every 
instruction interpretation routine, the interpreter would become very large, 
and any performance improvement would be relatively small. Consequently, 
to implement a threaded interpreter for a CISC ISA, one should append a sim- 
ple decode-and-dispatch routine, optimized for the common cases, to each 
instruction interpretation routine and use a centralized decode-and-dispatch 
routine for the more complex cases. This is illustrated in Figure 2.14, where 
simple instructions are threaded from one to the next but where, when a com- 
plex case is encountered, a centralized decode routine is executed, followed by 
a dispatch to an instruction interpretation routine. In effect this is a hybrid of 
the decode-and-dispatch and threaded methods. 

If predecoding and direct threaded interpretation are to be used for a 
CISC ISA, there are two significant problems. The first is that a general, fixed- 
length predecoded instruction format would probably look very similar to 
the instruction template IA-32 ins t r  used in the decode-and-dispatch inter- 
preter. This would lead to a very large predecoded program. In this case, each 
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Figure 2.14 Threaded Interpreter for a CISC ISA. 
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instruction consumes about six words. An alternative is to use a small num- 
ber of intermediate predecoded forms with some specialization for instruction 
types. Or one can predecode a single CISC instruction into multiple, simple, 
predecoded instruction forms. This is very similar to binary translation to a 
RISC ISA (binary translation is covered in the next section). 

The second significant problem that occurs with predecoding most 
CISC ISAs is the need to perform code discovery. Ordinarily, the predecod- 
ing step operates on a program binary before instructions are interpreted. With 
variable-length instructions, however, it is not always practical, (or may be 
even possible) to scan a binary and correctly identify all instruction bound- 
aries or, in some cases, to separate data from instructions. The code-discovery 
problem also occurs with binary translation and is described in more detail 
in Section 2.6. Because of the code-discovery problem, predecoding a con- 
ventional CISC ISA becomes an iterative, two-stage process, with simple 
decode-and-dispatch interpretation first being used to discover instructions, 
followed by predecoding into an intermediate form and direct threaded inter- 
pretation. Overall, this is very similar to the staged emulation methods 
incorporating binary translation, to be discussed later in this chapter. 

Based on the foregoing, one could conclude that predecoding a CISC ISA is 
so similar to binary translation that one should simply perform binary trans- 
lation and be done with it. However, predecoding, as opposed to binary 
translation, has one major advantage: better portability. With binary transla- 
tion, there must be a code generator specialized for every target ISA, although 
retargetable binary translators have been developed (Cifuentes, Lewis, and Ung 
2002; Scott et al. 2003). With predecoding, the intermediate form remains 
largely platform independent, and the interpreter routines can be written in 
a portable high-level language. Hence, one can combine a simple RISC-like 
intermediate form with fast direct threaded interpreter routines and a staged 
interpretation strategy, to arrive at a high-performance yet portable interpreter 
for a CISC ISA. 

2.4.3 A High-Performance IA-32 Interpreter 

We conclude this section on CISC interpretation with an example that illus- 
trates features of an IA-32 decode-and-dispatch interpreter optimized for 
speed. The example is based roughly on a description of an IA-32 inter- 
preter used as part of the DEC/Compaq FX!32 system (Chernoff et al. 1998; 
Hookway and Herdeg 1997). In the FX!32 system, the 32-bit IA-32 archi- 
tecture is emulated on a 64-bit Alpha platform. This particular interpreter 
is written in assembly language, which makes it nonportable but allows very 
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highly optimized code. In this example, we use assembly code similar to that 
described for the FX!32; however, it is written using 64-bit PowerPC code 
rather than Alpha code. The interpreter uses a decode-and-dispatch style that 
is specialized for the common cases. 

The main loop uses the technique of software pipelining (Lam 1988) to 
interleave different phases of program interpretation in the same inner loop in 
order to reduce execution time. The following are the key registers used in the 
dispatch loop, along with a brief description of their usage. 

rl and r2 hold a byte stream of prefetched IA-32 instructions; a minimum 
of 8 bytes of prefetched instructions are kept. 

r3 holds the instruction buffer length; this register is used not in the main 
dispatch loop but in the buffer maintenance routine. 

r4, at the top of the loop, holds the length of the current instruction 
(in bits). 

r5 is loaded with the upper two bytes of the next instruction; these two 
bytes contain sufficient information to determine both the opcode and the 
length of the next instruction. 

r6 holds a pointer to the interpretation routine for the current instruction. 

r7 is loaded with a pointer to the interpretation routine for the next 
instruction. 

r8 points to the dispatch table of interpreter routines; each entry is 8 bytes. 

r9 points to a table of IA-32 instruction lengths; each entry is 1 byte. 

rl 0 holds an instruction pointer that is used for prefetching from the IA-32 
code stream. 

rl 1 is loaded with 8 bytes ofprefetched IA-32 instructions; these prefetched 
instructions are used by buffer maintenance code (not shown). 

The decoding of instructions is layered, with the common cases being han- 
dled more efficiently. Most instructions in the IA-32 instruction set have 6 bytes 
or fewer. Hence the dispatch loop is optimized for this case. Figure 2.15 shows 
the central dispatch loop. The first two instructions in the routine perform a 
check on the instruction length; if the length is greater than 6, then it requires 
special handling and there is a branch to routine ] ong_i nst  (not shown). The 
next three instructions of the routine extract the first 2 bytes of the next IA-32 
instruction to be interpreted and convert it to a double-word (8 bytes) offset 
placed in r5. As mentioned earlier, the first 2 bytes of an IA-32 instruction 
contain information about the length of an instruction as well as its opcode. 
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loop" 

Figure 2.15 

cmpwi crO, r4,48 
bgt crO, long_i nst 
sld r 5 , r l , r 4  
extrdi  r4, r5,16,0 
sldi  r5,r4,3 
Ibzx r4 , r4 , r9  
Idx r7 , r5 , r8  
Id r11,0(r10) 
mtctr r6 
bc t r l  
mr r6,r7 
b loop 

;compare length (in r4) with 48 (bits) 
; branch to long_i nst i f  I ength > 48 
; shi f t  instruction I+1 into r5 
;extract upper 2 bytes of I+1 from "buffer" 
;multiply by 8: convert to double word offset 
;look up instruction length for I+1 
;look up interpreter routine for I+1 
;prefetch next 8 bytes 
;move T's interpreter routine pointer into ctr 
;dispatch I; branch to ctr and l ink 
;move register; to maintain software pipeline 
;continue loop 

Main Dispatch Loop for High-Performance IA-32 Interpreter Code Written in 64-Bit PowerPC 
Assembly Language. 

The next three instructions perform a series of memory loads. The first two 
are table lookups to find the length of the next source instruction and a pointer 
to its interpreter routine. In both cases the tables contain 64K entries because 
they are indexed with the upper 2 IA-32 instruction bytes. This approach 
leads to some redundancy in the table because 2 bytes are not always required 
to determine the operation type and instruction length, but a direct table 
lookup reduces the number of instructions required significantly. The third 
load instruction prefetches the next 8 instruction bytes, using the instruction 
prefetch pointer held in r l0. This is part of the instruction buffer mechanism 
described later. After the three loads are issued, the current instruction is 
dispatched for interpretation via a branch and link instruction. Finally, r7 
is copied into r6 to maintain the software pipeline as the "next" instruction 
becomes the "current" instruction. 

The key point in organizing the dispatch loop in a software-pipelined fash- 
ion is to overlap the three loads related to future source instructions with the 
interpretation of the current instruction. If any ofthese three loads misses in the 
data cache, then the miss delay will be overlapped with the current instruction 
interpretation that follows. Perhaps this feature is most critical for prefetching 
instruction bytes (load of r l 1), because this particular load has a higher prob- 
ability of missing in the cache. Note that IA-32 instructions are actually data 
as far as the interpreter code is concerned, and they contend for the data cache 
along with the actual IA-32 data. 

In addition to the dispatch code, there must also be code (not shown) 
to manage the instruction prefetch buffer, held in registers r l and r2. This 
buffer-maintenance code is executed as part of each interpreter routine. 
For instructions that cause a transfer of control (e.g., a branch or jump), 
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the register buffer is filled with instructions from the target of the control 
transfer, and the various registers are updated appropriately. For all other 
instructions the buffer-maintenance code shifts the instruction buffer "up" by 
the length of the instruction just completed. For any given instruction, this is 
a length that is known by the interpretation routine. The buffer shift involves 
shifting the upper buffer r l and filling it in from below with instruction bytes 
from r2. The buffer length (held in r3) is decremented and checked to see if the 
number of buffered bytes has fallen below 8. If it has, the prefetched instruction 
word (in rl 1 from the dispatch loop) is copied into the lower buffer r2, and the 
buffers are adjusted. Register r l0 is maintained as a pointer to the next block 
of instructions to be prefetched. 

With respect to performance, the FX!32 developers report that their 
hand-optimized decode-and-dispatch interpreter takes an average of 45 Alpha 
instructions to emulate a single IA-32 instruction (Chernoff et al. 1998). 
Because IA-32 instructions are more complex than the Alpha RISC instruc- 
tions, they further estimate that it takes about 30 Alpha instructions per IA-32 
Pentium Pro micro-operation (the rough equivalent of a RISC instruction). 

Binary Translation 

With predecoding, all source instructions of the same type are executed with 
the same interpretation routine. For example, all load word and zero instruc- 
tions, irrespective of the actual registers used, are executed with the code given 
in Figure 2.9. Performance can be significantly enhanced by mapping each 
individual source binary instruction to its own customized target code. This 
process of converting the source binary program into a target binary program 
is referred to as binary translation (May 1987; Sites et al. 1993). Figure 2.16 
shows an example of binary translation from a small IA-32 program sequence 
to the PowerPC ISA. Note that in this and following examples, the emulation of 
IA-32 condition codes is omitted for simplicity. Emulation of condition codes 
is discussed separately in Section 2.8.2. 

The architected register values of the IA-32 source instructions are main- 
tained in a register context block held in memory and are fetched into the 
registers of the target PowerPC ISA. Some of the target registers are perma- 
nently assigned to either contain or point to certain important and frequently 
used source resources. For example, rl points to the register context block, r2 
points to the memory image of the source machine, and the program counter 
is held in r3. The process of mapping source registers to target registers, as in 
the case of the program counter, is a very clear example of the guest-to-host 
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addl 
movl 
add 

%edx, 4 (%eax) 
4 (%eax), %edx 
%eax, 4 

(a) 

Figure 2.16 

r l  points to IA-32 reg is ter  context block 
r2 points to IA-32 memory image 
r3 contains IA-32 ISA PC value 

lwz r4,0(r l)  
addi r5,r4,4 
lwzx r5, r2, r5 
lwz r4,12 ( r l )  
add r5,r4,r5 
stw r5,12(r1) 
addi r3 , r3 ,3 

;load %eax from reg is ter  block 
;add 4 to %eax 
;load operand from memory 
;load %edx from reg is ter  block 
;perform add 
;put resu l t  in to  %edx 
;update PC (3 bytes) 

lwz r 4 , 0 ( r l )  
addi r5 , r4 ,4  
lwz r4,12 ( r l )  
stwx r4, r2, r5 
addi r3 , r3 ,3 

;load %eax from reg is ter  block 
;add 4 to %eax 
;load %edx from reg is ter  block 
;store %edx value in to  memory 
;update PC (3 bytes) 

lwz r 4 , 0 ( r l )  ;load %eax from reg is ter  block 
addi r4, r4,4 ;add immediate 
stw r4,0(rZ)  ;place resu l t  back in to  %eax 
addi r3 , r3 ,3 ;update PC (3 bytes) 

(b) 
Binary Translation from an IA-32 Binary to a PowerPC Binary. (a) Intel IA-32 source binary 
sequence. (b) PowerPC target binary. 

state mapping that is a basic part of the virtualization process, as discussed at 
the beginning of Chapter 1. 

Figure 2.17 compares predecoding (with threaded interpretation) and 
binary translation. In both cases, the original source code is converted to 
another form. But in the case of predecoding, interpreter routines are still 
needed, while in binary translation the converted code is directly executed. 

As shown in Figure 2.16, binary translated code may keep the target reg- 
isters in a register context block held in memory, just as with interpretation. 
However, because each instruction translation is customized, state mapping 
can be used to map the registers in the source ISA directly to target ISA registers. 
By enabling the direct access of registers in the target code, memory accesses 
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Figure 2.18 State Mapping from Target to Source Registers. 

to the context block is eliminated. Such state mapping, especially of general- 
purpose registers, is generally not employed in interpreters, except perhaps for 
special registers that are implied by the opcode, such as the program counter 
or a condition code register. 

Figure 2.18 illustrates state mapping. Here, some of the target ISA registers 
point to the memory image and register block of the source ISA (as before). 
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r l  points to IA-32 reg i s te r  context  block 
r2 points to IA-32 memory image 
r3 contains IA-32 ISA PC value 
r4 holds IA-32 reg i s te r  %eax 
r7 holds IA-32 reg i s te r  %edx 

Figure 2.19 

addi r16, r4,4 
lwzx r17, r2, r16 
add r7,r17,r7 
addi r16, r4,4 
stwx r7, r2, r16 
addi r4,r4,4 
addi r3, r3,9 

;add 4 to %eax 
;load operand from memory 
;perform add of %edx 
;add 4 to %eax 
;store %edx value into memory 
; increment %eax 
;update PC (9 bytes) 

Binary Translation with State Mapping Maintained over Translation Block Boundaries. 

In addition, some of the target registers are mapped directly to some of the 
source registers; that is, source values are maintained in target registers. Other 
portions of the source state, such as the program counter and the stack pointer, 
may also be held in target registers. After mapping is performed, some target 
registers should be left over for use by the emulator code. Further discussion 
of register state mapping is in Section 2.8.1. 

Binary translation with register state mapping is illustrated in Figure 2.19, 
where the three IA-32 instructions in Figure 2.16 are translated to seven 
PowerPC instructions, only one of which is involved in updating the source 
program counter. The speed of execution of the translated code now starts 
becoming comparable to the original source code. Furthermore, this sequence 
can be reduced even more through optimization (as will be described in 
Chapter 4); for example, the second instance of the common subexpression 
"addi r16, r4,4" can be eliminated. 

2,6 

2.6.1 

Code Discovery and Dynamic Translation 

The Code-Discovery Problem 

From the preceding discussion one might infer that it is possible to predecode 
or binary translate a program in its entirety before beginning emulation. This 
is referred to as static predecoding or static translation because only static (pre- 
execution) program information is used. There are many situations, however, 
where such a static approach is difficult, if not impossible, to implement 
(Horspool and Marovac 1980). 
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Consider the following scenario. A sequence of instructions is being trans- 
lated and an indirect jump instruction is encountered. The target of such a jump 
is held in a register. With static predecoding or static translation, it is difficult 
(or practically impossible) to determine the register contents (and the target of 
the jump instruction) because the register isn't assigned a value until run time. 
Furthermore, if an attempt is made to proceed with predecoding or translating 
the instructions immediately following the jump, there is no guarantee that 
the locations immediately following the jump contain valid instructions. In 
some cases, further analysis of other code may allow one to conclude that the 
location following the jump is a valid instruction, but the results of such an 
analysis are not always available. 

It would appear reasonable to assume that the compiler and linker keep 
instructions contiguous to one another and separate from all data items. How- 
ever, this is sometimes not the case. Some compilers (and assembly language 
programmers) intersperse data with code. For example, some compilers may 
provide a (read-only) mask that specifies which registers have been saved by a 
procedure caller at the time of the call. This mask may be placed immediately 
after the jump-and-link instruction that implements the call. Also, a compiler 
may "pad" the instruction stream with unused bytes in order to align branch 
or jump targets on word or cache line boundaries for performance reasons. 
Whatever the reason for interspersing data in code sections, it poses difficulties 
in statically identifying the starting points of all instruction sequences in a given 
region of memory. 

Despite the foregoing observations, static predecoding and binary transla- 
tion may still seem fairly straightforward from the simple examples given in 
the previous subsections because, in those examples, we were considering RISC 
instructions with fixed-length encodings. Instructions are of variable-length in 
CISC ISAs such as the IA-32. Hence, sequences of IA-32 instructions can begin 
at any byte boundary rather than on a word boundary as in common RISC 
ISAs. Even if it is known that a certain location in memory is part of a sec- 
tion of code, it is usually difficult in a CISC ISA to determine whether or not 
an arbitrary byte is at the start of a new instruction sequence. In Figure 2.20, 
for example, it is not obvious whether the byte beginning with 8b marks the 

Figure 2.20 

mov %ch,O ?? 

31 cO 8b b5 O0 O0 03 08 8b bd O0 O0 03 O0 

movl %esi, OxO803OOOO(%ebp)?? 

Finding IA-32 Instruction Boundaries in an Instruction Stream. 
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Figure 2.21 

Source ISA 
instructions 

inst. 1 I inst. 2 
inst. 3 I jump j D a t a  in instruction stream 

~ - - - - - - re  9. ] data 
inst. 5 inst. 6 

uncond, branch I pad -- Pad for instruction 
Jump indirect to ??? inst. 8 alignment 

Causes of the Instruction Discovery Problem. 

start of a sequence beginning with a mov] instruction, or ends some previous 
instruction, with the next byte, b5, starting a mov instruction. 

To summarize, in real code using conventional ISAs, especially CISC ISAs, 
code discovery can be a problem because of variable-length instructions, reg- 
ister indirect jumps, data interspersed with the instructions, and pads to align 
instructions; see Figure 2.21. 

2.6.2 The Code-Location Problem 

As discussed earlier, translated code is accessed with a target program counter 
(TPC), which is different from the architected source program counter (SPC). 
This creates a problem when there is an indirect control transfer (branch or 
jump) in the source code. The destination address of the control transfer is 
held in a register and is a source code address, even though it occurs in the 
translated code. During emulation, then, there must be some way to map an 
SPC address to a TPC address. The code shown in Figure 2.22 will not work 

movl 
jmp 

%eax, 4 (%esp) 
%eax 

;load jump address from memory 
;jump indirect through %eax 

(a) 

addi 
lwzx 
mtctr 
bctr 

r16,r11,4 
r4,r2,r16 
r4 

;compute IA-32 address 
;get IA-32 jump address from IA-32 memory image 
;move to count register (ctr) 
;jump indirect through ctr 

(b) 

Figure 2.22 Translation of an Indirect Jump Code Sequence. The value in the jump register is a source code address in 
both cases; consequently, this code translation will not work correctly. (a) IA-32 source code; (b) PowerPC 
target code. 
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properly because the target code cannot jump to a source code location. This 
problem is referred to as the code-location problem. 

In general, the code-discovery and code-location problems require sophis- 
ticated solutions that will be discussed in the next section. However, there are 
special situations where the solutions are simpler. One of these we have already 
seen: instruction sets with fixed-length (typically 32-bit) instructions that are 
always aligned on fixed boundaries, as is typical in RISC ISAs. Another special 
situation occurs with source instruction sets that are explicitly designed to be 
emulated, such as Java bytecodes. These virtual instruction sets do not allow 
data to be interspersed with code (other than immediate values associated with 
instructions), and they have restricted control flow instructions (branches and 
jumps) that enable easy code discovery. 

2.6.3 Incremental Predecoding and Translation 

For an arbitrary ISA, code discovery is a problem both for predecoding and for 
binary translation. In both cases, a general solution is to translate the binary 
while the program is operating on actual input data, i.e., dynamically, and 
to predecode or translate new sections of code incrementally as the program 
reaches them. Because the overall process is more or less the same for both 
predecoding and binary translation, we will simply refer to both as translation. 

The overall process is illustrated in Figure 2.23. High-level control is pro- 
vided by an emulation manager (EM), which is part of the runtime support. 
Other major components include an interpreter and the binary translator. 
The interpreter may be either a decode-and-dispatch interpreter or a simple 
threaded interpreter as described in Section 2.2. The important point is that 
the interpreter operates on the original source binary code. 

As blocks of code are translated (or predecoded), they are placed into a 
region of memory reserved for them. As more and more code is translated, 
this memory region could become quite large, however, which is potentially 
wasteful for code that is rarely used. Therefore, to reduce the memory space 
that holds translated code, it is typically organized as a code cache (Deutsch 
and Schiffman 1984). The objective of the code cache is to hold the more 
recently used blocks of translated code. We defer details of code caching and 
code cache management to Chapter 3. For the remainder of this chapter, the 
reader can simply assume that the code cache is always large enough to hold 
the translated code. 

Finally, a map table associates the SPC for a block of source code with the 
TPC for the corresponding block of translated code. The map table essentially 
provides a way of indexing into the code cache, and it is typically implemented 
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Figure 2.23 Overview of Dynamic Translation System. Dotted lines indicate data accesses; solid lines indicate 
flow of control. 

as a hash table. The SPC comes from the interpreted or translated program, 
and the TPC points to the beginning of the translated block in the code cache. 
If the EM wants to find a block of translated code (or determine if it has 
yet been translated), the SPC is applied to the map table. The corresponding 
TPC value (pointing into the code cache) is produced if the code block has 
been translated (i.e., if there is a hit in the code cache). Otherwise the map 
table indicates that there is a code cache miss, and additional translation is 
required. 

The system translates one block of source code at a time. In a simple 
translation scheme, the natural unit for translation is the dynamic basic block. 
A dynamic basic block is slightly different from a conventional basic block, 
determined by the static structure of a program (see Figure 2.24a). A static 
basic block of instructions contains a sequence with a single entry point and a 
single exit point. In essence, static basic blocks begin and end at all branch/jump 
instructions and branch/jump targets. 
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Figure 2.24 

a d d . . .  
l o a d . . .  
s t o r e  . . .  

Static Dynamic 
Basic Blocks Basic Blocks 

block 1 

l oop :  load  . . .  
add . . . .  
s t o r e  

.b r.cgnd_ _ .ski_p 
load. . .  
sub.. .  

block 2 

block 3 

sk ip "  a d d . . .  
s t o r e  
brcond loop  

block 4 

a d d . . .  
l o a d . . .  
s t o r e . . .  
jump i n d i r e c t  

block 5 

(a) 

a d d . . .  
l o a d . . .  
s t o r e  . . .  

l oop :  l oad  . . .  
add . . . .  
s t o r e  
brcond s k i p  

block 1 

l o a d . . .  
s u b . . .  

sk i p "  a d d . . .  
s t o r e  
brcond loop  

block 2 

l oop"  load  . . .  
add . . . .  
s t o r e  
brcond s k i p  

block 3 

sk ip "  a d d . . .  
s t o r e  
brcond loop  

block 4 

, , ,  

(b) 

Static Versus Dynamic Basic Blocks. (a) Static basic blocks are code sequences with one entry point 
and one exitpoint. They begin and end with control transfer instructions or targets of control transfer 
instructions. (b) Dynamic basic blocks are often larger than static basic blocks and are determined 
by the actual flow of control at run time. 

A dynamic basic block is determined by the actual flow of a program as it 
is executed. A dynamic basic block always begins at the instruction executed 
immediately after a branch or jump, follows the sequential instruction stream, 
and ends with the next branch or jump. In Figure 2.24b, when the static loop 
shown is first entered from the top, the instruction at loop happens to be 
the target of a branch, yet it does not terminate the dynamic basic block. The 
dynamic basic block continues until the first conditional branch is encountered. 
Dynamic basic blocks tend to be larger than static basic blocks. Note that the 
same static instruction may belong to more than one dynamic basic block. For 
example, the add instruction at label ski p belongs to dynamic basic block 2 
as well as the shorter dynamic basic block 4. In the remainder of this book 
the term basic block will mean "dynamic basic block" unless stated otherwise. 
Translation methods in this chapter will operate on one dynamic basic block 
at a time. A translation unit larger than a single dynamic basic block can 
often be beneficial, however. Such larger translation units are discussed in 
Chapter 4. 
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A simple, incremental translation process works as follows. After the source 
binary is loaded into memory, the EM begins interpreting the binary using a 
simple decode-and-dispatch or indirect threaded method. As it proceeds, the 
interpreter dynamically generates the intermediate code or translated target 
binary. This translated code is placed in the code cache, and the corresponding 
SPC-to-TPC mapping is placed into the map table. When a branch or jump 
is encountered, the interpreter has completed translation of a dynamic basic 
block. 

The EM then follows the path of the source program's control flow (using 
the map table) and either directly executes the next block if it is already trans- 
lated (there is a hit in the table) or begins translating the next dynamic basic 
block if it hasn't been previously translated (a miss in the table). Incremen- 
tally, more of the program is discovered and translated, until eventually only 
translated code is being executed (except for the emulation manager code that 
connects the control flow from one translated block to the n e x t ~  Figure 2.25). 
The entire process is summarized in the flowchart given in Figure 2.26. 

An apparent complication to the translation process occurs when a branch 
goes into the middle of a block that is already translated. The destination 
translation block could be divided into two pieces at that point. However, 
in order to discover such a situation, it would be necessary to maintain an 

Figure 2.25 

translated 
block 

translated 
Emulation block 
Manager 

translated 
block 

Flow of Control Involving Translated Blocks. The emulation manager handles control transfers 
from one translated block to the next. 
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Figure 2.26 

Start 
with 
SPC 

Look Up 
SPCe->TPC 

in Map Table 

Branch to TPC 
and Execute 

Translated Block 

Get SPC I., 
for Next Block I'" 

Dynamic Translation Flowchart. 

No 

Use SPC to 
Read Instructions 

from Source 
Memory Image 

Interpret, Translate, 
and Place into 
Code Cache 

Write New 
SPC~TPC 

Mapping into 
Map Table 

additional data structure to keep track of address ranges of translated code 
blocks and then to search the structure whenever a miss occurs in the map 
table. This apparent complication does not occur when dynamic basic blocks 
are used (a major reason for using dynamic basic blocks). A new translation is 
always started when there is a miss in the map table, even if it leads to replicated 
sections of translated code. 

Tracking the Source Program Code 

It is important that the translation system keep track of the SPC value at all 
times while emulation is taking place. In the translation system, control is 
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Figure 2.27 

Emulation 
Manager 

Table ~}, 

Linking Translated Blocks via a Stub. 

Code 
Block 

Jump and Link to EM 
Next Source PC 

Code 
Block 

shifted as needed between the interpreter, the EM, and translated blocks in 
the code cache, and each of these components must have a way of tracking the 
SPC. First, the interpreter uses the SPC directly as it fetches source instructions. 
When the interpreter transfers control to the EM at the end of a basic block, 
it passes the next SPC to the EM. Similarly, when a block of translated code 
finishes executing, the value of the next SPC must be made available to the EM. 
One way of doing this is to map the SPC to a register on the host platform, 
with the register being updated either at each translated instruction or at the 
end of each translated block (as in Figure 2.19). Another possibility is shown 
in Figure 2.27. Here the value of the next SPC is placed in a "stub" at the end of 
the translated block. When the translated block finishes, control is transferred 
back to the EM using a jump-and-link (JAL) instruction. The link register can 
then be used by the EM to access the SPC from the end of the translated code 
block (Cmelik and Keppel 1994). 

Example 

Figure 2.28 is an extended example that illustrates all the parts of Figure 2.27. 
In this example two basic blocks of IA-32 code have been binary translated to 
blocks of PowerPC code. The following sequence takes place as one translated 
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4FD0: 

4FDC: 

51 C8: 

IA-32 Binary 

addl  %edx,(%eax) 
movl (%eax),%edx 
sub %ebx,1 
jz 51C8 
add %eax,4 
jmp 4FD0 

;load and accumulate sum 
;store to memory 
;decrement loop count 
;branch if at loop end 
;increment %eax 
;jump to loop top 

movl (%ecx),%edx 
xor l  %edx,%edx 
jmp 6200 

;store last value of %edx 
;clear %edx 
;jump elsewhere 

e 
# 

e 
# 

e 
e 

# 

# 

e 

PowerPC Translation 

Iwz r16,0(r4) load value from memory 

9A~: 

add r7,r7,rl 6 
stw r7,0(r4) 
addic, r5,r5,-1 
beq cr0,pc+l 2 
bl F000 
4FDC 
b14 r,~ F ~  

accumulate sum 
store to memory 
decrement loop count, set cr0 
branch if loop exit 
branch & link to EM 

# 

�9 51C8 

t 

e 
e 

51C_.,8 . . . . . . . . .  ~ mflr r20 ," ! 
" "  " " " " e ,., . .  ,,, ,., e , , . . . . , . ,  . .  ,.. , , . . .  

Iwz 9CC1~ stw r7,0(r6)~ :~ " ' ] "  r20,0(,~20) i slwi r21 ,r~0,16 t 
1 %  xor r7,r7,r7 ~ ;(1 1- ! xor r211/21 ,r20 i 

(~ 0~  F000 ; 5 ) srwi  r21~r21,12 i 
Iwzux r2~',r21 ,r~O ,~ 

cmpw crO,r26,~O 
beq cr0, rut t' 

~ ~ ~ ]  / ~'~- b Iooku~'-translate ,; 

"~ ' k~ lV  Iwz r27,4(r21 ) 
mtlr r27 
blr 

Map Table 

sPc TPC link 

E.,u n a.er 

9C08 

i 

I I I I I I  

;retrieve address in link register 
;load SPC from stub 
;perform halfword shift left 
;perform XOR hash 
;finish hash -logical shift 
;access at hash address w/update 
;r30 points to map table base 
;compare for hit 
;use target address 
;else follow hash chain 

;read target address from table 
;branch to next translated block 

lookup_translate: follow hash chain, if hit, branch to TPC 
If miss, branch to translate 

Figure 2.28 Example of Binary Translation. 
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block finishes and control is transferred to the next translated block, via the 
emulation manager. 

Za 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Translated basic block is executed. 

Branch is taken to stub code. 

Stub does branch and link to emulation manager entry point. 

EM loads SPC from stub code, using link register. 

EM hashes SPC to 16 bits and does lookup in map table. 

EM loads SPC value from map table; comparison with stub SPC succeeds. 

Branch to code that will transfer code back to translation. 

Load TPC from map table. 

Jump indirect to next translated basic block. 

Continue execution. 

Other issues 

There are other issues related to instruction set emulation and dynamic trans- 
lation that will be covered in Chapters 3 and 4. Here are the more important 
of these. 

Self-modifying code ~ Although in many applications it is uncommon, 
programs occasionally perform stores into the code area; i.e., the code is 
self-modifying. When this happens, translated code held in the code cache 
may no longer correspond to the modified source code. Consequently, 
mechanisms must be in place to invoke retranslation. The handling of 
self-modifying code is covered in Section 3.4.2. 

Self-referencing c o d e - -  Here, the program performs loads from the code 
area. When this happens, the data that is read must correspond to the orig- 
inal source code, not the translated version. Handling of self-referencing 
code is also covered in Section 3.4.2. 

Precise t r a p s -  If the translated code should experience an exception 
condition (an interrupt or trap), the correct state corresponding to the 
original source code, including the SPC of the trapping instruction, must 
be produced. Providing precise state at the time of a trap or interrupt is an 
important recurring topic throughout both Chapters 3 and 4. 
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2.6.4 Same-ISA Emulation 

Although it may seem like an odd idea at first, there are important VM appli- 
cations where the source and target ISAs are the same and where the emulation 
techniques described in this chapter are used. Of course, there is no logical 
reason why an instruction set can't be used for emulating itself. For exam- 
ple, using interpretation techniques, instructions from a source binary can be 
discovered, parsed, and emulated regardless of whether the target and source 
ISAs are the same or different. And, naturally, "binary translation" is greatly 
simplified when the source and target ISAs are identical. 

The important, useful aspect of same-ISA emulation is that the emulation 
manager is always in control of the software being emulated. Emulation soft- 
ware discovers and inspects each source instruction and, in the process, can 
identify details concerning operations to be performed by that specific instruc- 
tion. Furthermore, it can monitor the execution of the source program at 
any desired level of detail. This monitoring, or code management, capability 
is the key to several applications of same-ISA emulation. One application is 
simulation, where dynamic program characteristics are collected during the 
simulation process. Simulation is the primary application of the Shade System, 
discussed as a case study in Section 2.9. A second application is operating sys- 
tem call emulation in virtual machines where the ISAs are the same but the host 
operating system differs from the guest operating system. By using emulation 
techniques, all operating system calls in a guest's source binary can be detected 
and can be translated to host operating system calls. A third application is 
the discovery and management of certain privileged operations that require 
special handling in some system VMs; these will be discussed in Chapter 8. A 
fourth application, discussed in Chapter 10, is "program shepherding" where 
the targets of control transfer and other instructions are monitored to ensure 
that they do not exploit security holes. Finally, there is the application to same- 
ISA dynamic binary optimization where runtime information is used to help 
optimize a program binary as it executes, even though no ISA translation is 
performed. This final application can be used as an end in itself, but, perhaps 
more importantly, it allows the other applications to be implemented while 
mitigating any resulting performance losses. 

Same-ISA interpretation requires no special discussion; the techniques are 
exactly as described earlier. For binary "translation ''2 (without optimization), 
the simplest technique is just to copy the code, using exactly the same code in the 

2. Because the source and the target use the same ISA, we put translation in quotes; however we 
are using the same process as is used when true translation is done. 
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target as in the source (except where there are operating system calls or instruc- 
tions requiring special handling). Same-ISA dynamic binary optimization is 
discussed in Section 4.7. 

Using the simple translation method described thus far, every time a translation 
block finishes execution, the EM must be reentered and an SPC-to-TPC lookup 
must occur. There are a number of optimizations that reduce this overhead by 
eliminating the need to go through the EM between every pair of translation 
blocks. These optimizations are described in the following subsections. 

2.7.1 Translation Chaining 

Chaining in binary translators is the counterpart of threading in interpreters. 
Instead of branching to the emulation manager at the end of every translated 
block, the blocks can be linked directly to each other. This is illustrated in 
Figure 2.29. 

Emulation 
Manager 

translated 
block 

translated 
block 

translated 
block 

translated 
block 

Figure 2.29 Chaining of Translation Blocks Avoids Indirect Transfers Through the Emulation Manager. 
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In this scheme, blocks are translated one at a time, but they are linked 
together into chains as they are constructed. Linking is accomplished by replac- 
ing what was initially a jump and link (or branch and link, bl, in PowerPC) 
back to the EM, as shown in Figure 2.27, with a direct branch to the successor 
translation block. The address of the successor block is determined by using 
the SPC value to access the map table and find the corresponding TPC (if the 
corresponding basic block has been translated). 

If the successor block has not yet been translated, then the normal stub 
code is inserted. At some time later, after the successor has been translated 
and the predecessor block exits to the EM, the EM will access the map table, 
find the entry in the table, and retrieve the TPC for the successor block. At 
that point, the EM can set up a link to the successor block by overwriting 
the jump-and-link (branch-and-link in PowerPC parlance) in the predecessor 
with a direct jump to the successor. The steps in this process are illustrated in 
Figure 2.30. The code example from Figure 2.28, with chaining added, is given 
in Figure 2.31. 

Chaining works in those situations where the SPC can be placed in a stub at 
the end of a translation block, as in Figure 2.27. These are situations where the 
destination of a branch or jump never changes. However, for register indirect 
jumps, especially procedure returns, the target may change from one execution 
of the jump to the next. Because a single SPC cannot be associated with the 
translation block terminated by the register indirect jump, chaining is not 
convenient in these cases. The easiest way to handle indirect jumps, therefore, 
is always to go through the EM and to let the EM look up the correct TPC via 
the map table. Faster methods for handling indirect jumps are described in the 
next two subsections. 

Get next  
SPC ~.~ 

Lookup....| \ 
successor  "" . 

| 
, Jump TPC 

s~SSr 
Set up l ink"  

Predecessor 

JAL EM 

Next SPC 

Successor 

Figure 2.30 Creating a Link from a Translated Predecessor Block to a Successor Block. 
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PowerPC Translation 

9AC0: Iwz 
add 
stw 
addic. 
beq 
bl 
4FDC 

9AE4: b 
51C8 

9C08: stw 
xor 
bl 
6200 

r16,0(r4) ;load value from memory 
r7,r7,r16 ;accumulate sum 
r7,0(r4) ;store to memory 
r5,r5,-1 ;decrement loop count, set cr0 
cr0,pc+12 ;branch if loop exit 
F000 ;branch & link to EM 

;save source PC in link register 
9c08 ;branch along chain 

;save source PC in link register 

r7,0(r6) ;store last value of %edx 
r7,r7,r7 ;clear %edx 
F000 ;branch & link to EM 

;save source PC in link register 

Figure 2.31 Translated PowerPC Code from an Earlier Example, with Chaining Implemented. 

2.7.2 Software Indirect Jump Prediction 

As pointed out earlier, implementing indirect jumps by map table lookup is 
expensive in execution time. It requires several instructions to hash the SPC 
to form an index into the map table, then at least one load and a compare to 
find a matching table entry, and finally a load and an indirect jump to the TPC 
address. In many cases, however, the jump target never or very seldom changes. 
In these cases, a form of software jump prediction can be employed to reduce 
the overhead of indirect jumps. This is essentially an implementation of inline 
caching, developed for fast Smalltalk emulation (Deutsch and Schiffman 1984). 
Figure 2.32 illustrates the technique. In the example, Rx symbolizes a register 
holding the indirect jump target PC value. In a series of if statements, the most 
frequent SPC addresses, with their matching TPC addresses, are encoded into 
the translated binary code (given here in high-level form for clarity). Then the 
register value for an indirect jump can be compared with the SPC value; if there 
is a match, then a branch to the destination (possibly translated as a PC relative 

Figure 2.32 

i f ( R x  == addr_l) goto target_l ;  
e lse  i f  (Rx == addr_2) goto target_2; 
e lse  i f  (Rx == addr_3) goto target_3; 
e lse  t a b l e _ l o o k u p ( R x ) ;  do i t  the slow way 

Software Indirect Jump Prediction via Inline Caching. Source PC values are given as immediate 
values addr_ i; corresponding target PC values are given as t a r g e t _  i. 
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branch) takes place. Typically, the comparisons are ordered, with the most 
frequent SPC destination address being given first. Of course, in the worst case, 
if all the prediction(s) are wrong, then the map table lookup must be performed 
anyway, so that additional performance is lost. Hence, this technique should 
be coupled with profilingthat provides accurate information regarding indirect 
jump targets (Section 4.2.4). 

When using this method, the EM maintains a side table that keeps track 
of the successor translated blocks that can be reached via such software pre- 
dictions. In the event that the successor translated block is removed from the 
code cache, the software prediction code in the predecessor block must also be 
modified or removed (and is replaced with a map table lookup). 

2.7.3 Shadow Stack 

When a translated code block contains a procedure call via an indirect jump 
to a target binary routine, the SPC value must be saved by emulation code as 
part of the source architected state, either in a register or in a memory stack 
(depending on the source ISA). Then when the called procedure is finished, it 
can restore this SPC value, access the map table, and jump to the translated 
block of code at the return address. As pointed out earlier, this map table 
lookup adds overhead to the emulation process. The overhead can be avoided 
if the target return PC value can be made available directly, i.e., as a link 
address. 

To perform this optimization, the return (link) value of the target code is 
pushed onto a shadow stack maintained by the emulation manager (Chernoff 
et al. 1998). Note that this return value is not necessarily the memory address 
immediately following the procedure jump; if the jump is at a translation block 
boundary, for example, then the target return value may be linked to the 
beginning of the next translated block. In any case, when it is time to return, 
this translation code address is popped from the shadow stack and a map 
table lookup can be avoided. There is one problem, however. The source code 
could have changed the contents of its stack between the call and the eventual 
return. Consequently, before the shadow stack can be used to provide a target 
return address, the value on the top of the stack must be checked against 
the corresponding source return address. Hence, the shadow stack flame is 
expanded to include not only the return address of the target translated code 
but the return address of the source binary. The return address of the source is 
compared with the source field in the shadow stack return address. If there is 
a match, then the target return address from the shadow stack can be used. If 
there is a mismatch, then the source return address is used to access the map 
table in the conventional manner. 
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Figure 2.33 Shadow Stack Implementation to Expedite Returns to Translated Code. 

The shadow stack mechanism where the source ISA is IA-32 and the target 
ISA is PowerPC is illustrated in Figure 2.33. The IA-32 uses an architected 
stack. When the code performs a procedure call, the PowerPC return address is 
pushed on the shadow stack; along with the IA-32 return address. Then when 
it is time to return, the IA-32 return address is loaded from the emulated IA-32 
stack. This address is compared with the IA-32 return address saved on the 
shadow stack. If these match, then the shadow stack PowerPC return value is 
consistent with the source code return value, and the PowerPC return value can 
be used to jump to the return translation block. Otherwise, the IA-32 return 
value retrieved from the IA-32 stack is used to hash into the PC map table for 
the return address. 

Note that the IA-32 stack pointer is also saved on the shadow stack. If 
the guest program should happen to cut back the IA-32 stack by discarding a 
number of stack frames, this can be detected by comparing the pointer on the 
shadow stack with the emulated IA-32 stack pointer. If there is a mismatch, 
the emulated IA-32 stack pointer can then be used for cutting back the shadow 
stack so that it is consistent with the emulated source stack. 

 o.8 Instruction Set Issues 

Thus far, we have provided several examples of instruction set emulation. 
There are many more details to be taken care of in translating and interpreting 
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a complete instruction set. Some of these details will be discussed in this section; 
some are specific to certain instructions sets, and others apply more generally. 

2.8.1 Register Architectures 

Virtually every ISA uses registers of some kind. Registers are at the very top of 
the storage hierarchy and are critical to performance. Hence, the way registers 
are handled is a key issue during emulation. The general-purpose registers of 
the target ISA are used for a number offunctions, including (1) holding general- 
purpose registers of the source ISA, (2) holding special-purpose registers of the 
source ISA, (3) pointing to the source register context block and to the memory 
image, and (4) holding intermediate values used by the emulator. 

If the number of target registers is significantly larger than the number of 
source registers, then all the foregoing uses for target registers may be satisfied 
simultaneously. For example, in emulating an IA-32 on a 32-register RISC 
such as the PowerPC, all the IA-32 general-purpose registers and some of 
the special registers, such as the program counter, can be mapped to target 
registers, and there are registers left over to point to the register context block, 
to the source memory image, and scratch registers for use by emulation code. 

In other cases, there may not be enough target registers to perform all the 
foregoing functions, especially when the source and target ISAs have approxi- 
mately the same number of general-purpose registers. In these cases, the usage 
of the target general-purpose registers must be carefully managed. Two regis- 
ters are needed to point to the register context block and to the source memory 
image; these pointers are used very frequently during the emulation process. 
Similarly, a target register should be assigned to the program counter. Such 
an assignment of registers is used in Figure 2.18, for example. If interpre- 
tation is being used, a target register should also be designated to hold the 
SPC. If binary translation or predecoding is used, an additional register may 
hold the TPC. If the source ISA has a stack pointer, condition codes, or other 
frequently used special registers, target registers should be assigned to these 
as well. In total, this could consume from three to ten target registers. Thus, 
between three and ten general-purpose target registers may be needed for hold- 
ing the state of source ISA resources, beyond those needed for mapping source 
general-purpose registers. 

After assigning target registers to the most common or performance-critical 
source resources, the emulation manager must allocate the target's remaining 
general-purpose registers. If interpretation is used, the remaining registers 
may be used as scratch registers by the interpreter. If translation is used, then 
source registers can be mapped to target registers on a translation block basis. 
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All registers read in the translated code are copied from the context block into 
target registers when the translation block is entered. Any modified registers 
are copied back to the context block when the translation block is exited. If 
the translation block is especially large, then source registers may be spilled 
to the context block. In some of the binary translation examples given earlier, 
e.g., Figure 2.19, these intermediate spills to the context block are not shown, 
though they would be used in practice. 

2.8.2 Condition Codes 

Condition codes are special architected bits that characterize instruction results 
(zero, negative, etc.) and are tested by conditional branch instructions. How- 
ever, across ISAs there is little uniformity in the way condition codes are used 
or whether they are used at all. The Intel IA-32 ISA sets condition codes implic- 
itly as a side effect of executing most instructions; consequently, the condition 
codes are updated nearly as often as general-purpose registers. The SPARC 
ISA contains explicitly set codes, which update condition codes only when it is 
anticipated that they will actually be used. The PowerPC ISA has a number of 
condition code registers that are also explicitly set. Adding to the complication, 
some ISAs do not use any condition codes; the MIPS ISA is an example. 

Emulation complexity varies significantly, depending on whether the source 
ISA, the target ISA, both, or neither uses condition codes. The easiest situation 
is if neither ISA uses condition codes. Almost as easy is the case where the source 
ISA does not use condition codes but the target ISA does. Here, some additional 
target instructions may be required to generate condition code values, but there 
is no need to maintain any source condition code state. The emulation of MIPS 
on a PowerPC is illustrated in Figure 2.34. Here, a conditional branch in the 
MIPS ISA is translated to two instructions in the PowerPC ISA ~ one that 
sets a condition register (crl in the figure) and a second that performs the 
conditional branch by testing crl. 

Figure 2.34 

beq r l , r2,offset 
(a) 

cmpw cr l ,  r l ,  r2 
beq cr l ,o f fset  

(b) 

Binary Translation of a Conditional Branch from the MIPS ISA to the PowerPC ISA. (a) MIPS 
branch equal; (b) PowerPC translation to a compare instruction followed by a branch. 
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If a target ISA has no condition codes, then the source condition codes must 
be emulated, and this emulation can be time consuming. The most difficult 
problems usually occur when the source ISA has implicitly set condition codes 
and the target ISA has no condition codes. It is because of these difficulties that 
we have been ignoring the emulation of IA-32 condition codes in examples up 
to now. 

Recall that implicitly set condition codes are modified as a side effect of 
many instructions. In the Intel IA-32, the condition codes are a set of "flags" 
held in the EFLAGS register. The IA-32 integer add instruction always sets six 
of these condition codes (flags) whenever it is executed. The condition codes 
set by the add are: 

OF- indicates whether integer overflow occurred 

SF-indicates the sign of the result 

ZF- indicates a zero result 

AF- indicates a carry or borrow out of bit 3 of the result (used for BCD 
arithmetic) 

CF- indicates a carry or borrow out of the most significant bit of the result 

PF- indicates parity of the least significant byte of the result. 

In a straightforward emulation, every time an IA-32 add is emulated, each 
of the condition codes is evaluated by the emulation code. Evaluation of most 
of the condition codes is straightforward. For example, the sign of the result 
can be determined using a simple shift. In other cases, as in the evaluation 
of AF or PF, generating condition code values is more complex. In general, 
computing all the condition codes for a given source instruction takes many 
target instructions, often more than emulating the rest of the instruction, and 
it can slow emulation considerably. 

It turns out, however, that although the condition code values are set 
frequently, they are seldom used. To make condition code emulation more effi- 
cient, a common technique is to perform lazy evaluation, where the operands 
and operation that set the condition code, rather than the condition code set- 
tings themselves, are saved (Hohensee, Myszewski, and Reese 1996; Hookway 
and Herdeg 1997). This allows the generation of condition codes only when 
needed and at the time they are needed. For example, one can maintain a 
lazy condition code table that has an entry for each condition code bit. The 
entry contains the opcode of the most recent instruction to modify the condi- 
tion code bit, its operands, and its result. However, the condition code itself is 
not generated. Then if a later instruction, e.g., a conditional branch, needs to 
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use one or more condition code bits, the condition code table is accessed and 
the needed condition code(s) are generated. 

For example, the IA-32 add instruction modifies all the condition code bits. 
If an add operates on two registers containing the values 2 and 3, all entries 
in the table will contain: add : 2 : 3 : 5 after the instruction completes. Then 
if a later instruction needs to test the SF (sign), the SF entry of the table is 
consulted, and the result field (5) is used to generate the sign (0). Because 
many instructions modify all condition code bits or because some subset of 
the bits are always modified together, there are various tricks that can be used 
to reduce the number of condition code table entries and table updates to 
optimize for the common case. 

During binary translation, the translator can analyze sequences of instruc- 
tions to determine whether implicitly set condition codes will actually be used. 
For example, in Figure 2.35 there are two consecutive add instructions followed 
by a imp. In this example, the condition codes set by the first add instruction 
are not used and do not have to be generated. This dataflow analysis can be 
performed as part of an overall optimization process (Section 4.4). There still 
may be cases where it is not known whether condition codes will be needed, and 
in these cases lazy evaluation can be used as described earlier. Also, to support 
efficient lazy evaluation, it may be advantageous to reserve target registers for 
holding condition code information, at least for the common situations. 

Returning to the example in Figure 2.35, at the time the imp is trans- 
lated, it may not be known whether the condition codes set by the second add 

instruction will be needed. For example, the imp instruction and its destination 
(at ] abel 1) may be translated separately and are in two different translation 
blocks. Here, registers (r25-r27) are used for lazy condition code evaluation, 
and operand values and opcode information are saved in the registers. In this 
example, the code at the imp destination address does, in fact, test the condi- 
tion codes. Consequently, there is a branch to the condition code emulation 
routine, 0enZF, in order to set the ZF condition code flag. The 0enZF routine 
performs a multiway jump based on the opcode (add) and then evaluates the 
ZF condition code. 

There are still problems, however, because it is possible for a trap to occur 
during emulation, and the precise (source) state, including all the condition 
codes, must be materialized at that point. In the foregoing example, the first add 
instruction could cause a memory protection fault when it loads its operand 
from memory. If this occurs, the condition codes (or the lazy equivalent) must 
be available. In general, there must be some way to produce the condition codes 
for any potentially trapping instruction at the time a trap occurs, although in 
this situation performance is usually not an issue. Methods for materializing the 
correct condition code state when a trap occurs are discussed in Section 4.5.2, 
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addl 
add 
jmp 

I abel 1" 
jz 

%ebx, 0(%eax) 
%ecx,%ebx 
I abel I 

t a rge t  

(a) 

r4 ~ %eax 
r5 ~ %ebx 
r6 ~ %ecx 

r16 
r25 
r26 
r27 
r28 

IA-32 to 
PowerPC 

r e g i s t e r  mappings 

scratch r e g i s t e r  used by emulat ion code 
cond i t i on  code operand 1 ; r e g i s t e r s  
cond i t i on  code operand 2 ; used fo r  
condi t i  on code operat i  on ; I azy condi t i  on code emul a t i  on 
jump tab le  base address 

l WZ 
mr 
mr 
l i  
add 
mr 
mr 
l i  
add 
b 

I abel 1" 
b l  
beq 

genZF 
add 
mtc t r  
bc t r  

"sub" �9 

"add"" 
add. 
b l r  

Figure 2.35 

r16 ,0 ( r4 )  
r25, r16 
r26, r5  
r27, "add l "  
r 5 , r 5 , r 1 6  
r25 , r6  
r26, r5  
r27, "add" 
r 6 , r 6 , r 5  
I abel i 

genZF 
c r 0 , t a r g e t  

;perform memory load f o r  addl 
;save operands 

; and opcode fo r  
; I azy condi t i  on code emul a t i  on 
; f i n i s h  addl 
; save operands 
; and opcode fo r  
; lazy  cond i t i on  code emulat ion 
; t r a n s l a t i o n  of  add 

;branch and l i n k  to evaluate genZF code 
;branch on cond i t i on  f l ag  

r29, r28, r27 
r29 

;add "opcode" to jump tab le  base address 
;copy to counter r e g i s t e r  
;branch v ia  jump tab le  

r24, r25, r26 ;perform PowerPC add, set crO 
;return 

(b) 

Lazy Evaluation of IA-32 Condition Codes with Binary Translation. (a) Intel IA-32 code sequence; 
(b) PowerPC translation using lazy condition code evaluation. 
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where the general problem of trap and interrupt emulation is described in the 
context of optimized code. 

Finally, even if the target ISA uses condition codes, they may not be 
entirely compatible with the source ISA condition codes (May 1987). For 
example, the SPARC ISA has conditions codes N, C, Z, V, which are equiva- 
lent to the IA-32 SF, CF, ZF, OF, but it does not have codes corresponding 
to AF and PF. Consequently, emulation is simplified for some of the condi- 
tion codes (provided the condition code register of the target can be easily 
read/written), but more expensive emulation is still needed for the other 
condition codes. 

2.8.3 Data Formats and Arithmetic 

Emulating most of the instructions that transform data (e.g., adds, logicals, 
shifts) is fairly straightforward. The problem is simplified because data for- 
mats and arithmetic have become more or less standardized over the years. 
For integers, the two's complement representation has found universal 
acceptance; for floating-point, the IEEE standard is commonly implemented. 

If both the source and the target ISAs implement two's complement arith- 
metic, the emulation of arithmetic operations is easily done, especially when 
identical data widths are supported in both ISAs. Most ISAs offer a basic set of 
shift and logical instructions that can be used to compose different variations 
of shift and logical instructions in a source ISA. 

Although the IEEE floating-point format is commonly used, there are some 
differences in the way floating-point arithmeticis performed on different imple- 
mentations. For example, the IA-32 uses 80-bit intermediate results, unlike 
most other ISAs. This means that the precision of IA-32 intermediate results 
will differ from an ISA that uses 64-bit intermediate results. It is possible, 
but quite cumbersome, for a non-IA-32 target ISA to perform IA-32 emula- 
tion and obtain identical results. As another example of arithmetic differences, 
the PowerPC ISA provides combined multiply-add instructions, which cannot 
always be emulated exactly by using the obvious simple sequence consisting of 
a multiply instruction followed by an add instruction because the intermediate 
precision of the multiply add may be higher than that required by the IEEE 
standard. Once again, emulation is possible though cumbersome. 

There are often cases where the source ISA requires a functional capability 
not available in the target ISA. For example, some instruction sets provide 
integer divide instructions, while others provide more primitive shift/subtract 
"divide step" instructions or instructions to convert and use the floating-point 
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divider. As another example, some ISAs implement a large variety of address- 
ing modes, while others have a smaller set of simple addressing modes. 
Invariably the simpler ISA has sufficient primitives to implement the more 
complex instructions in the other ISA. For example, an auto-incrementing 
load can be done with a combination of an add instruction and a load. 

Finally, immediate data can cause slight emulation difficulties because dif- 
ferent ISAs often have different immediate lengths. Mapping shorter immediate 
values to longer ones is obviously easier than mapping long immediate values 
to shorter immediate fields. However, all ISAs have some way of building full- 
length constants using a small number of instructions, so all immediate values 
can be handled, regardless of length. 

2.8.4 Memory Address Resolution 

In general, different ISAs can access data items of different sizes. For example, 
one ISA may support loading and storing of bytes, halfwords (16 bits), and full 
words, while another may only support bytes and words. Multiple instructions 
in the less powerful ISA can invariably be used to emulate a single memory 
access instruction in the more powerful ISA. 

Most ISAs today address memory to the granularity of individual bytes. 
However, if a target ISA does not, then emulating a byte-resolution ISA on a 
machine with word resolution requires shifting out (and saving) the low-order 
byte address bits when performing memory access and then using the saved byte 
offset bits to select the specific bytes (or halfwords) being accessed. Performing 
a store of a data item less than a full word in size requires first performing a word 
load, inserting the data item into the word (via shifts and mask operations), 
and then performing a word store. The opposite problem of emulating a word- 
addressed ISA on a byte-addressed target is very straightforward; it is a case of 
emulating a less powerful ISA on a more powerful one. 

2.8.5 Memory Data Alignment 

Some ISAs align memory data on "natural" boundaries and some do not. That 
is, a word access must be performed with the two low-order address bits being 
00, and a halfword access must have a 0 for the lowest-order bit. If an ISA 
does not require addresses to be on natural addresses, then it is said to support 
"unaligned" data. A conservative approach is to break up word or halfword 
accesses into byte accesses. Usually if an ISA does not support unaligned data 
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directly, however, it has supplementary instructions to simplify the process, 
and these can be used. Typically, as a safety net, the ISA also specifies a trap if 
an instruction does attempt an access with an unaligned address. 

Run-time analysis of the target code may help in reducing code expansion 
by substituting word accesses for aligned cases. In some situations it may be 
effective to use run-time profiling information to reduce the dynamic cost of 
emulating such accesses. This will be discussed further in Section 4.6.4. 

2.8.6 Byte Order 

Some ISAs order bytes within a word so that the most significant byte is byte 0 
(and in a 32-bit word, the least significant is byte 3). This is referred to as 
the big-endian byte order (Cohen 1981). Other ISAs order bytes in the little- 
endian byte order, which addresses the least significant byte as 0 and the most 
significant as byte 3. For example, the character string "JOHN" is stored as 
JOHN in a big-endian machine and as NHO] in a little-endian machine. In 
either case, if the bytes are accessed in the sequence 0, 1, 2, 3, then the string is 
accessed in order ], O, H, N. 

It is common to maintain the guest data image in the same byte order as 
assumed by the source ISA. Consequently, to emulate a big-endian source ISA 
on a little-endian target ISA (or vice versa), the emulation code can mod- 
ify addresses when bytes (or halfwords) are accessed from the guest memory 
region. For example, consider a load byte instruction. To get the correct data, 
the low-order two-address bits can be complemented (i.e., to convert byte 
address 00 to 11, 01 to 10, etc.). As a more complicated example, ifan unaligned 
word address is used, then the bytes can be individually loaded from addresses 
found by sequencing through individual byte addresses and complementing the 
addresses before accessing memory. That is, if the source ISA specifies address 
xxx01001, then the bytes to be loaded are at locations xxx01010, xxx01001, 
xxx01000, xxx01111. Or, alternatively, a pair of load words combined with 
shifts and logical instructions can be used to assemble the correct data in the 
register ofthe target. In any case, it is an awkward, time-consuming process that 
is hard to avoid, in general. Some ISAs support both endian orders (via a mode 
bit), and a target ISA with this feature would clearly simplify the emulation 
process. 

Finally, note that byte-order issues extend into the host operating system 
calls. That is, guest data accessed by the host operating system also has to 
be converted to the proper byte order. This can be done in the "jacket" or 
"wrapper" code that supports OS call emulation (see Section 3.7). 
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Addressing Architecture 

The memory addressing architecture is a very important part of an ISA, and 
it poses a number of difficult problems when emulating full applications. The 
address space sizes of the source and target ISAs may be different, and/or 
their page sizes may be different or their privilege levels different. These 
address space issues are fairly complex, and often the virtual machine archi- 
tecture as a whole must be considered in order to provide a good solution; 
that is, it is not a matter of instruction emulation alone. Because the vir- 
tual machine as a whole provides a proper address space environment, this 
problem is deferred to Chapter 3, which discusses specific virtual machine 
implementations. 

Simulation is a key part of computer system design. Simulators are used for 
studying the performance of memory hierarchies and the internal behavior of 
superscalar microarchitectures. They are also useful for developing compiler 
optimizations and debugging. Simulators typically operate on benchmark pro- 
grams or kernels and emulate these programs as a part ofthe simulation process. 
That is, a simulator includes emulation, but it does more. In simulation, the 
objective is to study the process of performing computation, not the compu- 
tation itself; that is, one is seldom interested in the actual output produced 
by a simulated program (especially when the program is being simulated for 
the 100th time with exactly the same input data!). In addition to emulating a 
program, a simulator may model the internal workings of a processor or mem- 
ory system. It may directly track the operation of hardware features, or it may 
generate instruction or memory address traces for further evaluation by other 
simulation tools. Often performance is sacrificed in order to collect process- 
related information, such as branch misprediction accuracy or numbers of 
instructions issued on particular cycles. 

Shade is a simulation tool developed for high-performance simulation 
(Cmelik and Keppel 1994, 1996); consequently, it contains a sophisticated 
emulator that forms a basis for flexible and extensible simulation. It does this 
by providing a set of functions that can be linked into the emulator. Some of 
the functions are provided as part of the Shade toolset, or the user can write 
additional functions. 
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Figure 2.36 Primary Data Structures in Shade. The source memory image (VMEM), the source register state 
(VS), the cache for holding translated instructions (TC), and the table mapping source to target PCs 
(TLB). 

Shade first translates the ISA being simulated (what we have been referring 
to as the source ISA 3) into sequences of target instructions. In general, basic 
block-size units are translated. The translated code not only performs emu- 
lation but also generates simulation trace data via function calls embedded in 
the translated code. Because we are interested primarily in emulation, we skip 
the details of trace generation, but the reader can refer to the excellent articles 
describing Shade cited earlier. 

Figure 2.36 gives the important elements of Shade. The source ISA memory 
image is kept in a large array VMEM. The register state, including the condi- 
tion codes, and control registers are held in the table VS. A trace cache (TC) 
is the code cache mechanism that holds translated blocks of target instruc- 
tions. Finally, the mapping between source PC values and target PC values is 
maintained in the translation lookaside buffer, or TLB. 4 

To speed up emulation, the source program counter (VPC) and the base of 
the source memory image (VMEM) are permanently mapped to target registers. 
A pointer to the base of the TLB is also permanently mapped to a target register. 

3. What we refer to as the source and the target are called the target and the host in Shade 
documentation. 

4. This TLB should not be confused with the translation lookaside buffer used in many 
processors for caching virtual address translation information. 
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While executing a block of translated code, source register values (held in the 
VS) used in the block are temporarily copied into target registers. As they are 
computed, result register values are copied back into the VS. 

Translated blocks in the TC may be chained together to avoid TLB lookups. 
The translation cache is managed in a simple way: Translations fill the TC 
linearly as they are produced. When the TC becomes full, it is simply flushed, 
and translation begins filling it again. This method is clearly s i m p l e -  it avoids 
having to "unlink" translation blocks, and the TC is generally large enough that 
it does not reduce performance significantly. 

The structure of the Shade TLB is shown in Figure 2.37. It is structured as 
a two-dimensional array, where a source PC hashes into a row, and each row 
contains n <source, target> pairs. The lookup algorithm linearly scans the row 
until it has a match (and finds the target PC) or until it hits the end ofthe array. 
If it hits the end, it assumes there is no translation and forms one. The inner 
loop of the emulation code checks the first translation in the list. If there is a 
hit, it proceeds; otherwise, it calls a routine that does the linear search. This 
search routine then places a matching entry in the first position, so the most 
recently used is always the first one checked. If all n entries are full, then a new 
entry pushes the rightmost entry off the end and it is lost. This means there 
may be some "orphan" translations in the TC, and a redundant retranslation 
may later be added to the TC. However, the occasional flushes of the TC clear 
out the orphans. Finally, a further optimization is to align each of the TLB 
rows to a cache line boundary so that if there is a miss during the initial lookup, 
the remaining entries will be brought into the cache when the initial miss is 
serviced. 

source PC 
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A / \ 
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source target source target source target 
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Figure 2.37 Shade TLB Structure. 



80 �9 Chapter 2~Emulation: Interpretation and Binary Translation 

Summary: Performance Tradeoffs 

Figure 2.38 summarizes all the emulation methods we have discussed, and 
we now compare their characteristics. As criteria for comparison, we con- 
sider start-up time, memory requirements, steady-state performance, and code 
portability. We provide qualitative performance characteristics; a more quan- 
titative evaluation of interpreter performance was done by Romer et al. (1996). 

Figure 2.38 Summary of emulation Methods. (a) No emulation; (b) decode-and-dispatch interpretation; (c) indirect 
threaded interpretation; (d) predecoding and direct threaded interpretation; (e) binary translation. 
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The relative importance of the criteria depends on the VM being implemented. 
For example, memory requirements may be important in a VM in an embed- 
ded application but not in a server application. Portability may be important 
in HLL VMs but not in codesigned VMs. 

Decode-and-Dispatch Interpretation 

Memory requirements: low ~ There is one interpreter routine for each 
instruction type in the target ISA. 

Start-up performance: fast ~ There is essentially zero start-up time 
because no preprocessing or translation of the source binary is required. 

Steady-state performance: slow ~ A source instruction must be parsed 
each time it is emulated. Furthermore, the source code must be fetched 
through the data cache, which puts a lot of pressure on the cache (and 
leads to a potential performance loss). Finally, this method results in a high 
number of control transfers (branches). 

Code portability: good ~ If the interpreter is written in an HLL, it is very 
portable. 

Indirect Threaded Interpreter 

Memory requirements: l o w ~  More memory is required than with decode- 
and-dispatch interpretation because the dispatch code sequence must be 
included in every interpreter routine. The amount of extra memory depends 
on the complexity of decoding; for a RISC ISA it would be relatively low, 
and for a CISC it could be much higher. The memory cost can be mitigated 
via hybrid implementations. 

Start-up performance: fast ~ As with decode-and-dispatch interpreters, 
there is essentially zero start-up time; no preprocessing is required. 

Steady-state performance: s l o w ~  This is slightly better than decode-and- 
dispatch because several branch instructions are eliminated. There is high 
data cache usage, as in decode-and-dispatch interpreters. 

Code portability: good ~ The interpreter code is as portable as with 
decode-and-dispatch interpretation. 

Direct Threaded Interpreter with Predecoding 

Memory requirements: high ~ The size of predecoded memory image is 
proportional to the original source memory image (and is probably larger). 
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Memory requirements can be somewhat reduced if the intermediate form 
is cached and blocks of seldom-used predecoded instructions are removed 
from the cache. 

Start-up performance: slow ~ The source memory image must first be 
interpreted in order to discover the control flow. Also, generating the 
decoded intermediate form can be time consuming. 

Steady-state performance: medium ~ This is better than indirect thread- 
ing because the individual instructions do not have to be parsed (and 
decoded) every time they are executed. If the predecoded form contains 
target addresses of interpretation routines, then the dispatch table lookup 
is eliminated. There is high data cache usage because the predecoded 
instructions are still treated as data by the interpreter code. 

Code portability: medium ~ If the predecoded version contains specific 
locations for interpreter routines, then the interpreter becomes implemen- 
tation dependent. Compilers that support finding the address of a label may 
mitigate this disadvantage. 

Binary Translation 

Memory requirements: high ~ The size of predecoded memory image is 
proportional to the original source memory image. As with predecoding, 
memory requirements can be reduced if blocks of translated code are 
cached. 

Start-up performance: very slow ~ The source memory image must first 
be interpreted in order to discover the control flow; then translated binary 
code must be generated. 

Steady-state performance: f a s t ~  The translated binaries execute directly 
on hardware. Performance is improved even more if translated blocks are 
linked directly together. Furthermore, pressure on the data cache is reduced 
because translated code is fetched through the instruction cache. 

Code portability: p o o r ~  Code is translated for a specific target ISA. A new 
translator (or at least the code-generation part) must be written for each 
target ISA. 



A typical computer user works with a large number of programs that coexist 
in a system environment consisting of one or more processors, memory, 

a file system, and a number of peripheral devices. The user invokes and interacts 
with the programs by employing the interface supported by libraries and the 
operating system. An important restriction, however, is that the user can run 
only programs that have been compiled for the user's operating system and 
the processor's instruction set. One of the important applications of virtual 
machines is to circumvent this restriction and allow the user to run programs 
compiled for other systems. As we shall see, a number of VM architectures 
can provide this capability, but the simplest VM approach from the user's 
perspective, and the one described in this chapter, is to provide a virtual 
environment at the program, or process, level. By using a process VM, a guest 
program developed for a computer other than the user's host system can be 
installed and used in the same way as all other programs on the host system; 
the user as well as the other programs interact with the guest program in the 
same way as they interact with native host programs. 

Computer programs are compiled, distributed, and stored as executable 
binaries that conform to a specific application binary interface, or ABI, which 
includes features of both the hardware instruction set and the operating 
system. For example, a very widely used ABI is the one designed to execute on 
a processor supporting the Intel IA-32 ISA and the Microsoft Windows oper- 
ating system. A few years ago, Intel developed a new, 64-bit ISA, now called 
IPF, which is implemented in the Itanium family of processors. Existing IA-32 
application programs will not run directly on Itanium platforms, even though 
the Windows operating system has been ported to Itanium platforms. So to 
allow users to run the large number of existing IA-32/Windows applications 

8 3  
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Figure 3.1 A Guest Process, with Process VM Support in the Form of Runtime Software, Interacting with 
Host Processes. 

on Itanium platforms, the people at Intel developed a virtual IA-32/Windows 
environment. The resulting process VM, the IA-32 EL (execution layer), allows 
IA-32 programs to appear to an Itanium user exactly as they would on a native 
IA-32 platform (Baraz et al. 2003). Another version of the IA-32 EL process 
VM with a different OS interface supports IA-32/Linux applications. 

Figure 3.1 illustrates a typical process virtual machine environment. As 
shown in the figure, runtime software essentially encapsulates an individual 
guest process, giving it the same outward appearance as a native host process. 
From the perspective of the guest process, all the other processes appear to 
conform to its worldview. Consequently, the guest process can interact with 
the native host processes in the same way the host processes interact with each 
other. Furthermore, the guest process can interact with other guest processes 
as though they were running on a real machine. 

In this chapter, we discuss process VM implementations in a more or less 
top-down fashion. In the next section, we discuss the overall structure of a 
process VM. Then there is a section discussing compatibility issues, followed 
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by sections on each of the major aspects of a process VM. These include the 
mapping of guest state to host state and emulation of the memory-addressing 
architecture, instructions, exceptions, and operating system calls. Also related 
to process VM implementation is a section discussing code cache management 
techniques. Then there is a section on the integration of a process VM into 
a host environment; this includes process VM loading and initialization. The 
chapter concludes with a case study of the Digital FX?32 system, a VM that 
supports the IA-32/Windows ABI. 

Virtual Machine Implementation 

The major computation blocks and data structures of a process VM are shown 
in Figure 3.2. The major blocks perform the following functions. 

�9 The loader writes the guest code and data into a region of memory holding 
the guest's memory image and loads the runtime code. Although the memory 
image contains the guest's application code as well as data, it is all data as far 
as the runtime is concerned because source code is not directly executed. 
Rather, the source code is used as input "data" to interpretation and/or 
binary translation routines. 

�9 The loader then turns control over to the initialization block, which allo- 
cates memory space for the code cache and other tables used during the 
emulation process. The initialization process also invokes the host OS to 
establish signal handlers for all the trap conditions that can occur (at least 
those for which signals are supported by the host OS). After initializa- 
tion, the emulation process can begin, typically using a range of emulation 
techniques in a staged manner. 

�9 The emulation engine uses interpretation and/or binary translation to 
emulate the guest instructions using the basic methods in Chapter 2. 
If binary translation is used as an emulation method, translated target 
code is held in a code cache. The code cache, which is written by the transla- 
tor, is an executable code area while emulation is in progress. If emulation 
is performed via interpretation with a predecoded intermediate form, the 
predecoded instructions are stored in a similar cache structure. 

�9 Because of the limited size of the code cache, the code cache manager is 
responsible for deciding which translations should be flushed out of the 
cache to make room for new translations as they are generated. 

�9 A profile database contains dynamically collected program information 
that is used to guide optimization during the translation process. The uses 
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Figure 3.2 Implementation of a Process Virtual Machine. 

of profile data, as well as optimization methods, are described in more 
detail in Chapter 4. 

�9 As emulation proceeds and the guest program performs a system call, the 
OS call emulator translates the OS call into an appropriate call (or calls) 
to the host OS and then handles any associated information returned as a 
result of the call. 

�9 The runtime must also handle traps that may occur as a result of executing 
either an interpreter instruction or a translated instruction, and it must 
handle any interrupts that are directed at the guest process. The runtime 
does this with the exception emulator. In some cases, the exception emulator 
takes over when an emulation-triggered trap causes an OS signal to be 
delivered to the runtime; in other cases, emulation routines discover an 
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exception condition and jump to the exception emulator. An important 
aspect ofruntime exception handling is generating the correct, precise guest 
state (including program counter, register values, and trap conditions) 
when an exception condition occurs. 

Side tables, i.e., data structures generated as part of the translation process, 
are used by the runtime as part of the overall emulation process. One 
important use of side tables is in implementing a precise exception model 
with respect to the source ISA. Other uses of side tables will be described 
as they are introduced. 

The design of all the major blocks will be described in more detail in the 
following sections; first, however, we define a framework for discussing and 
reasoning about compatibility in process VMs. 

In any virtual machine implementation, a critical issue is compatibility, that is, 
the accuracy with which a guest's behavior is emulated on the host platform, 
as compared with its behavior on its native platform. Ideally, the behavior 
should be identical, although, as will become apparent, there are many practical 
situations where complete compatibility is not necessary for a process virtual 
machine to be useful. 

When we define compatibility, we include all types of behaviors, with 
one important exception: We exclude differences that are purely performance 
related. That is, compatibility is a matter of correct functioning, not how fast 
the function is performed. Mthough performance is not part of the definition 
of compatibility, it is certainly an important consideration when implementing 
many VMs. In fact, the level of compatibility achieved sometimes depends very 
much on the degree of performance degradation that one is willing to accept. 

In this section, we focus on VM compatibility in general and process-level 
(ABI) compatibility in particular. Because of the focus on process compatibil- 
ity, most of our discussion and many of the examples are in terms of process 
compatibility and program emulation. 

3.2.1 Levels of Compatibility 

One could take a purist's view and argue that compatibility requires 100% 
accuracy for all programs all ofthe time. For some system VMs, e.g., codesigned 
VMs, strict ISA compatibility is usually a requirement. However, such a strict 
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definition of compatibility would exclude many useful process virtual machine 
implementations. Consequently, we further refine the notion of compatibility 
to allow for qualified forms of compatibility. 

We refer to the strict form of compatibility as intrinsic compatibility. 
Another term sometimes applied to a VM with intrinsic compatibility is com- 
plete transparency (Bruening 2004). Satisfying intrinsic compatibility is based 
entirely on properties of the virtual machine. Intrinsic compatibility holds 
for all guest software and for all possible input data. This includes assem- 
bly language programs, written by a devious programmer with the intent 
of "breaking" compatibility. When using an intrinsically compatible virtual 
machine, the user is assured that any software will behave the same way as 
on its native platform, with no further verification being required; that is, the 
verification is done at the time the VM is constructed. This is typically the 
standard used by hardware designers for ISA compatibility in microprocessors. 
However, it is a very strict requirement for a process VM; in many cases it is 
more strict than is really necessary or than can be achieved. 

Probably more useful for process VMs is what we call extrinsic compatibil- 
ity. This form of compatibility relies not only on the VM implementation but 
also on externally provided assurances or certification regarding properties of 
the guest software. Extrinsic compatibility may hold for some programs run 
on a virtual machine but not for others. For example, all programs compiled 
with a certain compiler and that use a certain set of libraries may define a 
level of extrinsic compatibility. Alternatively, a program may be compatible 
as long as it has limited resource requirements; e.g., its architected memory 
space requirements are less than the maximum that can be supported on a 
native platform. Or a software developer may take a particular program and, 
through debugging and other verification techniques, declare or certify that 
the program will give compatible behavior when run on a given process VM. 
For example, the Digital FX!32 system was developed with the goal of pro- 
viding transparent operation; however, Digital maintained a list of Windows 
applications that were certified to be compatible. With extrinsic compatibility 
comes the requirement of clearly stating the external properties that must hold 
in order for compatibility to be achieved, e.g., the compiler that should be used 
or the logical resources needed. 

3.2.2 A Compatibility Framework 

As a practical matter, proving that compatibility holds, whether intrinsic or 
extrinsic, is an extremely difficult problem. In systems as complex as virtual 
machines, compatibility is usually ensured via test suites along with the logical 
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reasoning of people intimately familiar with the system at hand. Because com- 
patibility is too difficult to prove in any rigorous way, we would at least like 
some framework within which we can reason about compatibility and discuss 
compatibility issues. 

Rather than consider the system as a whole, including the guest software, 
virtual machine software, operating system, and hardware platform, we first 
decompose the system and structure it in a way that is consistent with the way 
process VMs are usually constructed. Then we can reason about the parts. 

To build a framework for discussing compatibility, we consider the iso- 
morphism described in Chapter 1 (Figure 1.2). That is, we focus on (1) the 
mapping of state (or "resources" that contain the state) between the guest and 
the host, and (2) the operations that transform the state in the guest and the 
host. An application program performs operations on state in two ways: by 
executing instructions belonging to the user ISA and through operating sys- 
tem calls (made either explicitly or via traps and interrupts). Consequently, 
we divide the state into user-managed state and OS-managed state. The user- 
managed state is operated on by the user-level ISA and consists primarily of 
architected main memory and registers. The OS-managed state includes the 
contents of disk files and other storage devices as well as the state associated 
with resources such as graphics displays and networks. 

State Mapping 

With regard to the user-managed state, we generally assume straightforward 
mappings between guest and host states. The resource holding the state does 
not necessarily have to be of the same type, however. For example, guest 
registers may be mapped to host main memory. The key point is that for 
a given resource holding guest state, e.g., specific register or memory loca- 
tion, the associated resource in the host is readily identified, and it can be 
easily determined whether the associated guest and host states are equiva- 
lent. The operating system-managed state is a little more difficult to deal with 
because it can be held in many forms, and operations on the state are often 
expressed in terms of OS abstractions; however, the state-mapping concept is 
the same. 

Operations 

As a program runs on a native platform, it executes user-level instructions, 
occasionally transferring control to the operating system (through system 
calls, traps, or interrupts). When the operating system is finished servicing 
a call, trap, or interrupt, it transfers control back to the user-level instructions. 
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The user-level instructions modify the user-managed state, and the operat- 
ing system performs operations that modify the OS-managed state and/or the 
user-managed state. The points where control is transferred between the user 
code and the OS (i.e., traps and OS calls) are a key element of our compatibility 
framework. 

In a process VM, there are sets of operations and control transfers that 
correspond with those on the native platform. The emulation engine uses 
interpretation and/or binary translation to emulate user instructions, and the 
OS and exception emulators perform the operating system functions. To do 
this, the runtime's emulation routines may or may not call the underlying host 
OS, depending on the operation being emulated. In any case, for each transfer of 
control between user code and the OS on a native platform, we identify a corre- 
sponding point where control is transferred in the virtual machine (Figure 3.3). 
Establishing a one-to-one mapping between these control transfer points is a 
portion of the structure we impose on process VMs as part of our framework. 
In most implemented process VMs such a mapping can be established, so this 
requirement is not practically limiting. Given this mapping, we can then focus 
on equivalence of mapped states at the points where control is transferred 
between user instructions and the OS (and vice versa). 
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Sufficient Compatibility Conditions 

Given that corresponding control transfer points have been identified, we give 
the following conditions for compatibility. 

1. At the point of control transfer from emulating user instructions to the 
OS, the guest state is equivalent to the host state, under the given state 
mapping. An important consequence of this condition is that equivalent 
user-managed state does nothave to be maintained at an instruction granu- 
larity; it must only be maintained at the granularity of OS control transfers. 
These are the only points where the state may be made visible to the "out- 
side world." This allows for substantial flexibility in the way that instruction 
emulation can be done. In particular, translated target code can be reorga- 
nized and optimized substantially ~ as long as the user-managed state is 
the same when control is transferred to the OS or exception emulator. 

On the other hand, we make the conservative assumption that all the 
user-managed state may be exposed to the outside world when the OS 
takes over, so at that point in time all guest and corresponding host states 
are required to be equivalent. For example, a system call that performs a 
file read or write may only modify a specific portion of the guest process's 
memory state, not all of it. Yet we require that all the state be equivalent. 
To make less conservative assumptions would require deep analysis of the 
underlying host OS to determine the portion of the user-managed state that 
may be read or written by each of the host OS system call or trap handlers. 
This may be straightforward in some cases, such as file I/O, but in others 
it may not be. To avoid analysis of the host OS, we make the conservative 
assumption that all the user-managed state may potentially be accessed 
and must therefore be equivalent at the time of control transfers. 

2. At the point of control transfer back to user instructions, the guest state 
(both user managed and OS managed) is equivalent to host state, under 
the given mapping. The combined runtime and host OS actions, which 
emulate the guest's native OS actions, should produce system behavior, as 
well as modifications to the guest state (file contents, for example), that are 
equivalent to that for the guest's native platform. Here, an additional con- 
sideration is that for some OS behavior, e.g., driving a graphics terminal 
or a network interface, the ordering of operations must also be equivalent 
as well as the overall state changes observed at the control transfer point. 

Figure 3.4, based on the VM isomorphism of Figure 1.2, illustrates guest 
operation on its native platform and the corresponding operation on the host 
platform. On its native platform, the guest software transitions back and 
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Figure 3.4 Compatibility, Illustrated in Terms of the Isomorphism Between Guest and Host States in a Process VM. 
At points where control is transferred between the OS and user instructions, the states must be equivalent. 

forth between user instructions and OS operations. At each of these transi- 
tion points, a similar transition point in the host platform can be identified. 
At these points, the states mapped by V must be equivalent. 

Discussion 

The compatibility framework just outlined assumes that process VMs are 
structured in a certain way, and the sufficient conditions for compatibility 
are stated relatively informally. However, the conditions are formal enough for 
us to discuss compatibility issues in this and later chapters in a concise manner. 
It should also be evident that a process VM does not have to be structured the 
way we assume (along the general lines of Figure 3.2), and it does not have to 
satisfy the foregoing conditions to be compatible. Rather, we assume a structure 
that is common to most realistic process VMs, and the sufficient conditions 
that we consider are reasonably good for compatibility, given the commonly 
used VM structure. The important thing is that by having such a compatibility 
framework, one can more easily identify compatibility issues when they arise 
and then evaluate their significance. 

As we have defined it, to achieve intrinsic compatibility the conditions just 
stated must hold for all programs and data. In contrast, for extrinsic compati- 
bility, conditions are imposed on a subset of guest software. These conditions 
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may be described in terms of any ofthe features of the compatibility framework. 
We now give a number of examples. 

With respect to state mapping, the memory address space available to a 
guest program may be less than the maximum size on a native platform; con- 
sequently, a proper state mapping can only be provided for programs whose 
memory space requirements do not exceed a certain VM-imposed limit. Hence, 
extrinsic compatibility is achieved only for processes that do not exceed a 
certain size. 

With respect to mapping of control transfers, there may be situations where 
some control transfers to the OS are potentially eliminated during binary trans- 
lation. This can occur if certain potentially trapping instructions are removed 
during the target code-optimization process (as we will see in Chapter 4). 
Here extrinsic compatibility can be achieved for those programs where the trap 
conditions are known not to occur (possibly depending on the input data). 

With respect to user-level instructions, there may be cases where guest 
floating-point arithmetic is not done exactly as on its native platform (see 
Section 2.8.3). For these VMs, extrinsic compatibility can only be achieved for 
programs where the floating-point accuracy is sufficient to satisfy the user's 
needs. 

With respect to OS operations, there may be cases where the host OS does 
not support exactly the same functions as the guest's native OS. The guest may 
avoid these OS features as a way of achieving extrinsic compatibility. 

Compatibility issues in process VMs receive an enlightening and thorough 
discussion in Breunig's thesis (Bruening 2004). In that work, some compati- 
bility issues are refined further than we do here. For example, memory state 
equivalence of the heap and stack are considered separately. 

3.2.3 Implementation Dependences 

The division between architecture and implementation is central to the design 
of computer systems (Section 1.2). This division, as exemplified by the ISA, 
separates the functional features of a design from implementation features. 
Nevertheless, there are situations where implementation features do become 
visible in the architecture and cause functional differences. These often-subtle 
effects can sometimes make completely accurate emulation difficult at best. 

Probably the most common examples involve caches. One example such 
occurs in processors that have separate instruction and data caches, as is com- 
monly done today. If the program writes into its own instruction space (i.e., 
self-modifying code), some processor implementations do not automatically 
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update the instruction cache contents (or flush the instruction cache, which 
would have the same effect). Rather, the old version of the modified instruc- 
tions remains in the cache until it is replaced. This can lead to nondeterminism 
because the results of a program may then depend on external events such 
as context switches, which affect the instruction cache contents. To avoid this 
problem it is up to the programmer (or compiler) to flush the instruction cache 
after self-modifying code is executed. This can be done either explicitly, via 
instructions provided for this purpose, or implicitly, through a carefully con- 
structed code sequence that causes the modified cache locations to be replaced. 
The net effect, however, is that the instruction cache becomes visible to the 
architecture ~ its presence can affect the function of software. 

This might seem like a small problem. In fact, during emulation, it is 
sometimes easiest to make self-modifying code execute the "logical" way, 
i.e., by always using the most recent version of code. This can be done, for 
example, by using the techniques to be described in Section 3.4.2. However, 
there have been cases where clever programmers use the interactions between 
instruction caches and self-modifying code as a way of identifying exactly 
which processor implementation is executing their software and then using 
this information to select, at run time, a version of a procedure that is optimal 
for the given implementation. What if code of this type finds a "nonexistent" 
hardware implementation, as might be caused by emulation? 

An even more troublesome scenario can arise if real implementations of 
an ISA provide a stricter implementation than is required by the specifica- 
tion. Consider the instruction cache example again. An ISA specification may 
state that self-modifying code is only guaranteed to take effect if the cache is 
explicitly flushed by executing a certain instruction; otherwise, the results are 
undefined (there are real ISAs specified this way). However, it may be that 
all existing implementations actually implement self-modifying code in the 
"logical" way, even when the instruction cache flush instruction is not exe- 
cuted. Consequently, there may be self-modifying code that does not flush the 
instruction cache properly yet still "works" on real implementations. Now, a 
developer of a VM may depend on the instruction cache flush instruction to 
trigger the flushing of binary translated code residing in a code cache. This 
not only means that self-modifying code without the explicit instruction cache 
flush may behave differently on the virtual machine implementation, but it 
may cause some guest code to "break," from the perspective of the user. In fact, 
the VM implements the specification and is correct, strictly speaking, but this 
would be of small consolation to the user whose code no longer works. 

There is often no good solution to implementation "leaks" of the type 
just described, but it is a problem that a VM developer should be keenly 
aware of. Great care should be taken in reading the fine print of architecture 
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specifications and hardware manuals that describe implementation depen- 
dences. Significant effort should be given to imagining complex scenarios 
where implementation dependences can become observable and may even be 
exploited. The bottom line is that vigilance is probably the only answer to such 
implementation dependences. 

3~ State Mapping 

We are now ready to construct process VMs. We begin with the mapping of 
user-managed state, primarily state held in registers and memory. Then in 
later sections we discuss various aspects of emulation, i.e., the operations that 
transform the state. 

When we describe state mapping, we often do it in terms of resource 
mapping, because it is the resources (registers and memory) that actually con- 
tain the state. For example, if we say that a guest memory location maps to a 
host memory location, we are implying that the state held in the two memory 
locations is the same. Figure 3.5 illustrates a typical state mapping. In this 
example, the guest data and code map into the host's user address space and 
share the user address space with the runtime code and data. 

Figure 3.5 Mapping of Guest State to Host State. 
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Because a process VM views memory as a logical address space supported 
by the host machine, when we speak of memory in this context, we are referring 
to a logical address space, not the implemented real memory. This view is 
reflected in Figure 3.5, where regions of the guest memory address space map 
onto regions of the host memory address space. 

The guest register state is mapped into host registers and/or is maintained 
in the runtime data region of memory. This latter mapping illustrates an 
important point ~ that the guest state does not have to be maintained in 
the same type of resource as on a native platform. Similarly, in some situations 
it may be convenient to map guest memory onto file system storage rather 
than the host's main memory. However, the way that these state mappings are 
done has a significant bearing on the emulation techniques used and on the 
resulting performance that is achieved. 

3.3.1 Register Mapping 

Register space mapping is fairly straightforward and was discussed in 
Sections 2.5 and 2.8.1; we summarize here. If the number of guest ISA reg- 
isters is less than the number of host ISA registers, it may be possible to map 
all guest registers into host registers for the duration of emulation. In addi- 
tion, there is usually a register context block maintained in memory by the 
runtime. The runtime loads and unloads register contents from/to this block 
as the emulator is entered and exited. That is, the runtime may use all or most 
of the registers when it performs tasks other than emulation and then turns the 
registers over to the guest whenever emulation is in progress. 

If the number of registers in the guest and host are the same, or nearly so, 
it may be theoretically possible to map all host registers to guest registers, but 
this could pose a problem if the emulation process requires registers for its 
own use (as is the case with interpretation) or if the runtime performs dynamic 
optimization of frequently executed code. In some ISAs, loading and unloading 
registers from the context block can be a problem because in order to perform 
a store to the register context block, a register is needed to hold the address of 
the context block. If all the registers are used by the emulation process, then 
this additional register is simply not available. 

If the number of guest registers is larger than the number of host registers, 
then some of the guest registers must be mapped to a register context block 
in the host's memory. The runtime, usually through the translator, is then 
responsible for managing the host register space by moving guest registers into 
and out of the host registers as emulation proceeds. 
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Memory Address Space Mapping 

The guest and host instruction sets each have their specific memory architec- 
tures, and it is the job of the runtime emulation process to map the guest's 
address space to the host's address space and to maintain protection require- 
ments. Specifically, when a guest program performs a load, a store, or an 
instruction fetch, it is to some address A within the guest's address space 
defined by the guest ISA. However, after state mapping, the data or code at 
guest address A may actually be placed at some other address, A t, within the 
host's address space, and the runtime emulation software must be able to 
perform the required address space mapping. ]ust as with instruction emu- 
lation, there is a range of possibilities for performing address space mapping 
spanning different performance levels, determined by the relative amount of 
emulation performed by software compared to the amount performed directly 
on the host hardware. 

Runtime Software-Supported Translation Tables 

Figure 3.6 illustrates the most flexible method for memory architecture 
emulation. As with instruction interpretation, described in the previous 
chapter, the more flexible methods also tend to be more software intensive. 
Figure 3.6 shows a software translation table maintained bythe runtime, similar 

Figure 3.6 Emulating Memory Address Architecture via a Software-Implemented Address Translation 
Table. 
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Figure 3.7 

I n i t i a l l y ,  r l  holds source address 
r30 holds base address of  t r a n s l a t i o n  tab le  

srwi r29, r1,16 
slwi r29, r29,2 
lwzx r29, r29, r30 
slwi r28, r1,16 
srwi r28, r28,16 
slwi r29, r29,16 
or r29, r28, r29 
lwz r2 ,0( r29)  
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;form address 
; do load 

Code Sequence for Performing a Load Instruction with Software-Mapping Method. 

to a conventional page table. The guest addresses do not have to be contigu- 
ously mapped in the host address space. The guest address space can be divided 
into blocks, each of which, in practice, would be some whole multiple of the 
host page size. Then a guest address is translated to a host address by perform- 
ing a table lookup to find the offset within the host space where the guest block 
begins. 

Figure 3.7 contains an example of code that emulates a load instruction 
using a software-implemented translation table. In this example, it is assumed 
that the mapped memory blocks are each 64KB. The translation table itself is 
maintained as part of the runtime, and its base address is held in host register 
r30. To perform the load, the source address is shifted by 16 bits to get the 
64KB block number. This number is converted to an offset added to the table 
base, and the sum is used to access the proper table entry. This entry contains 
a pointer to the address block in the host address space. The block address 
replaces the block address in the original guest address and can then be used 
for performing the requested load. Actually, the PowerPC has two instructions 
designed for these types of operations: the r l w i m i  (rotate left word immediate 
then mask insert) and rlwinm (rotate left word immediate and with mask) 
instructions. We use a longer sequence here in order to make the overall 
operation clearer. 

The similarity to the address translation used in conventional virtual 
address systems for converting virtual to real addresses should be apparent. 
Figure 3.8 depicts a method that extends this similarity further. Here, the run- 
time opens a disk file for holding data belonging to any portions of the guest 
address space that are not resident in the host address space. Although similar 
to a conventional virtual memory, the guest virtual address space is actually 
mapped to a region of the host virtual address space rather than to real memory. 
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Figure 3.8 

Runtime ~ " ~  Host OS 
. managed , ~  managed 

Guest 1 /  
Address A~!dil s Space y 

Mapping a Guest Address Space into a Region of the Host Space. The runtime software 
manages the region of host address space in much the same way as the host OS manages its real 
memory. 

The host virtual addresses space, in turn, is mapped to the host real memory 
by the underlying host system. 

At any point in time, a given guest memory block may or may not be 
present in the host memory. Hence the translation table is enhanced with a 
"valid" bit to indicate whether or not the accessed guest block is present in 
the host address space. The runtime software accesses the translation table, 
not only to perform the address lookup but also to test the valid bit and 
branch to memory management software in the runtime when an accessed 
block is not present. The runtime memory manager then decides which block 
to replace, performs the necessary disk I/O, modifies the translation table, 
and then returns to emulation. 

This step-by-step software-intensive mapping method is conceptu- 
ally similar to the simple decode/dispatch interpretation for instructions. 
However, its use need not be restricted to interpretation; it can serve with 
any emulation scheme, including binary translation. The relative overhead of 
the scheme would be considerable in a binary translation environment but 
may be unavoidable if there is a semantic mismatch between the guest and host 
ABIs. A prime example is the case where the host application address space is 
not large enough to hold a typical guest application, e.g., if a 64-bit guest is 
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being emulated by a 32-bit host platform. The key point is that if all else fails, 
this software-intensive method can be used. 

Direct Translation Methods 

We next consider address space mapping methods that rely more on the 
underlying hardware and less on VM software. As such, they are somewhat 
analogous to the binary translation methods for instruction emulation. There 
are two direct translation methods, as illustrated in Figure 3.9, one being a 
special case of the other. 

Figure 3.9a shows a mapping where the guest address space has been dis- 
placed by a fixed offset but is still contiguous within the host space. In this case, 
the offset value can be held in a host register that is added to each guest address 
during emulation. In the example shown in the figure, the runtime is placed 
at the beginning of the host address space, and the guest program is placed 
on top, each location in the guest address space offset by a fixed amount to 
determine its location in the guest address space. This fixed offset mapping is 
used in the emulation code given in Figure 2.16. 

Figure 3.9b shows the important special case where the fixed offset is 0, 
meaning that the guest addresses have the same locations in the host virtual 
address space. The runtime software now needs to be located in a region beyond 

Figure 3.9 Direct Mapping of a Guest Address Space into the Host's Space. (a) When the guest addresses 
are offset by some constant in the host's space; (b) when the guest addresses are placed at the same 
locations within the host's space. 
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the portion of the address space allocated for the guest, as shown in the figure. 
This results in a very simple mapping of guest addresses to host addresses 
during emulation. In this case, source memory load and store instructions can 
often be translated one-to-one to target loads and stores, with no need for any 
additional address translation instructions. 

Compatibility Issues 

Depending on the performance and compatibility level desired, the relative 
sizes of the guest and host address spaces have significant implications when 
selecting the memory mapping and translation method to use. An important 
consideration is that the runtime software (both code and data) share the same 
address space with the guest application. 

If one wants intrinsic compatibility and a high-performance VM imple- 
mentation, then it is probably necessary for the host address space to be larger 
than the guest address space so that both the maximum-size guest process and 
the runtime software can fit into the host address space at the same time. Then 
a direct mapping method can be used, as in Figure 3.9b. This is often the case, 
as when the IA-32 ISA is emulated on a platform containing a 64-bit ISA (Baraz 
et al. 2003; Hookway and Herdeg 1997). 

If the host address space is not larger than the combination of the run- 
time and the maximum guest process, then either performance or intrinsic 
compatibility must be sacrificed. Using a software translation method as 
in Figure 3.8 will yield intrinsic compatibility at the cost of several target 
instructions per source load or store instruction. 

On the other hand, the memory actually used by a guest application is not 
necessarily the maximum size permitted by the host ABI; in most cases, in fact, 
a guest application does not reach its maximum size. Furthermore, in many 
situations users compile programs using standard libraries (of unknown size 
to the typical user), and most user programs do not rely on a specific memory 
size or on specific memory addresses. In these situations a form of extrinsic 
compatibility is quite sufficient. In particular, compatibility is achieved as 
long as the virtual memory requirements of the guest do not exceed what is 
left over after the runtime is placed in memory. Furthermore, if the runtime 
is strategically placed with respect to the guest process, then efficient direct 
translation can be used. By strategic placement, we mean placement in a region 
that is not being used by the guest process. This might mean that the runtime is 
implemented in position-independent manner so that it can operate correctly 
regardless of where it is placed in memory. This allows the runtime to place 
itself in a region of memory that does not conflict with the locations in use by 
the application. Depending on loader conventions, some applications may be 
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placed in upper memory, others in lower memory, and still others in a number 
of noncontiguous memory regions. In addition, the runtime can potentially be 
moved during the course of emulation as the application allocates or deletes 
blocks of memory. 

Given an address space mapping and implementation method, there are 
several aspects of memory architecture that must be emulated in a process 
VM. Specifically, there are three important features of ABI memory archi- 
tecture, i.e., memory as seen by a user application, that must be taken into 
consideration: 

�9 The overall structure of the address space, e.g., whether it is divided into 
segments or is a flat, linear address space. For most of our discussion, we 
assume a flat, linear address space because most current ABIs use a linear 
address space (although it may be further subdivided into a heap and stack, 
for example). Techniques for virtualizing segmented memory can be built 
upon these linear space techniques. 

The access privilege types that are supported. Some ABIs support read, 
write, execute (R, W, E) privileges, while others restrict their support to 
only R and W. 

The protection/allocation granularity, i.e., the size of the smallest block 
of memory that is allocated by the operating system and the granularity at 
which protection privileges are maintained. In most systems the granularity 
of memory allocation is the same as that for protection, even though, strictly 
speaking, they need not be the same. 

Most common ABIs define a specific size and range of addresses that are 
available to a user. Figure 3.10 illustrates the address space defined for the 
Win32 ABI. Two 64KB blocks (at the top and bottom of the 31 bit address 
space) are reserved by the system. All other locations in the 31-bit address 
space are available to a user process. The user may reserve blocks of mem- 
ory for later use. A user may also commit a region of memory, which means 
that the user is given access and that disk space is allocated for paging. A key 
point is that a user process is granted access to all addresses within the non- 
reserved range. As pointed out earlier, this may have important implications 
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Figure 3.10 
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Win32 ABI Memory Architecture. The system reserves regions at the upper and lower ends of 
memory. The user can reserve a specific range of addresses and later commit it to use or leave 
it free. 

because the runtime must share the address space with a user process in a 
transparent way. 

3.4.1 Memory Protection 

An important aspect of memory architecture is memory protection. Most ISAs 
allow access restrictions to be placed on different regions of the memory space. 
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These restrictions are usually specified as some combination of read, write, and 
execute (or none). 

If a software translation table is used (Figure 3.6), then emulation of pro- 
tection checking is straightforward. Protection information can be kept in the 
translation table, and checking can be completely emulated as part of the trans- 
lation process. This is essentially a software version of the way it is done in a 
conventional virtual memory system. As pointed out earlier, this method is 
functionally correct but slow. 

With direct or offset addressing (Figure 3.9), however, there is no soft- 
ware translation table for maintaining privilege information. Clearly, a software 
table can be added for the special purpose of protection checking, though this 
method suffers in efficiency. Depending on the support provided by the host 
OS, a more efficient method that relies on the underlying host hardware for 
protection checking can be implemented. This requires that the runtime has 
some means of directing the host OS to implement page protection match- 
ing the guest emulation requirements. The nature of the host support and its 
use in implementing efficient protection checking are described in the next 
subsection. 

Host-Supported Memory Protection 

Memory protection can be emulated by a host platform using two commonly 
found host OS features: 

1. A system call invoked by the application (via the runtime in this case) 
specifying a page and the access privileges (read, write, execute, none) for 
the page. 

2. A signal for a memory access fault that can be delivered to the run- 
time whenever a memory access violates the privilege specified for the 
containing page. 

Some host operating systems support these features directly. In Linux, for 
example, the mprotect()  system call and the SIGSEGV signal provide these 
functions. The mp ro tec t  system call has arguments that are (1) a virtual address 
aligned to a page boundary, (2) a size, and (3) a protection specification that is 
the bitwise OR of none, read, write, execute. The SIGSEGV signal is delivered 
if a page is accessed with the wrong privileges. 

In addition to the direct methods supported by the OS as described earlier, 
there are indirect ways of emulating protection features. For example, the 
mmap () Linux system call can be used for mapping a region of the address space 
for which the runtime wants access control. The region is mapped to a file that 
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Figure 3.11 Mapping a Portion of the Guest Virtual Address Space to a File. The mapping can be controlled via 
mapping, unmapping, and read-only mappings. 

has the required access privileges, as shown in Figure 3.11. If the application 
software attempts a disallowed access, a SIGSEGV signal is delivered (Bovet 
and Cesati 2001). 

In the absence of any of these convenient ways to provide the runtime with 
the ability to control access to the guest software through host-implemented 
features, the runtime can always fall back to the less efficient software mapping 
method of accessing memory. 

Page Size Issues 

We now consider the case where the host and guest pages are of different sizes; 
obviously, this difference must be considered when allocating and protecting 
memory. As far as assigning specific access privileges to the guest pages, the 
method described in the preceding section is fairly simple when the guest page 
size is a multiple of the host page size. In this case all the host pages that 
correspond to the single guest page are given the same protections. However, 
when the guest page size is smaller than that of the host, two or more different 
guest pages may be included in the same host page. This causes a problem 
if the protections are different for guest pages that share the same host page. 
Figure 3.12 illustrates a case where a guest code page and data page share the 
same host page. The guest pages should have different access privileges, but 
in the host system they must be given the same protections. As always, the 
software-based mapping method can be used to solve this problem, but with 
significant overhead. 
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Figure 3.12 Guest Page Smaller Than Host Page. If  the guest page size is smaller than the host page size, then 
some host pages may be divided between code and data. This causes difficulties when emulating 
memory protection. 

Aligning the code and data regions on host page boundaries would seem 
to fix the problem, but this essentially relocates regions of the guest address 
space, and the ISA emulation software must correct for this realignment by 
adding constant offsets to guest addresses within relocated regions. This may 
not only affect the efficiency of emulation but may also reduce the portability 
of emulation code by adding a host platform dependency. 

An alternative is to maintain protection checking through the host platform 
as described earlier, but to take a conservative approach, giving the entire host 
page the lesser privilege of the different guest pages that share it. The runtime 
must then handle any "extra" traps generated either through signal handler 
software or by reverting to software mapping (and privilege checking). 

Another issue with matching guest and host memory architectures is that 
the types of protections defined in the two ISAs may not match. If the host 
supports a superset of guest protections, the guest can be granted the correct 
protections. However, if the host supports only a proper subset of the guest 
protections, then the VM software must use conservative protection assign- 
ments or rely on software checks, as described earlier. 

An important case is where the host supports only RW privileges while the 
guest uses RWE. This is the most common case of a mismatch that occurs 
in practice. With emulation via interpretation, the interpreter code can eas- 
ily check execute protection as part of its normal operation with relatively 
little slowdown, i.e., through a software translation table. With binary transla- 
tion, execute protection for the guest code has to be checked only at the time 
the runtime reads the guest code and performs translation. In addition, the 
runtime must be able to detect the situations where the application changes 
the protection, but this can be done easily as part of the OS call translation 
process (Section 3.7). When this occurs, any affected translated code must be 
discarded. 
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Self-Referencing and Self-Modifying Code 

Occasionally, an application program either refers to itself (i.e., it reads from 
its code region) or attempts to modify itself by writing into the code region. 
This poses potential problems when binary translation is used, because the code 
actually executing is translated code, not the original source code. Ifthe original 
source code would have read or written itself, then the translated version 
must produce exactly the same results. Such instances of self-referencing and 
self-modifying code must be accurately emulated by the runtime. 

Basic Method 

The basis for the solution is the same for both problems. In particular, an accu- 
rate memory image of the guest program code is maintained at all times. All 
load and store addresses in the translated version are mapped into the source 
memory region, regardless of whether code or data is being addressed. Conse- 
quently, the self-referencing case (Figure 3.13a) is automatically implemented 
correctly. 

For self-modifying code (Figure 3.13b), the original source code region is 
write-protected by the runtime. That is, the page-level write access privilege is 
turned off for all pages containing translated source code. This can be done via 
a system call made bythe runtime (e.g., via Linux mprotect ()). Consequently, 
any attempt to write a page containing translated code results in a protection 
trap and the delivery of a signal to the runtime. At that point, the runtime 
can flush either the entire code cache or just the translations corresponding to 
the modified page (by using a side table that keeps track of the page(s) from 
which translated code blocks originated). Then the runtime should temporarily 
enable writes to the code region, enter interpretation mode, and interpret 
forward, at least until it gets through the code block that triggered the fault. 
This interpretation step guarantees forward progress when a translated code 
block modifies itself. Then the runtime can reenable write-protection and 
proceed with normal operation, which will eventually result in retranslation of 
code in the modified page. 

Pseudo-Self-Modifying Code 

The method just described is a high-overhead way of dealing with self- 
modifying code, but in most situations it does not hurt performance 
significantly because in many programs self-modifying code tends to be rather 
uncommon (or nonexistent). Nevertheless, there are certain programs or 
types of programs where self-modifying code or pseudo-self-modifying code 
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Figure 3.13 Self-Referencing and Self-Modifying Code. Keeping a copy of the original code can be used for 
solving the problem of (a) self-referencing code and (b) self-modifying code. 

does occur frequently enough to cause a large performance loss. Pseudo-self- 
modifying code describes the situation where writeable data areas are inter- 
mixed with code. That is, a write into a "code" page does not literally modify 
code, but will trigger a write-protection fault. This code sometimes appears in 
assembly language routines, such as device drivers, some performance-critical 
game kernels, and embedded code. 
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Figure 3.14 Handling Pseudo-Self-Modifying Code via Dynamic Checks. 

To deal with frequently occurring pseudo-self-modifying code, one 
approach is to check dynamically whether the source binary code has 
been modified before the corresponding translated target code is executed 
(Dehnert et al. 2003). That is, if write-protection faults to the same code 
region repeatedly occur, the runtime can retranslate the code in the page being 
written to and, for each translation block, save the original source code in a side 
table (see Figure 3.14). Then as a prolog to each of the translation blocks, the 
translator inserts check code that compares the current version of the source 
code with the original side table version of the source code. Write-protection 
for the page in question can then be turned off. As long as the prolog check 



110 Chapter 3~Process Virtual Machines 

code finds the source code unchanged (and it will in the case of pseudo-self- 
modifying code), then execution of the translated code can proceed. This 
method results in slowdowns (by at least a factor of 2, because the code com- 
parison is time consuming), but it is still much faster than repeated protection 
faults, interpretations, and retranslations. 

A potentially faster alternative is to make the prolog code a separate code 
block that can be linked and unlinked from its corresponding translation block 
(Dehnert et al. 2003). Immediately after a write-protect fault, the runtime links 
in the prolog code, and write-protection for the modified page is turned off. The 
check code is executed the next time the potentially modified code is entered, 
and, if the source is found to be unmodified, the prolog can be unlinked and 
write-protection reenabled. With this method, the check is performed only the 
first time that potentially modified code is executed following a write-protect 
fault. However, there is problem in making forward progress when the code 
that performs the write is in the same page that is being modified. That is, the 
code repeatedly traps, disables write-protection, later finds that the source code 
region is unmodified, reenables write-protection, and then modifies the source 
code region, resulting in another trap. The probability that this will happen 
can be reduced if source code can be write-protected at finer granularity than a 
page, as described in the next subsection. In any case, the slower method given 
in the foregoing paragraph can always be used as a fall-back. 

Fine-Grain Write-Protection 

The basic write-protect method, as we have been considering it thus far, pro- 
tects the source code region at a page granularity; if there is a write into the 
page, all the translations formed from instructions in that source code page 
are flushed from the code cache. An improvement on this approach uses soft- 
ware to keep track of source code blocks at a finer granularity (Dehnert et al. 
2003). For each page that contains translated source instructions, the runtime 
can maintain a finer-granularity protection table, containing a write-protect 
bit mask per page. Each bit in a page's mask corresponds to a small region 
of the page, e.g., 128 bytes. Then as code is translated, the translator sets bits 
in the mask as it translates source instructions. If a particular page contains 
a combination of code and data, then any data-only regions (at the 128-byte 
granularity) will not have their fine-grain write-protect bits set. When a write 
into a source code page results in a trap to the runtime, the runtime can retrieve 
the fine-grain write-protect mask for the given page and compare the faulting 
address with the bits in the bit mask. If, for example, the faulting write was to 
a data-only region, then the write-protect bit for that region will not be set, 
and translated instructions do not have to be flushed. The finer-granularity bit 
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mask can also be used to reduce the flushed translations when a fine-grain code 
region is written to (through the use of side tables that track the translation 
blocks corresponding to instructions in each of the fine-grain regions). 

True Self.Modifying Code 

For cases where true self-modifying code frequently occurs, an approach for 
avoiding write-protect faults for the binary translator is to remove the self- 
modifying code via idiom recognition. That is, the translator code recognizes 
the common scenarios where self-modifying code occurs and invokes special 
translations. For example, self-modifying code may be used for writing the 
immediate field of an instruction contained in an inner loop and then executing 
the loop. This is illustrated in Figure 3.15a, where the immediate field of 
an IA-32 add immediate instruction is frequently modified. This case can be 
handled by converting it into equivalent data region read/write operations. 
In Figure 3.15b, the add immediate instruction is translated to a load that 
retrieves the immediate field from the source code (which is a data region from 
the perspective of the translated code) followed by an add instruction that uses 
the register value rather than an immediate. 

In other situations, a given region of source code may be modified in only 
a small number of different ways. This occurs in some device-independent 
drivers, where the driver itself writes an implementation-dependent piece of 
code and then executes it. In these situations, the runtime can save the vari- 
ous source code versions along with the corresponding translated code. Then 
when code modification is detected, the runtime can compare the modified 
source code against the saved source code versions. If it finds a match, the 
corresponding saved translation can be retrieved and used. This method still 
incurs significant overhead, but at least it avoids repeated retranslations. 

l abe l :  add %eax, 0x123456 ; add i mmedi ate 

(a) 

Figure 3.15 

lwz r29, l a b e l + l ( r 2 )  ;r2 po ints  to the IA32 memory image 
add r4, r4, r29 ; r4 contains %eax 

(b) 

Translating an Instruction Containing a Frequently Modified Immediate Field. (a) An IA-32 add 
immediate instruction; (b) a PowerPC translation, where the immediate value is loaded from the 
original source code memory image. 



112 Chapter 3~Process Virtual Machines 

Protecting Runtime Memory 

Because the runtime software (including both its code and data) shares an 
address space with guest application software, the runtime must be protected 
from the guest application. For example, if an emulated program should, 
through a bug or by intent, attempt to access a region in the address space 
where the runtime resides, then this should be reported as a memory fault 
with respect to the emulated application. To maintain compatibility and give 
correct results, the guest program should not be allowed to read from or write 
into the runtime's memory area and continue on its way. 

If a software translation table with protection checking is implemented 
(Figure 3.6), then such an access violation can easily be detected as part of the 
translation process. The runtime maintains access privileges in the memory 
map, so the runtime itself is protected. Although effective, this method would 
be quite slow. 

A higher-performance solution is used in the Omniware VM (Lucco, Sharp, 
and Wahbe 1995; Wahbe et al. 1993). In this system, underlying host hardware 
is used for address translation (as in Figure 3.9), but protection checking is 
done in software. To streamline software protection checking, guest data and 
code are divided into power-of-2-sized segments. By relying on such segments, 
checking can be done fairly efficiently via a single shift (to extract the segment 
address bits) and a comparison. If only one data segment is active at any given 
time, then the address bits of the currently accessible segment can be held in 
a host register, making the comparison process even faster. Furthermore, by 
analyzing program control flow, optimizations similar to the ones used in HLL 
VMs for reducing null pointer and array range checks (Section 6.6.2) can be 
applied. This reduces the overhead even more, resulting in a reported total 
overhead of about 10% (sometimes less). Although this technique protects the 
runtime from out-of-bounds accesses made by the guest, forcing power-of-2 
segments may compromise intrinsic compatibility by putting restrictions on 
the memory address space that are not present on a native platform. 

A method that uses underlying hardware for both address translation and 
protection checking is found in the Dynamo system (Bala, Duesterwald, and 
Banerjia 2000). With this method, the runtime is responsible for calling appro- 
priate host OS routines to set the memory protections. Execution is divided 
into two modes. In emulation mode translated guest code is executing; at all 
other times, including when the binary translator is generating code, the VM 
is in runtime mode. It is only when the VM is in emulation mode that the 
runtime code and data must be protected from the translated code. Conse- 
quently, the memory protections should be different when in emulation mode 
and runtime mode. 
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Figure 3.16 Memory Protection Settings Using Cached Translated Code. The protections for runtime mode 
are on the left and for emulation mode they are shown on the right. 

Figure 3.16 illustrates memory protections during the time spent in runtime 
mode and during emulation mode. In runtime mode, the runtime code is 
executable; the runtime data structures are all accessible with read and/or write 
permissions. The code cache is read/writeable because it must be accessed and 
modified during the translation process. In emulation mode, all the runtime 
data structures become inaccessible and the code cache is execute-only; the 
only data that can be accessed is in the guest's memory image. 

To change the protections based on the mode, the runtime uses a system 
call, e.g., Linux mprotect (), to change the privilege of the runtime data and 
code to no-access and the code cache to execute-only, just prior to switching 
from runtime mode to emulation mode. When control is returned to the run- 
time, it can reestablish read/write privileges. This leaves the problem of the 
emulation software attempting to jump or branch into the runtime region. 
This is checked as part of the interpretation and/or binary translation process. 
During interpretation, branch and jump destinations can be explicitly checked 
by the interpreter. For translated code, all branches and jumps within a trans- 
lated code block are to direct addresses within the block itself. All indirect 
jumps or branches that may leave a translated code block are done through 
either the map table or link pointers in the translation block. Both of these 
are written by the runtime, and it can check the addresses at the time they are 
written. 
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This method is effective, but it suffers from a relatively high overhead 
whenever there is a mode switch. However, if code caching is effective (and it 
usually is), this overhead is rarely suffered after the guest's instruction working 
set has been translated. 

If guest registers are mapped into the host memory space, another protec- 
tion problem remains, however. Ordinarily, registers are naturally protected 
from memory load and store instructions because they are in their own separate, 
small address space and can only be accessed directly via register designa- 
tors. If the guest register context block is mapped into the host memory 
space, however, a rogue load or store in translated guest code can conceiv- 
ably access the memory-mapped registers. If this were to happen, behavior 
would differ from the native guest program, and results would likely be 
corrupted. A memory-mapped register region is not shown in Figure 3.16, 
but it would be a read/write area that exists outside the guest's normal memory 
image. 

Mapping guest registers to memory is often hard to avoid. It is practically 
mandatory if the number of source registers is more than the number of target 
registers. It is also an important feature ofsame-ISA optimization (Section 4.7), 
where some optimizations may increase register "pressure," leading to spills of 
register contents to memory. 

This is a place where it is important to distinguish between intrinsic and 
extrinsic compatibility. For intrinsic compatibility, there must be some way to 
protect the memory-mapped registers no matter what guest software tries to 
do, and a solution is to rely on software protection checking of loads and stores 
(as discussed earlier in this section). For extrinsic compatibility, a solution is 
to certify that a given program has no bugs that cause loads or stores to make 
accesses outside declared program data structures. One would ordinarily hope 
that programs satisfy this property, but nevertheless its requirement for correct 
operation means that intrinsic compatibility is not achieved. 

Emulation is at the heart of a process-level VM, and the emulation engine 
can have a relatively sophisticated architecture of its own. Instruction emula- 
tion was the topic of Chapter 2. Both interpretation and binary translation 
were discussed at length. In this section, we discuss the integration of 
instruction emulation into an overall VM. We focus on high-performance 
emulation engines; lower-performance versions are relatively straightforward 
subsets. 
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For optimal performance, the emulation engine typically combines mul- 
tiple emulation methods, for example, interpretation and binary translation. 
After initialization, the emulation engine begins interpreting the source binary 
and may later switch over to translation or even to optimized translation. 
The next section describes the important performance tradeoff involved, and 
the subsequent section describes the overall structure of a high-performance 
emulation engine. 

3.5.1 Performance Tradeoff 

To understand the basic framework that is typically used for high-performance 
emulation, it is important first to consider a key performance tradeoff among 
the emulation methods. This tradeoff was suggested at the end of the last 
chapter and involves start-up time versus steady-state performance for a 
specific emulation technique (e.g., translation or interpretation). 

The start-up time is a one-time cost for converting code in one form to code 
in a different form prior to emulation. Examples include converting an original 
binary into an intermediate interpreted form, and full binary translation to the 
target ISA. In same-ISA dynamic optimizers the conversion may consist of code 
optimization without converting to a different ISA, but there is a start-up time 
cost for doing so. On the other hand, simple decode/dispatch interpretation 
requires no initial conversion and therefore effectively has a zero start-up time. 

Steady-state performance can best be expressed as the average rate at which 
instructions are emulated, e.g., the time required per emulated instruction, 
whether emulation is being done via interpretation or via translation. 

The overall time for emulating an instruction N times is expressed as 
S + NT, where S is the one-time start-up overhead for the given instruction 
and T is the time required per emulation in steady state. The critical perfor- 
mance tradeoffis illustrated with an example shown in Figure 3.17. The start-up 
time for binary translation is 1000 cycles and T is two cycles per instruction. 
For interpretation, start-up time is zero cycles and T is 20 cycles per inter- 
preted instruction. The total emulation time for binary translation starts at 
1000 and slopes upward very slowly. On the other hand, interpretation time 
is initially much lower than translation and climbs steadily, until it eventually 
surpasses translation time. That is, there is a performance crossover point. If 
N is small, then interpretation requires fewer cycles. If N is large, then binary 
translation is better overall. In the example, the tradeoff point occurs when 
N is approximately 55; that is, if N is less than 55, interpretation gives better 
overall performance; if N is larger than 55, then it is worthwhile to perform 
binary translation. 
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3.5.2 Staged Emulation 

Based on the performance tradeoffjust described, a typical high-performance 
emulation framework implements multiple emulation methods and applies 
them in stages (Hansen 1974; H61zle and Ungar 1996). Figure 3.18 illustrates 
a staged emulation framework containing both an interpreter and a binary 
translator. These are controlled by the runtime's emulation manager. 

When a specific program is to be emulated, it is difficult to predict in 
advance how many times instructions in the program will be emulated, so it 
is difficult to know which emulation method will be optimal. Consequently, 
the process begins by emulating code blocks with a low start-up overhead 
method, such as interpretation, as shown in Figure 3.18. As interpretation 
proceeds, profile data is collected. (Profiling will be described in greater detail 
in Chapter 4.) Among other things, this data indicates the number of times 
a particular instruction or block of instructions has been emulated. After this 
number reaches some threshold level (e.g., 50 times), the emulation manager 
essentially predicts that this block of instructions is likely to be emulated fre- 
quently in the future, and it invokes the binary translator to perform a full 
binary translation. Thereafter, the block of code is emulated via the trans- 
lated code. One can take the earlier scenario even further. If a translated block 
is used very frequently, then it may be selected for additional optimizations, 
which may be more time consuming upfront, but where the higher steady-state 
performance more than pays for the additional optimization time. 
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An Emulation Framework That Switches Between Interpretation and Binary Translation, Depending 
on the Performance Tradeoff. Solid lines show data transfers; dashed lines show the flow of control within 
the emulation engine. 

Figure 3.19 shows the emulation process in more detail. The interpreter is 
used until a branch or jump is reached, and at that point the source-to-target 
PC map table is accessed (see Figure 2.28). If the PC hits in the table, then 
the next code block has been translated, and control is transferred to the code 
cache. Consequently, execution remains in the code cache, possibly following 
many linked translated blocks until a block without a forward link is reached. 
At that point control is transferred back out to the emulation engine. When a 
PC misses in the map table, the profile database is checked to see if the next 
dynamic basic block is "hot," i.e., whether it has been executed a number of 
times more than the preset threshold. If not, the profile data is updated and 
control passes back to the interpreter. Otherwise, the next dynamic block is 
translated and placed into the code cache. If the cache is full, the cache manager 
is invoked to free up space. Before a newly translated block is placed into the 
cache, the map table is updated, and links with existing blocks in the code cache 
are established (see Section 2.6.3). 

If either the interpreter or the translated code reaches a system call instruc- 
tion, control is transferred back to runtime and the OS emulator may be 
invoked. When control eventually returns to the emulation engine, it does a 
PC map table lookup and proceeds with emulation. If the translated code gen- 
erates an exception condition, a host OS signal is delivered to the runtime and 
control is transferred to the exception emulator. Similarly, if the interpreter 
encounters an exception condition, control is transferred to the exception 
emulator. 
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The staged emulation strategy just described begins with interpretation 
and moves to binary translation of basic blocks, as described in the previous 
chapter. A common additional optimization is to combine basic blocks into 
larger units for translation and optimization. A frequently used translation 
unit of this type is the superblock, a block of code with a single entry point 
but possibly several exit points. Superblocks and superblock optimization are 
discussed in Section 4.3. The techniques discussed in this chapter work with 
basic blocks as well as with larger translation units, such as superblocks. The 
three levels of e m u l a t i o n -  interpretation, binary translation of basic blocks, 
and binary translation with optimization (on superblocks) - -  allow a number 
of staged interpretation strategies. For example, here are two commonly used 
strategies. 

Interpret with simple profiling. Then when a threshold is reached, generate 
and optimize superblocks that are held in the code cache. This method is 
used in the FX!32 system (Hookway and Herdeg 1997), the Aries System 
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(Zheng and Thompson 2000) and the HP Dynamo same-ISA optimizer 
(Bala, Duesterwald, and Banerjia 2000). 

Skip the interpretation stage and immediately perform simple binary 
translation on dynamic basic blocks; the translation includes code for gath- 
ering profiling data on the basic blocks. As translated basic blocks become 
hot, form superblocks and optimize the superblocks. This method is used 
in the Sun Wabi system (Hohensee, Myszewski, and Reese 1996), the 
IA-32-EL system (Baraz et al. 2003), and the Mojo same-ISA optimizer 
(W.-K. Chen et al. 2000). 

3~ Exception Emulation 

Exception conditions can occur at virtually any time during instruction execu- 
tion, often unpredictably. The correct handling of exceptions poses some of the 
more difficult challenges for compatible emulation. We use the term exception 
to denote any trap or interrupt. A trap is the direct result of program execution 
and is produced by a specific instruction. An interrupt is an external event, 
for example, caused by the I/O system, and is not associated with a particular 
instruction. 

We use the conventional definition of exception preciseness ~ i.e., an 
exception is precise if (1) all instructions prior to the faulting instruction have 
been executed, (2) none of the instructions following the faulting instruction 
have been executed, and (3) without loss of generality, the faulting instruction 
has not been executed. (If the ISA semantics say that it should be executed, 
then this adjustment can easily be made.) We assume that all exceptions in 
both the source and target ISAs are defined to be precise. In the case of an 
external interrupt, we define preciseness with respect to some instruction being 
executed at approximately the same time as when the interrupt occurs. 

For a process VM implementation, we further divide exceptions into the 
following two additional categories. 

A B I  visible ~ These are exceptions that are visible at the ABI level. They 
include all exceptions that are returned to the application via an OS signal; 
i.e., they are a function of the source operating system as well as of the 
user-level ISA. For example, if the guest OS allows a signal for a memory 
protection fault, then the trap becomes ABI visible. This category also 
includes those exceptions that cause the application to terminate (as defined 
by the guest OS) because at the point of termination a precise application 
state may be required. 
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A B I  invisible ~ There is no signal and the application does not terminate 
when the exception occurs because the ABI is essentially unaware of its 
existence. An example of an invisible exception is a timer interrupt that the 
OS uses for scheduling. Depending on the signals supported by the host 
OS, page faults may also fall in the category of ABI-invisible exceptions. 

3.6.1 Exception Detection 

Traps, caused as a by-product of instruction execution, are the more difficult 
type of exception to deal with, and we discuss them first. During instruction 
emulation, traps can be detected in one of two ways. First, a trap condi- 
tion can be explicitly checked as part of an instruction's interpretation routine. 
For example, overflow caused by an add instruction can be detected by explicitly 
comparing the input operands and the final sum. We refer to this as interpre- 

tive trap detection. If the interpreter routine finds a trap condition, it jumps 
to a runtime trap handler. Second, a trap condition can be detected by host 
platform hardware when an instruction in the emulation code is executed. 
That is, a target instruction traps because the corresponding source instruc- 
tion being emulated would also have trapped. If there is a signal supported 
by the host OS that matches the trap condition, then the signal can be deliv- 
ered to the runtime trap handler. Clearly, ignoring efficiency issues, the first 
method, checking via interpretation, can always be done. On the other hand, 
the more efficient second method is dependent on the semantic match between 
source and target ISAs, details of the emulation process, and support from the 
host OS. 

In order for the host platform to support detection of exceptions as a 
by-product of emulation, a key element is the host OS signal mechanism. To 
implement this method, the runtime should register all exceptions for which 
the host OS supports signals at the time the runtime is initialized. However, 
as emulation proceeds, if the guest application happens to register a signal by 
performing a system call, the runtime OS emulation code intercepts the system 
call and records it as a "guest-registered" signal in a table. 

During emulation, when an exception occurs that causes a trap to the host 
OS, the host OS delivers the appropriate signal to the runtime. At that time, 
the runtime checks the guest's signal table to see if the guest had registered 
the signal. If so, the runtime adjusts the guest state so that it appears that the 
guest's OS is signaling, and it transfers code to the guest's signal-handling 
code. Otherwise, the runtime handles the trap condition indicated by the 
signal. 
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There are three cases to be considered, depending on the nature of the 
trapping condition. 

1. The trapping condition is also ABI visible on the host platform. In this 
case, the runtime signal handler will be invoked, and it can take the proper 
action as just described. 

2. The trapping condition is not ABI visible in the host platform. In this case, 
the earlier approach will not work and explicit checks for the trapping 
condition will have to be placed in the emulation code along with a jump 
to the runtime if the trap condition holds; i.e., interpretive trap detection 
must be used. 

3. A trapping condition is visible in the host ABI but not in the guest ABI. 
In this case, there may be extraneous traps. Here, the runtime trap handler 
will have to determine whether the trap condition would have been visible 
to the source instruction. 

In some cases, multiple guest trap types may map to one host trap type. 
For example, the host may have a single exception condition that covers both 
integer and floating-point overflow, whereas the guest may have separate excep- 
tions for the two types of overflow. In this case, the runtime must inspect the 
trapping instruction to determine the exception to be reported to the guest. 

3.6.2 Interrupt Handling 

Some interrupts may be ABI visible; that is, the application may register a signal 
handler for certain interrupt conditions. When interrupts occur, they do not 
necessarily have to be handled immediately because they are not associated with 
any particular instruction. In general, there is an acceptable response latency 
during which the emulated application may be put into a precise state before 
control is transferred to the interrupt handler. Typically, at least several tens 
or hundreds of instructions can be emulated within the acceptable response 
latency. 

Because the runtime has registered all signals, if an interrupt does occur, the 
signal will first be delivered to the runtime. If interpretation is being performed, 
the current interpretation routine can be completed before the runtime passes 
control to the guest interrupt handler. A realistic interrupt response latency is 
usually long enough to accommodate the completion of an interpreter routine. 

If binary translation is being used for emulation, however, the situation is 
more complicated. When an interrupt occurs and a signal is delivered to the 
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runtime, execution within a block of translated code may not be at an inter- 
ruptible point. Generally, when code is translated, side tables are maintained so 
that if a source instruction traps, it is possible for the runtime to provide a cor- 
rect precise state for the trapping instruction (these mechanisms are described 
later). This is not the case with interrupts, because essentially every instruction 
is interruptible and the constraints for precise state recovery at arbitrary points 
in the translated code would be too restrictive. 

A further complication of binary translation is that when the runtime passes 
control to chained translation blocks, it may be an arbitrarily long time before 
control gets passed back to the runtime. If, for example, execution is within a 
loop of several translation blocks chained together, a very long time may elapse 
before the loop is exited. This means that special steps may have to be taken 
to provide an acceptable interrupt response time. To summarize the problem, 
when an interrupt signal is delivered to the runtime, the translated code may 
not be in an interruptible state. Yet if the runtime passes control back to the 
translated code and "waits" until the code returns to the runtime (at which time 
it is in an interruptible state), the runtime may not reassume control within a 
required interrupt response time window. 

To solve the interrupt response problem, the following steps can be 
followed. (1) When the interrupt occurs, a signal is sent to the runtime and 
control is transferred from the currently executing translated code block to the 
runtime. (2) After receiving the signal, the runtime eliminates the possibility of 
a chained loop within the translated code blocks by locating the currently exe- 
cuting translated block and unlinking it from subsequent translation blocks, 
e.g., by overwriting the link at the end of the current translated code block 
so that it jumps back to the runtime when it is finished. (3) The runtime 
returns control to the translated code at the point where the interrupt signal 
was received. (4) The current translation block finishes and then jumps back 
to the runtime. (5) The runtime handles the interrupt. Note that this method 
assumes translation blocks have two properties: (a) There are no loops inter- 
nal to a single translation block; (b) at the end of each translation block, the 
target code is at a precise interruptible state. Both of these assumptions are 
typically provided in binary translation systems, and neither unduly burdens 
the translator or inhibits performance. 

3.6.3 Determining Precise Guest State 

After an exception condition has been discovered, the runtime must be able 
to provide the proper precise state for the emulated guest process. If interpre- 
tation is being used, this is fairly straightforward; but if binary translation is 
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used, the process of determining the precise state may be much more com- 
plex, especially if the translated binary instructions have been reordered or 
otherwise optimized. The following subsections discuss precise state restora- 
tion during both interpretation and simple binary translation; the difficulties 
brought about by code reordering and optimization are discussed in the next 
chapter. 

Interpretation 

With interpretation, instructions are typically emulated one at a time in the 
original program sequence. Consequently, the source PC is updated as inter- 
pretation proceeds. Furthermore, the correct source state (both memory and 
registers) is updated at each instruction boundary. For example, consider the 
Add interpreter code given earlier in Figure 2.4 repeated here in Figure 3.20). 
If the add overflows, it may be detected via a trap when the sum = source1 
+ source2 statement is executed. At this point in the interpreter routine, the 
source PC has not yet been updated and still points to the (overflowing) add 
integer instruction. The result register RT has not been updated (it can be 
updated via the runtime signal handler if specified by trap semantics). 

The signal handler in the runtime will be provided with a target PC that 
points to the sum statement in the interpreter routine. However, the runtime 
signal handler should use the source PC (maintained during interpretation) to 
go back into the original source code to find the source instruction that was 
being emulated at the time the trap occurred. Note that using the source PC 
maintains portability of the interpreter code; i.e., its behavior is not tied to 
specific locations of interpreter code. 

Figure 3.20 

Add: 
RT = extract(inst,25,5) ; 
RA = extract(inst,20,5); 
RB = extract(inst,15,5) ; 
s o u r c e 1  = r e g s [ R A ]  ; 
s o u r c e 2  = r e g s [ R B ] ;  
sum = s o u r c e 1  + s o u r c e 2 ;  
r e g s [ R T ]  = sum; 
PC = PC + 4; 
I f  ( h a l t  el i n t e r r u p t )  g o t o  e x i t ;  
i n s t  = code [PC] ; 
opcode = extract(inst,31,6); 
e x t e n d e d _ o p c o d e  = extract( inst, lO,lO); 
r o u t i  ne = d i s p a t c h  [ o p c o d e ,  e x t e n d e d _ o p c o d e ]  ; 
g o t o  * r o u t i n e ;  

Add Interpreter Routine. Overflow during the add operation may trap and cause a signal to be 
delivered to VM software. The source PC will point to the trapping source instruction. 
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Binary Translation: Locating the Program Counter 

With binary translation, the restoration of state following an exception begins 
by determining the source PC of the faulting instruction. Then given the PC, 
the rest of the precise application state is recovered. In this subsection we 
focus on determining the source PC of the trapping instruction. 

One difficulty in determining the PC of the trapping source instruction 
is that at the time the trap occurs, the runtime is provided with the PC of 
the translated target code rather than the source PC. Unlike interpretation, 
however, binary translation typically does not keep a continuously updated 
version of the source PC. This means that there must be some indirect mech- 
anism for finding the source PC of a faulting instruction, given the translated 
target PC. In order to track down the corresponding source instruction, it is 
useful to keep PC-related information in a side table. 

For recovering the precise source PC, a reverse translat ion side table may 
be used (see Figure 3.21). The most straightforward implementation of a 
reverse translation table contains <target PC, source PC> pairs, indicating 
for each target PC (i.e., an address in the translated binary) the corresponding 

Figure 3.21 
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(4) to find the corresponding source PC that caused the trap. 
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source PC from which it was translated. Then given the PC of a trapping target 
instruction, the runtime can scan the table for the trapping instruction's PC; 
when it finds a match, the corresponding source PC, the second half of the 
pair, becomes available. 

The table, in the form just described, has a couple of inefficiencies. First, the 
target PC lookup may require a linear scan of the table. Second, the table will 
be fairly large; because it holds a pair of address pointers for each translated 
instruction, the table could easily be larger than the translated code. The linear 
scan can be replaced with a binary search if the target PCs are in sequential 
numerical order. For some code cache management algorithms, e.g., those 
using FIFO replacement, this will be the case naturally. And, as we will see in 
Section 3.8.2, FIFO replacement is one of the better strategies for code caches. 

The table size can be reduced by taking advantage of locality in target and 
source PC values. For example, one could hold a subset of the PCs to their 
full length, with others being expressed as deltas from the full-length versions. 
The PCs at the beginning of each translation block can be kept in full, while 
PCs within the translation block are deltas from the initial PCs. A further 
simplification can be made if the target ISA has fixed-length instructions. In 
this case, the side table needs to contain only an array of source PCs that can 
be accessed directly via the target PC values. 

An additional complication occurs if a given target instruction corresponds 
to more than one source instruction (so the target PC corresponds to more 
than one source PC). This can happen, for example, when a RISC ISA is 
mapped to a CISC ISA. Two RISC instructions, a load instruction and an 
ALU instruction, may be translated to a single CISC instruction that both 
loads from memory and performs an ALU operation. In this case, when a trap 
occurs, it may be difficult to identify which source instruction is the one with 
the exception (although in the example just given this is not the case). A related 
complication occurs when the translated code is rearranged or optimized so 
that the target instructions are executed in a different program order than are 
the corresponding source instructions. Both of these issues will be discussed in 
greater detail in Chapter 4; generally speaking, the solution is to identify the 
beginning of the translated block that contains the trapping source instruction 
and then to return control to the runtime, which can analyze and/or interpret 
the original source code to sort out the correct source state and PC value. 

To support the required runtime analysis (and to reduce side table space 
requirements), the side table can be organized according to translation blocks, 
with an entry for each block. This entry holds the beginning target PC along 
with enough information to allow reconstruction of the complete translated 
code block. Refer to Figure 3.22. If the translation block is contiguous, this 
information would be no more than a count of the number of translated 
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Figure 3.22 Using an Optimized Side Table to Find the Trapping Source PC. (1) The trap occurs and (2) a signal 
delivers the target PC to the runtime. (3) The runtime then performs a search to find the trapping 
translation block. (4) The table entry contains enough information to allow analysis and~or interpretation 
of the source code blocks. (5) To find the source PC corresponding to the trapping target PC. 

source instructions. If the block is noncontiguous, then a sequence of start 
source PCs and counts would suffice or, even simpler, the initial source PC 
and control flow information used when forming the initial translation, e.g., 
the taken branches and/or jump targets. Given this information, the runtime 
interprets the source code to identify the trapping source instruction. To opti- 
mize the process, a hybrid side table structure can be used. For example, if the 
same target instruction frequently traps, then its corresponding source PC can 
be cached in a side table to avoid repeated analysis and interpretation. 

Binary Translation: Register State 

When an exception occurs during execution of translated code, the correct, 
precise register state must be restored, just as it would be in the original source 
code. In this subsection, we consider methods that can be used when the 



3.6 Exception Emulation [] 127 

optimization level of a translated binary is relatively low. In particular, it 
is assumed that no code reordering is done and no register state updating 
instructions have been removed due to optimizations. Other, more complex 
register restoration methods are often closely tied to the specific optimiza- 
tion techniques used, and the discussion of these methods is deferred until 
Chapter 4, where binary optimization is covered in depth. 

The simplest case occurs when the emulator uses a consistent source to 
target register mapping and register state is updated in the same order in both 
source and translated code sequences. By a consistent register mapping, we 
mean that the mapped location of a specific source register (either in a target 
register or in memory) remains the same throughout emulation. In this case, 
the source register state can be recovered from the target register state at any 
point. 

A slightly more complex case occurs ifthe source-to-target register mapping 
varies between or even within the translation blocks, but the order of register 
updates is the same in both source and target code. In this case, a side table for 
the translated code blocks can be used to indicate how the register mapping 
should be restored. Alternatively, as in the case of trap PC identification, the 
source code can be analyzed again from the beginning of a translation block, 
the current register assignments regenerated, and the resulting information 
used to restore the correct source register state. 

Binary Translation: Memory State 

Memory state is changed by store instructions. As long as the source program 
store instructions are all emulated in the original program order, it is fairly 
straightforward to maintain precise memory state. If, in addition, all potentially 
trapping source instructions are emulated in the same order with respect to 
the store instructions, then the memory state at the time of a trap can be 
guaranteed to be consistent with the source PC that is recovered. 

If code is reordered, then, as we shall see in Chapter 4, the presence of 
memory stores constrains the reordering that may be done. In particular, 
a potentially trapping instruction cannot be moved below a store that follows 
it in the original source code. Otherwise, because memory has been overwritten, 
the memory state will not be recoverable if the moved instruction does trap. 
Of course, there are optimizations (or hardware) that can buffer memory 
stores, but we defer discussion of these techniques to later chapters. 

On the other hand, if a trapping instruction is moved ahead of a store, then 
it may be possible for the runtime trap-handling code to emulate (typically 
via interpretation) the store instruction to complete the store update. Again, 
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because it is tied in with code-optimization methods, details of this technique 
are deferred to Chapter 4. 

The operating system interface is a key part of the ABI specification, just as the 
user-level instructions are. However, because a process-level VM is required 
only to maintain compatibility at the ABI level, it does not emulate the indi- 
vidual instructions in the guest's OS code; rather it emulates the function or 
semantics of the guest's OS calls, typically by converting them to host OS 
operations. There are two important cases to be considered, one of which is 
easier to implement than the other (although neither is easy!). In the first case, 
the guest and host operating systems are the same; e.g., they are both Linux or 
Windows. The other, more difficult case occurs when the operating systems 
are different. In this section, we discuss both cases, beginning with the simpler, 
"same OS" case. 

3.7.1 Same-Operating-System Emulation 

A runtime emulates a guest's OS by a combination of host OS calls and oper- 
ations performed by the runtime itself. The basic emulation techniques are 
discussed briefly in the following subsections. 

Operating System Call Translation 

When the guest and host operating systems are the same, the problem of OS 
call emulation is primarily one of matching the OS interface syntax. The OS 
functions required by the guest are available in the host, but it may be necessary 
to move and format arguments and return values, possibly forming some data 
conversions in the process. For example, an OS running on a platform with 
relatively few registers, such as the IA-32, may pass arguments in a memory 
resident stack, while the same OS running on a RISC-based platform with 
many registers may pass arguments in registers. In this case, arguments must 
be copied from the stack to registers, or vice versa, when emulating a system 
call. This wrapper code is illustrated in Figure 3.23, where source code is 
translated to target code. The system call in the source code is converted to a 
jump (or procedure call) into the runtime. The runtime then executes wrapper 
code that copies and/or converts arguments from the guest to the host and then 
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Figure 3.23 System Call Conversion When Guest and Host Operating Systems Are the Same. 

makes the appropriate system call on the host platform. An alternative, faster 
implementation would inline the wrapper code and guest system call. 

Runtime-lmplemented Operating System Functions 

Not all guest OS operations need to be translated and passed on to the host 
OS. Depending on the runtime implementation and emulation method, some 
calls may be handled directly by the runtime. One such case is a guest OS call 
to establish a signal on behalf of the emulated guest application. Recall that the 
runtime, at the beginning of program emulation, establishes signal handlers for 
all signals supported by the host OS. Any exception conditions get reported to 
the runtime first so that it may provide the correct state to the guest process and 
to ensure that the runtime always retains control of the emulation process. If 
the application tries to establish a signal handler via a system call, the runtime 
handles this call directly by recording the application's signal in a side table 
and then returning to the guest process. Subsequently, if the guest application 
should trigger the signal, it first passes through the runtime before it is actually 
delivered to the application. 

Another important area where the runtime handles guest OS calls directly 
is memory management. Because it essentially controls the process VM on 
which a guest application is running, it is the runtime that is responsible for 
the overall memory management. So, for example, if the guest application 
asks for more memory via the Linux brk() system call, then, depending on 
the runtime's memory management implementation, the call may be han- 
dled directly by the runtime and does not have to be passed to the host OS. 
The HP Dynamo technical report (Bala, Duesterwald, and Banerjia 1999) and 
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Bruening's doctoral dissertation (Bruening 2004) contain fairly thorough dis- 
cussions of the memory management functions performed by the runtime. As 
another example, if runtime emulation routines check memory protection via 
a software table (see Section 3.4.1) and the guest application makes a system 
call to change memory access privileges, then the privilege change should be 
emulated at the level of the runtime by modifying the software mapping table. 

Nasty Realities 

The discussion of OS emulation just given leaves the impression that it is a 
fairly straightforward process. It is not. One thing that simplifies our discus- 
sion is that we tend to focus on the Linux operating system for examples 
(although other versions of the UNIX OS are similar). Linux OS communica- 
tion is primarily through OS calls contained in the ABI and through the signal 
mechanism. Even so, the foregoing discussion has been simplified. 

The Windows OS is much more complex, both in the number of ways a user 
application and the OS communicate with each other and in the communi- 
cation mechanisms themselves. Probably the most thorough discussion of the 
problems and their solutions are contained in Bruening's doctoral dissertation 
(Bruening 2004) and in a related DynamoRIO paper (Bruening, Duesterwald, 
and Amarasinghe 2001). The major issues are briefly summarized next. A fur- 
ther complication when dealing with Windows is that documentation is at the 
API level (i.e., at the level of the user libraries that call the OS) rather than the 
ABI level, where the calls actually occur. 

Three important "abnormal" user/kernel communication mechanisms in 
Windows are callbacks, asynchronous procedure calls, and exceptions. As 
described by Bruening, all three can be emulated in similar ways, so we focus 
on callbacks (Figure 3.24). Windows is essentially an event-driven OS; for 
example, a mouse click is an event that may cause input to be delivered to 
a user program. Events are passed to a user process (or a user thread, to 
be more precise) through message queues; at certain points in its execution, 
the OS checks a thread's message queues. If it finds an event, it calls a user 
routine (a callback handler) that has been registered for handling the event. 
This involves saving the context of the user thread and initiating a new context 
to run the callback handler. After setting up the callback handler, the Windows 
OS returns to user mode through a special dispatch routine. Then when the 
callback handler is finished, it normally reenters the OS kernel, where a check 
for further pending messages is made before returning to the original user 
program. 

A challenge in implementing callbacks in a process VM is to maintain 
the runtime's overall control of the VM and to manage the execution of the 
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Method for Implementing Windows Callbacks. (a) Typical Windows control flow when a message queue 
contains a message that invokes a callback handler. (b) To emulate and maintain control during callbacks, 
the runtime intercepts the transfer both to and from the callback handler. 
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callback routine. First, the runtime has to gain control before the callback 
handler is entered. This is done by modifying the dispatch routine by placing a 
jump to the runtime at the beginning of the routine. At that point, the runtime 
can save any of its state that is not saved by the OS during the switch to the 
handler (as is the case in the DynamoRIO system). Then to detect a return 
from the callback, the runtime looks for a particular OS call (or a call to an 
API routine, which returns control to the OS); at that point, it can restore any 
saved runtime state prior to the switch back to the original user context. 

3.7.2 Different-Operating-System Emulation 

Although it may bear some superficial similarity to instruction set emulation, 
emulating an OS interface is fundamentally different than emulating instruc- 
tion execution. An ISA reads data from memory, executes instructions that 
transform the data, and writes data values back to memory. Instruction sets 
are logically complete, in the sense that any function can be performed on 
input operands to produce a result, given enough time. Furthermore, most 
ISAs perform the same basic functions: memory load/stores, arithmetic/logical 
operations, and branches/jumps. Hence, with ISA emulation it is not a matter 
of whether emulation can be done, just how efficiently it can be done and how 
long it will take. 

In contrast, the OS deals with the outside world and with real I/O devices. 
Furthermore, an operating system implements and manipulates fairly complex 
entities (e.g., processes, threads, files, message buffers) with a well-defined set 
of operations. In this environment it is quite possible that the host OS simply 
cannot provide a function required by a guest OS, no matter how much time or 
human ingenuity is available. A simple example is a system call that returns the 
time of day. If the host OS does not maintain a time-of-day clock and the guest 
OS does, then no matter how much effort is put into it, the guest OS will not be 
able to coerce the host OS into providing the correct time of day. Similarly, the 
guest OS may have calls that support certain disk file operations that are simply 
not supported by the host. There are also semantic mismatch problems, where 
no combination of host operations can exactly emulate a guest operation; i.e., 
if a number of operations are combined, there may be additional side effects. 

It is difficult to come up with a set of overall rules or strategies for different- 
OS emulation because of the wide variety of cases that must be handled. 
Consequently, OS emulation is very much an ad hoc process that must be 
implemented on a case-by-case basis and that requires considerable knowledge 
of both the guest and host operating systems. The process is somewhat similar 
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to porting code from one OS to another m but in some respects it is more dif- 
ficult, because with porting, one can examine the original code as a whole and 
then make modifications using an overall strategy. With emulation, however, 
the conversion must be done dynamically, with relatively little context within 
which a particular system call can be analyzed. 

In general, a guest OS call is supported by a runtime wrapper routine, as 
described earlier. A single guest call may require multiple host OS calls for 
emulation, or the runtime itself may perform some or all of the emulation 
rather than passing it to the host OS. 

Example: Enforcing File Limits 

To a large extent, both Linux and Win32 provide similar functionality with 
respect to file I/O. There are other cases, however, where they differ, for 
example, in setting file limits. When a Linux process is created it can be given 
an upper limit on the size of files that it can write, RLIMIT_FSIZE. There 
is no corresponding limit in Win32. Consequently, an interesting emulation 
problem occurs when a Linux guest process is run on a Win32 host. In this 
case, it is up to the runtime to maintain the Linux RLIMIT_FSIZE. It can 
do this by holding a table of file limits, with a table entry for each of the 
guest's open files. Then as part of the wrapper for disk write functions, the 
runtime can maintain the file limit table (and enforce the required limits). In 
addition, the Linux calls getr]  imi t ( )  and se t r ]  imi t ( ) ,  which read and write 
the limit, should be implemented directly by the runtime without calls to the 
Win32 host. 

Practically speaking, if the guest and host operating systems are differ- 
ent, then there is relatively little likelihood that a completely compatible OS 
emulation can be performed; some compromises and approximations will be 
required. A compromise often used is to restrict the set of applications that 
can be emulated (and in the process to restrict the system calls that must be 
emulated). An example is the Wabi system (Hohensee, Myszewski, and Reese 
1996) developed by Sun Microsystems to emulate only certain widely popular 
Windows applications, such as Word and Excel, on Solaris platforms. 

,3o8 Code Cache Management 

The code cache is a central part of a binary translation system, and managing 
the code cache is one of the important emulation-related functions performed 
by the runtime. Although it is similar to a conventional hardware cache in 
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some respects, the code cache differs from a conventional cache memory in at 
least three significant ways. 

1. The cached blocks do not have a fixed size. The size of a code cache block 
depends on the size of the translated target block, and this can vary from a 
few instructions to many tens of instructions. 

2. The presence and locations of the blocks are dependent on one another 
because of chaining. If a translated block is removed from the code 
cache, then any link pointers directed toward the removed block must 
be modified. 

3. There is no copy of the cache contents in a "backing store." After a block 
is removed from the code cache, it must be regenerated from the source 
binary image before it can be placed back into the cache. 

All three of the foregoing have a significant effect on the code cache 
management algorithms that are used. 

3.8.1 Code Cache Implementations 

The code cache itself contains blocks of target code, formed by translating 
source code. In addition to the actual code cache, supporting side tables must 
be provided. Thus far in our discussion, we have identified two key operations 
involving the code cache that must be performed during the overall emulation 
process. 

�9 Given a source PC at the beginning of a block, find the corresponding 
target PC in the code cache, if the translation exists. This is done whenever 
emulation control is to be transferred to the code cache via a source PC, 
e.g., when passing from interpretation to translated code. 

�9 Given a target PC in the code cache, find the corresponding source PC. This 
is done to find the precise source PC when an exception occurs. 

These two operations are performed by the map table (Figure 2.28) and the 
reverse translation side table (Figure 3.22), respectively. 

3.8.2 Replacement Algorithms 

In a practical implementation the size of the code cache is limited, and, depend- 
ing on the working set size of the emulated application, it may eventually fill 
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up with translated blocks. When this happens, some code cache management 
is required to make room for new translations by removing one or more of the 
translated blocks from the cache. Just as with conventional caches, there are a 
number of possible replacement algorithms. However, the differences between 
code caches and conventional caches cited earlier have a significant impact 
on the choice of replacement algorithms. We discuss a number of possible 
replacement strategies in the following subsections. 

Least Recently Used 

A least recently used (LRU) algorithm replaces a cache block that has gone 
unused for the longest period of time. Because of temporal locality, this is 
often a good strategy for conventional caches. Unfortunately, because of the 
specific properties of the code cache, an LRU cache replacement algorithm is 
relatively difficult to implement. First of all, there is an overhead in keeping 
track of the least recently used translation blocks; this would probably require 
a couple of extra memory accesses per block to update LRU information each 
time a block is entered. Second, when an arbitrary block is removed, any blocks 
that are linked to it must have their link pointers updated (to direct them back 
to the VM rather than to the removed block). 

To implement delinking of blocks, backpointers can be added to the overall 
code cache structure. These backpointers can be maintained as part of the 
PC map table (or in a separate side table). In Figure 3.25 an implementation 
is given where they are part of the map table. For each table entry (i.e., for 
each translation block) the backpointers, structured as a linked list, point to 
translation blocks that chain to the given block. When a block is replaced, the 
list can be followed to find and modify all the chain pointers pointing to the 
block. 

A third problem with LRU replacement is that it may select a translated 
block from an arbitrary location in the middle of the translation cache, and the 
new block replacing it may not be exactly the same size as the block (or blocks) 
that it replaces. Clearly this will lead to cache fragmentation and will require 
mechanisms both to keep track ofthe sizes and locations ofunused space and to 
perform occasional compaction of the cache (which will bring along additional 
complications, such as adjusting links connecting code blocks). 

Finally, a somewhat lesser problem is that maintenance of the reverse- 
translation side table (shown in Figure 3.22) becomes more complicated. If 
this table is arranged in order of increasing target PCs, it permits a binary 
search (rather than a linear search) for performing a lookup in the reverse 
translation table. If LRU replacement is used, however, such an order cannot 
be guaranteed for the target PCs. 
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Figure 3.25 Code Cache and PC Map Table. In this example, blocks C and N both link to block B; consequently, 
the map table entry for block B has backpointers to both blocks C and N. 

Because all these difficulties arise in practice, LRU, and LRU-like algorithms 
are not typically used for code caches. Rather, replacement algorithms that 
reduce (or eliminate) backpointer and fragmentation problems are preferred. 
The following subsections describe a number of such code cache replacement 
algorithms, beginning with the simplest and going to the more complex. 

Flush When Full 

Perhaps the most basic algorithm is simply to let the code cache fill and 
then to flush it completely and start over with an empty cache (Cmelik and 
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Keppel 1994). Although this is a brute-force approach, it has some advantages. 
First, larger translation blocks, such as superblocks, are based on frequently 
followed control flow paths, i.e., the directions that conditional branches com- 
monly take. Over time, however, the frequently followed paths may change. 
Flushing provides an opportunity to eliminate control paths that have become 
stale and no longer reflect the common paths through the code. The new trans- 
lation blocks formed after flushing are more likely to be representative of the 
paths currently followed by the code. Second, in systems like Shade, where the 
translation map table is not chained but has a fixed number of entries in each 
row for colliding source PCs (Figure 2.37), a translated block will occasion- 
ally be "orphaned" when its map table pointer is removed to make room for 
another. Flushing removes these orphans and reclaims their code cache space. 

On the other hand, the big disadvantage of the flush-when-full approach is 
that all the blocks being actively used (i.e., the members of the current work- 
ing set) have to be retranslated from scratch, leading to a high-performance 
overhead immediately after the flush. 

Preemptive Flush 

A more sophisticated scheme is based on the observation that many programs 
operate in phases. A phase change is usually associated with an instruction 
working set change. Consequently when there is a program phase change, a 
new region of source code is being entered and a larger percentage of the time 
is spent in block translations, as illustrated in Figure 3.26. By monitoring the 
rate at which new translations are being performed, the code cache can be 
preemptively flushed to make room for the translations of new working set 
members (Bala, Duesterwald, and Banerjia 2000). The number of translations 

Figure 3.26 
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translations is detected, the entire code cache is flushed to make room for a new working set. 
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after the flush will be lower than what would be needed if the cache becomes full 
in the middle of a phase, because retranslations of the working set are avoided. 

Fine-Grained FIFO 

FIFO replacement is a nonfragmenting algorithm that exploits temporal local- 
ity to some extent and is not a brute-force approach, as is complete flushing. 
With FIFO replacement, the code cache can be managed as a circular buffer, 
with the oldest block(s) being removed to make room for the newest. If the 
new block being inserted into the cache is of size n, then the set of oldest blocks 
whose aggregate size is at least n is replaced. The reverse-translation side table 
can be managed in a corresponding FIFO manner. A "head" pointer keeps 
track of the oldest translation block in the cache, and this is the point where 
replacements will begin. 

This scheme overcomes a number of the disadvantages of LRU (albeit at a 
slightly reduced hit rate). However, it still needs to keep track of chaining via 
backpointers because individual translation blocks are replaced. 

Coarse-Grained FIFO 

This scheme partitions the code cache into very large blocks; for example, the 
blocks may be a fourth or an eighth of the entire cache. These large blocks are 
managed on a FIFO basis. With this scheme, the backpointer problem can be 
simplified or eliminated. 

The backpointer problem can be simplified by maintaining the pointers 
only on a FIFO block basis. For example, if a translation block contained in 
FIFO block A links to a translation block contained in FIFO block B, then the 
backpointer list for FIFO block B is updated with a pointer to the translation 
block in A. However, if a translation block links to another block contained in 
the same FIFO block, then no backpointer is needed. See Figure 3.27. When a 
FIFO block is replaced, all the backpointers associated with it are followed to 
remove links from translation blocks coming from other FIFO blocks. Due to 
temporal locality in programs, the number of intra-FIFO block links, which 
do not have backpointers, is likely to be considerably larger than the number 
of inter-FIFO block backpointers, which need to be dealt with when a FIFO 
block is replaced. 

A coarse-grained FIFO approach was proposed in Mojo (W.-K. Chen et al. 
2000), where only two major blocks were used, with no backpointers between 
blocks. Also, note that, in a sense, complete flushing is a degenerate special case 
of coarse-grained FIFO (i.e., it uses only one block). 
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Figure 3.27 Code Cache Managed with a Coarse-Grained FIFO. Backpointers are needed only for chain pointers 
that cross FIFO replacement block boundaries. 

Performance 

A study of code cache replacement algorithms (Hazelwood and Smith 2004), 
based on the Dynamo/RIO dynamic optimization system (Bruening, Garnett, 
and Amarasinghe 2003), determined that a coarse-granularity FIFO scheme, 
e.g., dividing the cache into eight large blocks, tends to have lower overhead 
than either fine-grained FIFO or flush when full. The graph in Figure 3.28 shows 

Figure 3.28 Relative Overhead of FIFO Code Cache Management Schemes. Overheads are relative to a flush-when- 
full method (Flush). 
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overhead (relative to flush when fuU) averaged over a number of benchmark 
programs, including SPEC benchmarks and some Windows programs. The 
code cache size was artificially restricted for each benchmark to determine 
performance effects when the code cache is stressed (when it is not stressed, 
then the replacement algorithm makes little difference). 

As the last step in our development of process VMs, we consider the integration 
of guest processes into the host system environment. In a system that supports 
process VMs, it is desirable to make the installation and execution of guest 
applications as transparent as possible, i.e., without the users' having to take 
any extraordinary actions. The goal is to give the user seamless, transparent 
access to both host and guest applications. 

The major issue in supporting an integrated environment is the encapsu- 
lation of all guest code in an emulation environment at the time it is loaded. 
In general, guest code may be loaded at the time of process creation, or it may 
be dynamically linked later. The type of environment that is to be supported 
is illustrated in Figure 3.29. Here we see that a guest process may create either 
another guest process or a host process; similarly, a host process may create 
either a host process or a guest process. And as a guest process executes, it 
can call a dynamically linked library (DLL) routine that may be a guest routine 
(and hence emulated), or it may call a natively coded host routine. In general, 
a host process will not call a guest DLL, so we do not consider this case. 

The environment just described achieves a fairly high level of interoper- 
ability between guest and host processes. In some cases, especially if the guest 
and host operating systems are different, the level of interoperability may 
be less. For example, the ability for a guest process to invoke a host DLL 
may be impaired. 

In order to implement the system illustrated in Figure 3.29, there must be 
two different loaders: one for host binaries and the other for guest binaries. 
There are several approaches for invoking the correct loader when a process 
is created. There are three possibilities (Hookway and Herdeg 1997) that are 
summarized here. 

11 Modify the host's kernel loader routine (and any user space loaders that 
may be used on the host system), first to identify the type of binary 
being loaded (host or guest) and then to call the proper loader routine. 
This approach is conceptually straightforward but requires modification 
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Figure 3.29 
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The Integration of Host and Guest Processes in a Process VM. In a process virtual machine, host 
and guest processes can be created in arbitrary sequences. A host process will call only host DLLs, 

while a guest may call either a host DLL or a guest DLL. 

of kernel loader code. If the process VM system is to be implemented 
without kernel modifications, then this approach cannot be used. 

2. When a guest program binary is installed, it is converted into a host- 
executable file by appending some host-executable code and including the 
guest binary image as a large data structure. The host-executable portion 
of the program invokes a guest loader that loads the guest binary data 
structure and begins emulation. This method requires the user to identify 
guest binaries when they are installed so that the installer can attach the 
host-executable code that calls the loader frontend. In a sense, this method 
encapsulates a guest process at the time it is installed. This could lead to 
problems if guest executables are loaded from remote systems, however. 
That is, they must be installed within the "domain" of the process VM 
system. 

3. Host processes are modified so that special loader code can be "hooked" 
on to system calls that load user processes, e.g., the s  call in 
Win32 or the exec () call in Linux. This method is used in FX!32 (described 
in more detail later), where it is called enabling. After a process has been 
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enabled and it wishes to call Createprocess,  a library call is first made to a 
special preloader (transparency agent in FX!32 terminology). The preloader 
checks to see ifa guest process is being created. If so, it calls the guest process 
loader; if not, it creates the host process, as requested, and then enables 
it, before allowing it to start running. Consequently, any later processes 
that the newly enabled host process attempts to create will also perform 
the guest/host preloader check. To get this bootstrap method started in the 
first place, any "root" user processes, for example, the log-in shell, must be 
explicitly enabled. 

As noted, the first method requires kernel modification, the second requires 
executable modification at install time, and the third modifies processes 
dynamically as they run. For the third method to work, it must be possible 
to enable an arbitrary host process. For example, in FX!32, all the calls to 
Createpvocess go through a single API routine that the preloader (trans- 
parency agent) is able to locate. However, if a call to create a process can 
occur at an arbitrary point in a host process, then enabling it would be much 
more difficult. One possibility is to perform the equivalent of emulation on 
all host processes as well as user processes. This would allow the runtime to 
locate all system calls that are made. Slowdown could be kept very low because 
"binary translation" would amount to little more than identifying and caching 
superblocks, with no actual translation taking place. This technique will be 
explained in more detail in Chapter 8, in the context ofsystem virtual machines. 

With respect to DLLs, we assume that host DLLs can be invoked only by 
host processes. Consequently it is not necessary to locate those points in a 
host process where a DLL may be invoked. Because guest processes are always 
emulated, calls to the dynamic linker can be intercepted by the runtime. The 
runtime can then locate the DLL being called. This can either be from a library 
of guest code, in which case the DLL also comes under runtime control for 
emulation, or it may be a DLL written in the host ISA (for faster guest process 
execution). 

FX!32 was developed by Digital Equipment Corporation to enable the trans- 
parent execution of IA-32 applications on Alpha platforms running the 
Windows operating system (Hookway and Herdeg 1997; Chernoff et al. 1998). 
FX!32 provided a process virtual machine model, as described in this chapter 
(although it is not called a virtual machine in FX!32 documentation and 
articles). FX!32 performs staged emulation, using both interpretation and 
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translation. But unlike other systems, it does not dynamically translate code. 
Rather, the developers of FX!32 decided to perform translation and optimiza- 
tion between program runs, not during a program run. This approach is based 
on the performance tradeoff between run time and translation/optimization 
time. By not translating and optimizing dynamically, virtually all of a pro- 
gram's run time can be devoted to emulation. Furthermore, because translation 
and optimization are done between program runs, much more time can be 
dedicated to these tasks, and a more highly optimized binary can be produced. 

During the initial run of a program in the FX!32 system, it is interpreted 
only. During interpretation, execution profile information is collected in a 
hash table. The profile information contains, among other things, the targets 
of indirect jump instructions. Then between program runs, the translator can 
use the profile information to discover code regions starting with jump targets 
and then translate and optimize the resulting code. This optimized code is 
stored in a database on the disk. 

During subsequent runs of the program, the translated and optimized code 
is loaded from disk and executed. If the translated code attempts to jump to a 
region of code that has not been translated, then the interpreter takes over with 
the original version of guest code. Additional execution profile information is 
collected, as before, so that after the program finishes, more code can be trans- 
lated and optimized. Eventually, all parts of the guest code that are executed 
will be translated, optimized, and stored on disk. 

Conceptually, this method is similar to staged emulation with interpreta- 
tion and dynamic translation. In particular, an interpreter and translator are 
alternately invoked, with the code being translated in an incremental fashion 
as it is discovered. The difference is that translated code is cached on the disk 
between runs, rather than being translated and held in a code cache every time it 
is executed. Furthermore, all discovered code is translated; it does not depend 
on how often the code is emulated, as in a conventional staged emulation 
strategy. 

Using this approach increases the importance of fast interpretation, because 
the interpreter is used for the entire first program run and for newly discov- 
ered sections of code during successive runs. The fast interpreter is similar in 
structure to the one described in Section 2.4.3. The binary translation process 
is similar to that described in Chapter 2, so we will not discuss it further here. 
Rather, we will focus on the overall FX!32 system environment. 

The main FX!32 components are illustrated in Figure 3.30. The interpreter 
(called an emulatorin FX!32) and the translator are the main parts ofthe emula- 
tion engine, and these have already been discussed. The other five components 
are the transparency agent, the runtime, the database, the server, and the 
manager. 
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Figure 3.30 Major Blocks in the FX!32 System. 

The transparency agent is responsible for providing seamless (transparent) 
integration of host and user processes by performing the preloading function 
described earlier, in Section 3.9. The transparency agent is a DLL that is inserted 
into the address space of a host user process and that hooks calls on the Win32 
Createprocess system call as well as other calls related to process creation and 
management. This enabling process consists of a series of Win32 system calls 
that first allocate a small region of memory in the host process being enabled 
and then copy in the agent DLL code. A small number of root processes must be 
explicitly enabled as part of the FX!32 installation process. These are the login 
shell (exp] over. exe), the service control manager, and the remote procedure 
call server. After these are enabled, all subsequent host processes created are 
also enabled by the transparency agent, in a recursive manner. 

The runtime, as indicated in the previous paragraph, acts as a loader for 
guest IA-32 processes, initializes the guest environment, and manages the 
overall emulation process as a guest program runs. It invokes translated code, 
finds the source PC values for untranslated code, and invokes the interpreter 
when needed. The runtime also locates all the Win32 API calls and provides 
jacket routines that copy arguments from the IA-32 stack into Alpha registers 
(and performs any data conversion that may be required). Consequently, many 
of the API calls are performed with the host's optimized Alpha code. 

The FX!32 database contains information regarding the installed IA-32 
applications. This information includes, among other things, profile data for 
the application as well as any translated/optimized code. When the runtime 
first encounters an IA-32 program, it registers the image in the database and 
generates a unique image identifier by hashing the image's header. Then when 
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Figure 3.31 FX!32 Performance on Windows Benchmark Programs. Performance on an Alpha 21164A is compared 
with a contemporary Pentium processor (Chernoff et al. 1998). 

the runtime loads an IA-32 application, it searches the database using the 
image identifier. If the runtime finds a translated image, it loads the translated 
code along with the IA-32 image. 

The server is started whenever the system is booted. Its main responsibility 
is to automatically run the translator and optimizer between program runs. 
Finally, the manager provides the user some control over FX!32 resource usage. 
Through the manager, the user can control the amount of disk space consumed 
by the database, the information that should be kept in the database, and the 
conditions under which the translator should be run. 

Performance of the FX!32 system was quite good. Figure 3.31 shows perfor- 
mance for some Windows benchmark programs (Chernoff et al. 1998). This 
data compares a 500-MHz Alpha 21164A processor with a 200-MHz Pentium 
Pro processor. These two processors were of roughly equivalent technology 
generations. Alpha performance is for binaries that have been optimized (i.e., 
for a second run using the same input data as the first). Performance is given 
as speedup with respect to the Pentium Pro, so any number larger than 1 is 
an improvement. The Alpha is significantly faster, with one only exception, 
where performance is roughly 0.65 of the Pentium Pro. The 21164A executes 
4.4 Alpha instructions per IA-32 instruction, or 2.1 Alpha instructions per 
Pentium Pro micro-operation. The much higher 21164 clock frequency yields 
an overall performance improvement. 

:4,:~!~!~ i~ , 

In this chapter, we considered a number of process VM implementation 
options. For example, instruction emulation can be done via (1) interpretation, 
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(2) binary translation, or (3) a staged combination. Address mapping and 
memory protection can be done (1) via a runtime-managed table or (2) using 
direct mapping. The options most suitable for a given implementation depend 
on performance, complexity, and compatibility tradeoffs. 

The most general method for implementing emulation is to use instruction 
interpretation with software memory mapping and protection checking. This 
method accommodates intrinsic compatibility, but it would likely be the slow- 
est emulation method. On the other hand, if (1) the register state of the guest 
fits within the host register file, (2) the guest memory space fits within the host 
space, (3) the guest page size is a multiple of the host page size, and (4) the 
guest privilege types are a subset of the host privilege levels, then, in general, 
binary translation with hardware address mapping and checking is likely to be 
the fastest emulation method, and it also is likely that intrinsic compatibility 
can be achieved. 

The foregoing conditions may at first appear to be rather restrictive; 
however, some important practical cases do satisfy these constraints. One of 
the important practical cases is the virtualization of the IA-32 ABI on a RISC 
platform (or an Intel IPF/Itanium platform). In this case, for example, the 
IA-32 register file usually fits comfortably inside the host's register file, and 
the 32-bit IA-32 address space fits into a typical 64-bit address space. 

In many other situations, process VMs can be constructed to satisfy extrinsic 
compatibility constraints. That is, they only provide compatibility for some, 
but not all, guest binaries. The most important compromise that has to be 
made occurs when the host and the guest support different operating systems. 
In this case, emulation of the guest's OS is likely to be incomplete. This would 
restrict the applications to those that depend on a subset of system calls or 
a subset of OS features. Whether compatibility is satisfied would have to be 
verified on a per program basis, in all likelihood. 

Although the topic of this chapter was process-level virtual machines, 
much of the discussion was focused on emulation frameworks, including 
staged emulation, code caching, and memory and exception emulation. These 
emulation frameworks and techniques have much broader application than 
process VMs. What sets the process VMs apart from the others is the point 
at which OS calls are intercepted and emulation is performed ~ for a process 
VM this point is at the user interface to the OS. Subsequent chapters will focus 
on other points of emulation, specifically including emulation of the system 
ISA. Furthermore, a similar emulation framework is used in same-ISA dynamic 
binary optimizer systems (described as part of the next chapter). And many 
of the same techniques are employed in high-level language virtual machines, 
such as the Java VM, to be discussed in Chapters 5 and 6. 



A fter compatibility, performance is often the most important considera- 
tion in virtual machine implementations. This chapter picks up where 

the previous chapter left off and focuses on improving performance of the 
emulation process. When compared with interpretation, merely performing 
simple binary translation yields a large (order of magnitude) performance 
gain. However, applying optimizations on translated code provides additional 
improvements over basic translation. 

In many VMs, simple optimizations are performed just to smooth some 
of the "rough edges" left over from an initial binary translation. For example, 
a simple instruction-at-a-time translation of the first two IA-32 instructions 
in Figure 2.19 (repeated here as Figure 4.1a) yields five PowerPC instruc- 
tions. A straightforward optimization, common subexpression elimination, looks 
across the original IA-32 instruction boundaries, discovers that two differ- 
ent PowerPC instructions compute r4+4, so the second can be eliminated 
(Figure 4.1b). 

In some VMs, more aggressive optimizations can help close the gap between 
a guest's emulated performance and native platform performance, although it 
is very difficult to close the gap completely. Nevertheless, there are a few VM 
applications where optimization is one of the primary reasons for building 
the VM in the first place. One example is codesigned VMs, to be covered in 
Chapter 7. Another example is same-ISA dynamic binary optimizers, where 
the goal is to improve performance on the native platform; these are discussed 
in Section 4.7 of this chapter. 

Optimizations include simple techniques, such as translation block chain- 
ing, covered in the previous chapter. More advanced optimizations form 
large translation blocks, each containing multiple basic blocks, and employ 
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Figure 4.1 

add1 %edx, 4 (%eax) 
movl 4(%eax) ,%edx 

addi r16, r4,4 ;add 4 to %eax 
lwzx r17, r2,r16 ;load operand from memory 
add r7 , r17 , r7  ;perform add of %edx 
addi r16, r4,4 ;add 4 to %eax 
stwx r7 , r2 , r16  ;store %edx value in to  memory 

(a) 

addi r16, r4,4 ;add 4 to %eax 
lwzx r17,  r2,r16 ;load operand from memory 
add rT,r17,r7 ;perform add of %edx 
stwx r7, r2, r16 ; store %edx value into memory 

(b) 

Optimization Enhances Binary Translation. (a) A simple translation from IA-32 to PowerPC. 
(b) The second addi can be eliminated. 

optimization techniques that span the original basic block boundaries. Some 
optimizations involve reordering translated instructions to improve pipeline 
performance. Other optimizations apply techniques from conventional com- 
pilers (as is done in Figure 4.1). Finally, some optimizations exploit knowledge 
of program-specific execution patterns, collected as part of the ongoing emu- 
lation process. These statistics regarding a program's behavior, or its profile, 
serve as a guide for making optimization decisions. 

Program profiling is often used to initiate shifts between emulation stages, 
e.g., between interpretation and binary translation, and it is also important for 
implementing some specific optimizations of translated code. Profile informa- 
tion can be collected with software by inserting instructions into an interpreter 
or translated code; it can also be collected by hardware or through some com- 
bination of hardware and software. Once collected, profile data is used for 
optimizing the performance of an emulated program. Two of the most impor- 
tant pieces of profiling information are (1) the instructions (or basic blocks) 
that are more heavily executed, i.e., where the program spends most of its time, 
and (2) the sequence in which basic blocks are most commonly executed. In 
addition to these two principal types of profile information, specific optimiza- 
tions may depend on the behavior of particular data variables or addresses, and 
this additional information may be collected via profiling as needed. 

An advantage of run-time translation and optimization is that program 
profile data can provide information that may not have been available when 
a program was originally compiled. For example, consider the code shown 
in Figure 4.2a. Assume this represents target ISA code translated from source 
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Figure 4.2 
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An Optimizat ion Based on Profile Information.  (a) BEQ to basic block C is predominantly taken. 
(b) Optimization removes assignment of R1 from basic block A. (c) Compensation code assigning R1 
is added to handle the rare branch fall-through case. 

ISA binary code (not shown). As with other examples in this chapter, we 
use a register transfer notation rather than a conventional assembly language 
in order to make the example more easily understood. Three basic blocks 
(A, B, and C) have been translated; the basic block A is followed by one of 
the two other blocks, depending on the outcome of the conditional branch 
at the end of block A. Inside block A, register R1 is set to a new value that 
is later used in block B. If the conditional branch is decided so that block C 
follows the first block, then register R1 is immediately reassigned before it is 
used. Now let's say that profiling this piece of code indicates that the branch is 
predominantly decided in the direction of block C. Then the code that assigns a 
value to R1 in block A is useless most of the time. Consequently, an interblock 
optimization might remove the initial assignment to R1 from block A, as shown 
in Figure 4.2b. The resulting code will then provide improved performance 
because the assignment of a value to R1 is eliminated for most emulations 
of the original code sequence. On rare occasions, however, the branch may 



150 �9 Chapter 4~Dynamic Binary Optimization 

be decided the other way, i.e., toward block B. To deal with such an event, 
the optimizer must insert compensation code before block B is entered. In the 
example, the compensation code provides the proper assignment to register R1 
(Figure 4.2c). 

As just shown, a common optimization strategy is to use profiling to 
determine the paths that are predominantly followed by the program's control 
flow (as determined by conditional branch and jump outcomes) and then to 
optimize code on that basis. In some cases, these optimizations move instruc- 
tions from one block to another, as was done in the example. Furthermore, 
some host processor implementations may rely heavily on compilers to per- 
form code reordering in order to achieve good performance. For example, the 
processor may have a simple pipeline that issues instructions in order, and/or 
it may implement a VLIW instruction set that depends on software to combine 
independent instructions into a single VLIW (see Appendix Section A.I.1). For 
these situations, the source program binary may not be optimally ordered for 
the target processor, so the optimizer performs code reordering, often with the 
help of profile information. 

As a complement to interblock optimizations such as the one just described, 
the basic blocks themselves may be rearranged in memory so that the most 
commonly followed execution path has instructions in consecutive memory 
locations. This is likely to improve performance by improving the efficiency 
of instruction fetch. If necessary, basic block rearrangement may involve the 
reversing of conditional branch predicates. For example, in Figure 4.3, the 
code given earlier in Figure 4.2 is shown with the common execution path 
restructured as a straight-line code sequence. This straight-line sequence is an 
example of a superblock~ a sequence of code with one entry point (at the top) 
and potentially multiple side exit points (Hwu et al. 1993). And, as in this 
example, exit points that come out of the middle of the superblock often feed 
into blocks of compensation code. 

Most inter-basic block code optimizations do not actually require rearrang- 
ing the locations of basic blocks; for example, the optimization in Figure 4.2 
does not require that a superblock be formed. However, the two types of opti- 
mizations do seem to go together naturally. The superblocks nicely localize 
the regions of optimization, and the localized code also provides additional 
performance benefits when fetching instructions, as will be discussed later in 
the chapter. 

Optimization is tightly integrated with emulation and is usually part of an 
overall framework that supports staged emulation, introduced in the preceding 
chapter. An emulation framework contains software that coordinates multiple 
emulation methods and shifts among the emulation methods based on a guest 
program's run-time behavior. 
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Figure 4.3 

Basic Block A 

. . , 

R3 ~-- . . ,  

R7 <-- . . .  

R1 <-R2 + R3 
Br L1 i f  R3==O 

Basic Block B 
o . . 

R6 ~-R1 + R6 

Basic Block C 

L I "  R1 ~ -0  

Superblock 

R3 ~ - . . .  
R7 ~ . . .  
Br L2 i f  R 3 ! = O \  

. %  

R1 <--O 

(a) (b) 

Compensation Code 
R1 ~ R2 + R3 

Basic Block B 
L2" . . .  

R6 <.-R1 + R6 
, , , 

, , , 

S u p e r b l o c k  f o r m a t i o n .  Code is rearranged so that the most frequently occurring blocks are contigu- 
ous. To accomplish this, the branch in (a) is reversed from equal to not equal. After rearrangement 
(b), a superblock having one entry point and two exit points is formed. 

Staged emulation, briefly described in Section 3.5.2, is based on the tradeoff 
between start-up time and steady-state performance. Some emulation methods 
have fast start-up performance with low steady-state performance, while other 
methods have slower start-up with high steady-state performance. A relatively 
sophisticated example of staged emulation, containing three stages, is shown in 
Figure 4.4. In this example, emulation is initially performed via interpretation 
(using the source ISA binary memory image). Profile information is collected 
concurrently with interpretation. The profile information helps identify fre- 
quently used code regions. Then these frequently executed code regions are 
binary translated as dynamic basic blocks and placed in a basic block cache 
for reuse. With the benefit of additional profile data, the frequently used basic 
blocks are combined into larger translation blocks, i.e., superblocks, which are 
then optimized and placed in the code cache. And, as emulation progresses, 
the optimizer may be invoked additional times to further optimize the blocks 
in the code cache. 

To encompass the spectrum of staged emulation strategies, we can identify 
at least four potential emulation stages: interpretation, basic block translation 
(possibly with chaining), optimized translation (with larger blocks such as 
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superblocks), and highly optimized translation, which uses profile information 
collected over a relatively long period of time. 

Figure 4.5 shows the spectrum of emulation methods and corresponding 
performance characteristics. The tradeoff between start-up time and steady- 
state performance has already been discussed (Section 3.5.1). In addition to 
emulation, profiling methodologies fit across the same spectrum. For the higher 
levels of emulation, more extensive profiling is needed, both in types of profile 
data collected and the number of profile data points required. Of course, more 
extensive profiling may add overhead, especially if done entirely in software. 

There are a number of staged emulation strategies that, depending on 
the source and target ISAs, the type of VM being implemented, and the 
design objectives. The original HP Dynamo system (Bala, Duesterwald, and 
Banerjia 2000) and the Digital FXI32 system (Hookway and Herdeg 1997) 
first interpret and then generate optimized, translated code. The DynamoRIO 
system (Bruening, Garnett, and Amarasinghe 2003) and IA-32-EL (Baraz et al. 
2003) omit the initial interpretation stage in favor of simple binary translation 
followed later by optimization. Other emulation frameworks omit extensive 
optimizations, because in some applications the overhead and/or support 
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involved may not be justified; the optimization itself takes time, and the level 
of profiling required may be time consuming. The Shade simulation system 
(Cmelik and Keppel 1994) contains only interpretation and simple translation; 
in that application, optimization is not called for. 

In the remainder of this chapter, the foregoing ideas are expanded upon. 
Profiling techniques, both software and hardware, are first described. Then 
we discuss optimization methods that use profile information to form large 
translation/optimization blocks. Next we consider optimizations that reorder 
the instructions within the enlarged translation blocks; for some processors, 
this may increase the degree of parallelism available for the underlying hardware 
to exploit. Then we consider other optimizations that are simple versions 
of classic compiler optimizations. Some of these optimizations can also take 
advantage of profile data collected at run time. 

The optimization framework and techniques given in this chapter are tar- 
geted primarily at emulation of conventional ISAs (e.g., IA-32 and PowerPC). 
However, dynamic optimization is also an important part of high-performance 
HLL VMs (e.g., for Java), as covered in Chapter 6, and many of the techniques 
in this chapter can be extended to HLL VMs. The codesigned VMs covered in 
Chapter 7 also rely heavily on dynamic optimization. In that chapter, we focus 
on optimization methods that can take advantage of special hardware support 
provided as part of a codesign strategy. 

At the time a virtual machine begins emulating a program, nothing is known 
about the structure ofthe code being emulated, yet to improve performance the 
emulation software may need to apply optimizations that depend very much 
on both the program's structure and dynamic behavior. The optimization 
system can use profiling to learn about the program's structure as it is being 
emulated. It can then combine this profile information with typical program 
behavior to guide the optimization of translated code. In this section we discuss 
some of the important characteristics of program behavior that researchers and 
designers have discovered over the years. These properties underlie many of 
the optimization heuristics implemented in virtual machines. 

One important property of programs is that dynamic control flow is highly 
predictable. As the program counter sequences through the program, any given 
conditional branch instruction is very often decided the same way (taken or 
not taken) a large fraction of the time. For example, consider the small piece of 
code in Figure 4.6, which searches a linear array of 100 elements for a particular 
value ( -  1). 
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Figure 4�9 Distribution of Taken Conditional Branches. Conditional branches are predominantly decided in one 
direction (taken or not taken). 

If the value o f -  1 appears only infrequently, then the conditional branch 
that closes the loop is predominantly taken. On the other hand, the branch 
that detects the occurrence o f -  1 is predominantly not taken. This bimodal 
branch behavior is typical in real programs. Figure 4.7 contains average statis- 
tics for conditional branch instructions in a set of integer SPEC benchmark 
programs (SPEC). For these programs, 70% of the static branches are pre- 
dominantly (at least 90% of the time) decided one way; 42% of the branch 
instructions are predominantly taken and 28% are predominantly not taken. 

Furthermore, a high percentage of branches are decided the same way as 
on their most recent previous execution. This is illustrated in Figure 4.8, where 
63% to 98% of branches are decided in the same direction as on their last 
execution, depending on the benchmark program. 

Another important property of conditional branch instructions is that back- 
ward branches, i.e., branches to lower addresses, are typically taken, because 
they are often a part of a loop. On the other hand, forward branches are 
often not taken, for example, if they test for errors or other special loop exit 
conditions, as is the case in the example of Figure 4.6. 
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Figure 4.8 Consistency of Conditional Branches. A high percentage of branches are decided the same way as 
on their immediately preceding execution. 

The predictability of indirect jumps is also important for dynamic trans- 
lation and optimization. With indirect jumps, the issue is determining the 
destination address of the jump. Because the jump destination is in a register 
and the register contents may be computed at run time, the jump destination 
may change over the course of program execution. Some jump destination 
addresses seldom change and are highly predictable, while others change often 
and are very difficult to predict. Jump instructions that implement switch 
statements may sometimes be difficult because the selected case may change 
frequently. Indirect jumps that implement the returns from procedures are 
sometimes difficult to predict because a procedure may be called from many 
different locations. Figure 4.9 shows that for a set of SPEC benchmark pro- 
grams slightly more than 20% of indirect jumps have a single destination 
throughout program execution, while almost 60% have three or more different 
destinations. 

The final program characteristic in which we are interested is data value 
predictability. The data values used by a program are often predictable, and in 
many cases they change relatively little over the course of a program's execution. 
Figure 4.10 shows the fractions of instructions that compute the same value 
every time they are executed. The leftmost bars show, for all instructions and 
by instruction type, the number of static instructions that always compute the 
same value. The rightmost bars are the fractions of dynamic instructions that 
execute the static instructions in the left bars. About 20% of all instructions 
that produce values are associated with a static instruction that always produces 
the same value. 
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Figure 4.10 Fractions of Instructions That Always Produce the Same Result Value. 

.o Profiling 

Profiling is the process of collecting instruction and data statistics for an 
executing program. This statistical profile data can be used as input to the 
code-optimization process. In general, optimizations based on profiling work 
because of the predictability of programs just described. That is, program char- 
acteristics measured for past behavior will often continue to hold for future 
behavior and can therefore be used for guiding optimizations. 
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4.2.1 The Role of Profiling 

Traditionally, code profiling has been used as a way of providing feedback 
to the compilation process under control of a software developer; refer to 
Figure 4.1 l a. Here, the compiler first decomposes the source program into a 
control flow graph, then analyzes the graph as well other aspects of the pro- 
gram and inserts probes to collect profile information. A probe is a short code 
sequence that records execution information into a profile log held in memory. 
For example, profiling probes may be placed at the sites of branch instructions 
to record branch outcomes. The compiler generates code with these probes 
inserted. Next, the program is run with a typical data input set, and the probes 
generate profile data for the complete program. The profile log is then ana- 
lyzed offline and results are fed back into the compiler. The compiler uses this 
information to generate optimized code. The optimizer may work from the 
original HLL program or, more likely, from an intermediate form generated by 
the compiler (Chang, Mahlke, and Hwu 1991) or the original compiled binary 
(Cohn et al. 1997). In some cases, hardware may support profile collection 
through either counters or timer interrupts that permit collection of statistical 
samples via software. 

When used in this conventional setting, the program can be fully analyzed 
and profile probes can be optimally placed, based on the program's structure. 
It is not necessary to place a probe on every branch path to collect informa- 
tion for constructing a complete profile of branch paths. Also, a profile can be 
collected for an entire run of a program to gain fairly complete profile infor- 
mation. For improved profile coverage, multiple profiling runs with different 
input data sets can be used. 

In contrast to the static optimization case just described, with dynamic 
optimization (e.g., as in the process VM shown in Figure 4.11b), the pro- 
gram structure is not known when a program begins. The runtime's emulation 
engine is simply given a guest binary image in memory, and both instruction 
blocks and overall program structure must be discovered in an incremental 
way, as discussed earlier in Section 2.6. Without an overall view of program 
structure, it is difficult, if not impossible, to insert profiling probes in a manner 
that is globally optimal. Furthermore, profiling must be more predictive; i.e., 
determination of program characteristics should be made as early as possible 
to achieve maximum benefit. This means that optimization decisions must be 
made on the basis of statistics from a partial execution of the program. 

There is an important performance tradeoff involving profiling overhead 
and the steady-state performance benefits that accrue from profiling. The pro- 
filing overhead consists of the time required for initial analysis of the program 
structure in order to place profiling probes, followed by the actual collection 
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of profile data. The benefit is execution time reduction due to better optimized 
code. With the conventional offline profile-based optimization method, these 
costs are paid once, typically during later stages of program development as 
code is being optimized prior to release for production use. Therefore, any cost 
in performance overhead is experienced by the program developer in terms of 
longer "turnaround" time between successive profile/recompile phases. After 
the optimized program has been deployed to the field, however, there is no 
additional performance overhead, and benefits are realized every time the 
optimized code is run. 
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When dynamic optimization is being used, there are overhead costs every 
time a guest program is run. These costs are in the form of program analysis in 
order to place profiling probes as well as the cost of collecting the profile data 
after the probes have been placed. And of course, in a dynamic optimization 
environment, the overhead of optimization must be outweighed by the benefits 
of executing the optimized code. An interesting compromise solution is used 
in the FX!32 system (described in Section 3.10), where all code translation and 
optimization is done between program runs and optimized code is saved on 
disk between runs. 

Because of the tradeoffs involved, different VM applications, and the variety 
of optimizations that may be performed, there are a number of possible profil- 
ing techniques that are of interest when performing dynamic optimization in 
a VM environment. In this section we will overview the spectrum of profiling 
techniques. Some of these will be useful for supporting dynamic optimizing 
process VMs, described later in this chapter. Others will be more useful with 
HLL VM implementations, discussed in Chapter 6. 

4.2.2 Types of Profiles 

There are several types of profile data that can be used in a dynamically optimiz- 
ing VM. The first type simply indicates how frequently different code regions 
are being executed. This information can be used to decide the level of opti- 
mization that should be performed for a given region. The heavily used code 
regions, or hotspots, should be optimized more, and lightly used code can 
be optimized less (or not at all) because the optimization process itself is time 
consuming and potentially performance degrading. For example, in the frame- 
work of Figure 4.4, a code sequence may be interpreted until it is determined 
to be "hot" and then binary translated to speed up future emulation. 

A second important type ofprofile data is based on control flow (branch and 
jump) predictability, where the profiler collects control flow statistics that can 
be used for determining aspects of a program's dynamic execution behavior. 
This information may be used as the basis for gathering and rearranging basic 
blocks into larger units of frequently executed code, such as the superblocks of 
Figure 4.3. These larger code units provide opportunities for optimizations over 
a scope larger than single basic blocks and may also lead to better performance 
due to instruction cache locality effects. 

Other types of profile data may be used to guide specific optimizations. 
This profile data may focus on data or address values. For example, if an 
optimization depends on whether load and store addresses are aligned on 
natural boundaries (see Section 4.6.4), then profiling ofload and store addresses 



1 6 0  �9 Chapter 4---Dynamic Binary Optimization 

Figure 4.12 

_l A I. _1 A I. 
) 5o "l (,5 

o "1 I ~ / " 
, y l  / 

! 

F 17 [ F 
I 

(a) (b) 

Profiling Applied to a Control Flow Graph. Boxes (nodes) represent basic blocks, and arrows 
(edges) indicate control transfers. (a) A basic block profile (or node profile); (b) an edge profile. 

can determine whether this condition holds (at least most of the time) and the 
optimization should be applied. Or if a program variable is found to hold the 
same value most (or all) of the time, then program code can be streamlined (or 
"specialized") for the very common case. These more specific types of profile 
data will not be discussed further in this section but will be described when 
required by a particular optimization technique. 

The first two types of profile information described earlier are almost 
universally used by dynamic translation/optimization systems and deserve 
additional explanation. Figure 4.12 shows a program's control flow graph. The 
control flow graph contains nodes, which correspond to the program's basic 
blocks (as defined in Section 2.6), and edges, which connect the basic blocks 
and represent flow of control (due to branches and jumps). In the figure, basic 
block A ends with a conditional branch; one path of the branch, i.e., the fall- 
through path, goes to basic block B, while the taken path of the branch goes to 
basic block C. 

To determine the hot regions of code, one should profile each basic block 
and count the number of times each is executed during some time interval; 
the blocks most frequently executed are the hot ones. A basic block profile 
(or node profile in graph terminology) is illustrated in Figure 4.12a. In this 
example, the numbers contained in the nodes are the counts of the number of 
times the corresponding basic block has been executed. The blocks A, B, and E 
are the hottest blocks. 
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Alternatively, the edge profile is shown in Figure 4.12b. The edge profile 
contains counts of the number of times each control flow edge is followed. 
In the figure, the edge profile is shown by labeling each of the edges with the 
number of times it is followed. 

In general, there are more edges than nodes, so it may appear slightly more 
expensive to profile all the edges. However, algorithms have been developed 
for significantly reducing the number of edges that must be probed in order to 
compute a complete edge profile (Ball and Larus 1994). Furthermore, the edge 
profile data provides a more precise view of program execution than the basic 
block profile; i.e., the basic block profile can be derived from the edge profile 
by summing the number of incoming edges to each block (or by summing 
outgoing edge counts). We see in Figure 4.12b, for example, that the basic 
block D must be executed 25 times ~ found by adding the profile counts 
on the incoming edges to basic block D (12 plus 13). Note that the converse 
property is not necessarily true; i.e., the edge profile cannot always be derived 
from a basic block (node) profile. 

Another type of profile based on control flow is the path profile (Ball and 
Larus 1996). A path profile subsumes an edge profile by counting paths contain- 
ing multiple edges rather than individual edges. For some optimizations, such 
as superblock formation, the path profile (at least in theory) is the most appro- 
priate type of profile because the basic blocks arranged to form a superblock 
should be contained in a commonly followed path. Although it has been shown 
that collecting path profile data is not necessarily more complex than gathering 
edge profile data, more up-front program analysis is required in order to decide 
where to place the profile probes. This up-front analysis probably makes it 
impractical for most dynamic optimization systems because not enough of the 
program's structure is known a priori. A heuristic for finding frequent paths is 
simply to follow the sequence ofthe frequent edges. Although this heuristic does 
not always find the most frequent paths, significant counterexamples are rel- 
atively rare (Ball, Mataga, and Sagiv 1998), and most optimization algorithms 
approximate the path profile by using a heuristic based on the edge profile. 

4.2.3 Collecting Profiles 

There are two ways of collecting a profile: with instrumentation and with sam- 
pling, lnstrumentation-basedprofilingtypically targets specific program-related 
events and counts all instances of the events being profiled, for example, the 
number of times a basic block is entered or the number of times a conditional 
branch is taken versus not taken. Generally speaking many different events can 
be monitored simultaneously. Monitoring can be implemented by inserting 
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probe instructions into the code being profiled or by using underlying profil- 
ing hardware to collect data. Using software instrumentation slows down the 
program being profiled considerably but can be performed on any hardware 
platform. Hardware instrumentation adds much less overhead but is not very 
well supported by current hardware platforms. The Intel Itanium platforms 
are a notable exception (Choi et al. 2002). Furthermore, hardware instrumen- 
tation generally does not have the flexibility of software instrumentation; the 
types of program events to be profiled are built into the hardware. 

With sampling-based profiling, the program runs in its unmodified form, 
and, at either fixed or random intervals, the program is interrupted and an 
instance of a program-related event is captured (see Figure 4.13). For example, 
program counter values at taken branches may be sampled. After a number of 
such samples have been taken, a statistical picture of the program emerges; for 
example, where the program hotspots or hot edges lie. 

An important tradeoffbetween the two profiling methods is that instrumen- 
tation can collect a given number of profile data points over a much shorter 
period of time, but commonly used software instrumentation slows down the 
program during the time the profile is being taken. Sampling slows down a pro- 
gram much less, at least as perceived by the user, but requires a longer time 
interval for collecting the same amount of profile information. Of course, the 
slowdown depends on the sampling interval (typical sampling intervals may be 
many thousands of instructions). 

On a per data point basis, sampling generally has a higher absolute over- 
head than instrumentation because it causes traps to the profile collecting 
software. But this overhead is spread out over a much longer total time inter- 
val, so the perceived slowdown during the profiling process is less. In addition, 
multiple samples can be collected and buffered before signaling the user-level 
profiling software (Dean et al. 1997). With instrumentation, a profile is quickly 
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taken, optimizations are performed, and instrumentation software is either 
completely or partially removed. 

The preferred profiling technique depends on where in the emulation spec- 
trum (Figure 4.5) the optimization process is taking place. For interpretation, 
software instrumentation is about the only choice, and even there the options 
are rather limited, as we shall see. For optimizing translated code that may 
benefit from further optimization, or in dynamic optimization systems where 
no initial translation is required, there is a much wider variety of options. In 
general, dynamic optimization systems use instrumentation because it allows 
the overall optimization process to move much more quickly from slower, less 
optimized code to highly optimized versions. Sampling is more useful when 
a longer-running program is already well optimized but further higher-level 
optimizations may be beneficial. In the following subsections, we will overview 
profiling methods for both interpreted and translated code. 

4.2.4 Profiling During Interpretation 

There are two key points to consider when profiling during interpretation: The 
source instructions are actually accessed as data, and the interpreter routines 
are the code that is being executed. Consequently, any profiling code must be 
added to the interpreter routines. This implies that profiling is most easily done 
if it is applied to specific instruction types (e.g., opcodes) rather than specific 
source instructions. It can also be applied for certain classes of instructions 
that are easily identified during the interpretation process, for example, the 
destinations of backward branches ~ as we will see, these are often used as the 
starting points for forming large translation blocks. 

To perform basic block profiling while interpreting, profile code should 
be added to all control transfer (branch and jump) instructions (after the 
PC has been updated) because the instructions immediately following these 
instructions, by definition, begin new basic blocks. Counting the number 
of times each of these destination instructions is executed constitutes a basic 
block profile. For edge profiling, the same control transfer instructions can be 
profiled, but both the PC of the control transfer instruction and the target are 
used to define a specific edge. 

The profile data is kept in a table that is accessed via source PC values of con- 
trol transfer destinations (basic block profiling) or the PC values that define an 
edge. This table is similar to the PC map table used during emulation (described 
in Section 2.6), in that it can be hashed into by the source PC. The entries con- 
tain the basic block or edge counts. For conditional branches, counts can be 
maintained for cases both taken and not taken. Figures 4.14 and 4.15 illustrate 



1 6 4  �9 Chapter 4~Dynamic Binary Optimization 

Figure 4.14 

Ins t ruc t ion  funct ion l i s t  

branch_cond i t i ona l  ( i n s t )  { 
BO = e x t r a c t ( i n s t , 2 5 , 5 ) ;  
BI = e x t r a c t ( i n s t , 2 0 , 5 ) ;  
d isp lacement  = e x t r a c t ( i n s t , 1 5 , 1 4 )  * 4; 

/ /  code to compute whether branch should be taken 

pro f i  le_addr = lookup(PC) ; 
i f (branch_taken)  

pro f i  le_cnt (p ro f i  le_addr, taken); 
PC = PC + d isp lacement ;  

Else 
pro f i  le_cnt (p ro f i  le_addr, nottaken) ; 
PC = PC + 4; 

PowerPC Branch Conditional Interpreter Routine with Profiling Code Added (in italics). 

Taken Not-taken 
PC count count 

Branch PC "-1"3 HASH 

Figure 4.15 Profile Table for Collecting an Edge Profile During Interpretation�9 A branch PC accesses the table 
via hashing; a taken or not-taken counter is incremented, depending on the branch outcome�9 

the interpreter-based profiling method for conditional branches. Figure 4.14 is 
the interpreter routine for a PowerPC conditional branch instruction. A data 
structure for collecting edge profiles is given in Figure 4.15. 

In the branch interpreter routine, the PC of the branch instruction is used 
for performing a profile table lookup via a hash function. Then entries in the 
profile table are updated appropriately. If the branch is taken, the taken count 
is incremented; otherwise the not-taken count is incremented. Alternatively, 
for basic block profiling, the source PC at the end of the branch interpreter 
routine can be used as the key to the profile table, and only one count per PC 
is maintained. 
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Profile Counter Decaying 

As just described, the profile counts held in the profile table increment indefi- 
nitely. In practice this leads to an obvious problem ~ a count may eventually 
overflow the size of its count field. An immediate solution is to use saturating 
counts; i.e., when a counter reaches its maximum value, it stays there. An addi- 
tional enhancement lies in the observation that many optimization methods 
focus on relative frequency of events, e.g., which basic blocks are more heavily 
used, not the absolute counts. Furthermore, when it comes to making dynamic 
optimization decisions, recent program event history is probably more valuable 
than history in the distant past. 

This leads to a counter "decay" process. To implement counter decay, the 
profile management software periodically divides all the profile counts by 2 
(using a right shift). After decay, the counts maintain their relative values, 
and, as the program phase changes and a profiled event becomes inactive, 
counts carried over from the previous phase will eventually decay to zero. 
Consequently, at any given time the profile counts reflect the relative activity 
over a relatively recent period of time. 

Profiling Jump Instructions 

Up to this point, when profiling control flow, e.g., edge profiles, we have 
been concerned primarily with conditional branch instructions. Profiling indi- 
rect jumps is slightly complicated because there may be a number of target 
addresses, and in some cases they may change frequently. This is the case, 
for example, in return jumps from procedures that have many call sites. This 
means that a complete profile mechanism that tracks all the targets would con- 
sume both more space and more time than conditional branch edge profiling. 
The process can be simplified, however, by noting that profile-driven optimiza- 
tions of indirect jumps tend to be focused on those jumps that very frequently 
have the same target (or a small number of targets). Consequently, it is only 
necessary to maintain a table with a small number of target addresses (say one 
or two) and track only the more recently used targets. If the target changes 
frequently among a large number of addresses, then these counts will always 
be low, and optimizations based on frequent jump targets will likely provide 
little benefit anyway. 

4.2.5 Profiling Translated Code 

When profiling translated code, each individual instruction can have its 
own custom profiling code. Among other things, instrumenting individual 
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instructions means that profiling can be selectively applied. It also means that 
profile counters can be assigned to each static instruction at the time the instru- 
mentation is inserted so that profile counters are directly addressed and no 
hashing is needed. Profile counters can be held in a simple array, with an index 
into the array hardcoded into the profile code for a specific instruction. 

Figure 4.16 illustrates the insertion of instrumentation for edge profiling 
into translated basic blocks (as in Section 2.6). Here, instrumentation is placed 
into stub code at the end of each translated basic block. In this example, the 
optimization algorithm is invoked ifa profile value exceeds a specified threshold 
value, or trigger. An advantage of placing profile code in the stub region is that 
profile code can be easily inserted and removed as needed. 

4.2.6 Profiling Overhead 

Software profiling adds instructions to the overall emulation process. For exam- 
ple, in Figure 4.15, instructions must be added to (1) access the hash table (this 
will require the hash function plus at least one load and compare) and (2) 
increment the proper count (two more memory accesses plus an add instruc- 
tion). For profiling during interpretation, this may add an additional overhead 
of 10-20% because interpretation already requires executing a number of tar- 
get instructions per interpreted source instruction. For profiling translated 
code, fewer instructions may be needed if the profile table lookup is replaced 
with directly addressable counters, but the relative overhead is still significantly 
higher than with interpretation because translated code itself is much more 
efficient than interpreted code. In addition to performance overhead, profil- 
ing leads to memory overhead for maintaining tables. For example, a profile 
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table such as in Figure 4.15 would require perhaps four words of data for each 
instruction being profiled. 

Profiling overheads can be reduced in a number of ways. One way is to 
reduce the number of instrumentation points by selecting a smaller set of key 
points, perhaps using heuristics, and to use the collected data at these points 
to calculate the profile counts at the others. Another method, based on code 
duplication, is especially attractive for same-ISA optimization and is described 
in Section 4.7. 

4~ Optimizing Translation Blocks 

As was pointed out in the introduction to this chapter, there is often a two-part 
strategy for optimizing translated code blocks. The first part of the strategy is 
to use knowledge of dominant control flow for enhancing memory locality by 
placing frequently followed sequences of basic blocks into contiguous memory 
locations. In practice these are usually superblocks. In the second part of 
the strategy, the enlarged translation blocks are optimized, with emphasis 
on optimizations that are skewed to favor the commonly followed sequence. 
That is, the optimization increases performance if the common sequence is 
followed, with a possible loss of performance in the uncommon case. Although 
the two parts of the strategy are actually relatively independent, both are useful 
and are often applied in the same system. A common approach is first to form 
a localized block and then to optimize it as a unit. In the following discussion 
we will follow the same order. 

4.3.1 Improving Locality 

There are two kinds of memory localities. The first is spatial locality, where an 
access to a memory location is soon followed by a memory access to an adjacent 
memory location. The second is temporal locality, where an accessed memory 
location is accessed again in the near future. Instruction fetches naturally have 
a high degree of both types of localities, and instruction-fetch hardware tends 
to perform better when locality is greater. By rearranging the way code is placed 
in memory, moreover, both types of localities can be further enhanced. 

The methods and benefits of improving code locality are best explained 
via an example. Figure 4.17a shows a region of code as originally placed in 
memory. Basic blocks are labeled with uppercase letters, and branch instruc- 
tions are shown. Other instructions are represented with horizontal lines. 
Figure 4.17b is the control flow graph for the same code sequence, with edge 
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Figure 4.18 Cache Line Containing Instructions from Basic Blocks E and F. 

profile information given. The most common path through the code is A, D, 
E, G. Block F is rarely executed. 

First consider how the example code will map onto cache lines; this reveals 
two ways in which performance may be lost in a typical high-performance 
processor. Figure 4.18 shows a cache line that contains a total of four instruc- 
tions at the boundary between basic blocks E and F. Because block F is rarely 
used, there is relatively little useful locality (spatial or temporal) within this 
line; nevertheless, the whole line is placed in the cache just to hold the single 
instruction from block E. It would be better to use the cache space consumed by 
instructions from block F for other instructions that are more frequently used. 
Also, when the line is fetched from the cache, only one of the four instructions 
is useful. Performance may be lost because of relatively low instruction-fetch 
bandwidth. 

To improve performance, profile information can be used to rearrange 
the layout of the blocks in memory (Pettis and Hansen 1990). A rearranged 
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layout is shown in Figure 4.19. To accomplish the new layout, some of the 
conditional branch tests are reversed. For example, the test at the end of block 
A is changed from true to false. Furthermore, some unconditional branches 
may be removed altogether, for example, the branch that ends block E. Also, 
as part of the relayout process, block F, which is rarely used, can be placed 
in a region of memory reserved for such seldom-used blocks. These blocks 
will generally not consume instruction cache space. Finally, instruction-fetch 
efficiency is improved, for example, when executing the code sequence in 
blocks E and G, which are always executed in sequence. 

Another method for improving spatial locality (and to provide other opti- 
mization opportunities) is to perform procedure inlining (Scheifler 1977). With 
conventional procedure inlining, the body of a procedure is duplicated and 
placed at its call/return site. Procedure inlining is illustrated in Figure 4.20, 
where procedure xyz is called from two locations (Figure 4.20a). After inlining 
has been performed, the code belonging to procedure xyz is duplicated and 
placed at the two call sites, as shown in Figure 4.20b. The call and return instruc- 
tions for procedure xyz are removed. It may also be possible to remove some 
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Procedure Inlining. (a) A code sequence calling a procedure from two call sites. (b) With conventional 
procedure inlining, procedure B is duplicated and placed at the original call sites. (c) With partial 
procedure inlining, only a specific control flow path is inlined at each call site. 

register save/restores that surround the call and return in the original code. 
Hence, inlining not only increases spatial locality in the instruction stream but 
also eliminates much of the overhead of calls and returns. 

In dynamic optimization systems, procedure inlining is often implemented 
in a dynamic form, based on commonly followed paths discovered at runtime. 
The leads to dynamic or partial procedure inlining, which is based on similar 
concepts as dynamic basic blocks, discussed in Section 2.6.3. The important 
point is that because code is discovered incrementally at runtime, it is often 
not practical to discover and inline a full procedure containing multiple control 
flow paths. For example, in Figure 4.20a, when procedure xyz is called from the 
first call site, the path of execution may flow through blocks X and Y; when it is 
called from the second call site, the path of execution may flow through blocks 
X and Z. When partial procedure inlining is applied, as shown in Figure 4.20c, 
only the specific dynamic paths are inlined at the call sites. 

Unlike simple code relayout, as described earlier, inlining may increase the 
total code size when the same procedure is called from several different sites. 
This may have a negative effect on instruction cache performance. It also may 
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increase register "pressure," i.e., the demand for registers within the region 
of the inlined code. Consequently, partial procedure inlining is typically used 
only for those procedures that are very frequently called and that are relatively 
small many library routines fit these criteria. Profile information can be 
used to identify procedures that are good candidates for inlining (Chang et al. 
1992; Ayers, Schooler, and Gottlieb 1997). 

Specific algorithms for implementing both code relayout and inlining have 
been used in conventional optimizing compilers. Rather than describe these 
conventional methods in detail, however, we will consider only the methods 
useful during dynamic translation and optimization. 

We now describe three ways of rearranging basic blocks according to control 
flow. The first way, trace formation, follows naturally from the discussion just 
given. However, the second way, superblock formation, is more widely used in 
virtual machine implementations, because superblocks are more amenable to 
interbasic block optimizations, as we shall see. The third way of arranging code 
is to use tree groups, a generalization of superblocks, which are useful when 
control flow is difficult to predict, and provides a wider scope for optimization. 
In the following subsections, we discuss traces, superblocks, and tree groups 
and then turn to optimization methods based on traces and superblocks. 

4.3.2 Traces 

This code-relayout optimization essentially divides the program into chunks of 
contiguous instructions containing multiple basic blocks (Fisher 1981; Lowney 
et al. 1993). In the example of Figure 4.17, the sequence ADEG is the most 
commonly executed path and is placed in memory as a single contiguous block 
of code. This sequence forms a trace i m a contiguous sequence of basic blocks. 
A second, lesser used trace in the example is BC. Block F alone forms a rarely 
used trace containing only one basic block. 

It should be clear that edge profile data can be useful for determining 
the frequently followed paths. Classically, with an offline profile method (see 
Figure 4.1 la) traces are formed via the following steps. 

1 A profile is collected during one or more executions of the program using 
test data. 

1. Sometimes the term trace is also applied to superblocks; for example, the traces held in a 
trace cache (Rotenberg, Bennett, and Smith 1996) can be more precisely described as superblocks 
(all superblocks are traces, but not all traces are superblocks). 
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2. Using the profile data, begin with the most frequently executed basic block 
that is not already part of a trace; this is a trace startpoint. 

3. Using edge or path profile data, begin at the start point and follow the 
most common control path, collecting basic blocks along the path until a 
stopping condition is met. One stopping condition is that a block already 
belonging to another trace is reached. Another example stopping condition 
is the arrival at a procedure call/return boundary (if the procedure is not 
being inlined). A more complete set of stopping conditions is given in 
Section 4.3.4. 

4. Collect the basic blocks into a trace, reversing branch tests and 
removing/adding unconditional branches as needed. 

5. If all instructions have been included as part of some trace, stop; otherwise 
go to step 2. 

If we follow this algorithm with the example in Figure 4.17, then we start 
with block A and follow it to D and E and stop at G. In this case, we use loop- 
closing branches as a stopping condition (as is often done). Then the next trace 
starts at B and stops at C. Finally, F is left as the last trace. Figure 4.21 illustrates 
the traces with respect to the control flow graph; when these traces are laid out 
in memory, they will appear as in Figure 4.19. 

In a dynamic environment (as in Figure 4.11b), the foregoing process of 
trace formation can be modified appropriately and would build up traces in an 
incremental manner as hot regions of code are discovered. In practice, however, 

Figure 4.21 Using Edge Profiles or Collect Basic Blocks into Traces. 
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traces as just described are not commonly used as translation blocks in today's 
dynamic translation/optimization systems; superblocks and tree groups are 
more commonly used, so we defer discussion of dynamic trace formation to 
the next section. 

4.3.3 Superblocks 

A widely used alternative to the trace is the superblock (Hwu et al. 1993); 
by construction, superblocks have only one entrance at the top and no side 
entrances. In contrast, a trace may have both side entrances and side exits. For 
example, in Figure 4.21, the trace ADEG contains a side exit from block D and 
two side entrances into block G. As we shall see in Section 4.5.3, disallowing 
side entrances simplifies later code optimizations. 

It might first appear that if superblocks are formed using a method like the 
one described for traces, the result is relatively small superblocks; for example, 
in Figure 4.22a ADE, BC, F, and G form a complete set of superblocks. These 
blocks are smaller than the traces and in some cases may be too small to 
provide many opportunities for optimizations. However, larger superblocks 
can be formed by allowing some basic blocks to appear more than once. This is 
illustrated in Figure 4.22b, where larger superblocks have been formed. Here, 
the superblock ADEG contains the most common sequence of basic blocks 
(according to the profile information given in Figure 4.12). Now, because 
block G in superblock ADEG can only be reached via a side entrance, block 
G is replicated for the superblocks that contain BCG and FG. The process of 
replicating code that appears at the end of a superblock in order to form other 
superblocks is referred to as tail duplication. 

4.3.4 Dynamic Superblock Formation 

Superblocks can be formed via a profile-driven static algorithm just as traces 
are; i.e., by first using test input data to collect a profile and then as part of a static 
compilation step forming all the superblocks. However, because superblocks 
are a common choice for virtual machine implementations and are formed at 
run time, we will consider only their dynamicformation in detail. The key point 
is that they are formed incrementally as the source code is being emulated. 

A complication that comes from using superblocks is that basic block repli- 
cation leads to more choices, especially the choice of when to terminate a 
superblock, so a number of heuristics are followed. There are three key ques- 
tions regarding dynamic superblock formation: (1) At what point in the code 
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Figure 4.22 Superblocks. Superblocks are regions of code with only one entry point and one or more exit points. 
(a) Superblocks containing no replicated code; (b) superblocks with replicated code (e.g., block G) 
are larger and provide more optimization opportunities. 

should a superblock be started? (2) As a superblock is being built, what should 
the next basic block be? (3) At what point should a superblock be terminated? 
We will discuss each of these in turn, focusing on heuristics that appear to work 
well in practice. 

Starting Points 

In general, a superblock should start at a heavily used basic block. Conse- 
quently, as code is initially being emulated, either through interpretation or 
simple basic block translation, profile information is collected in order to deter- 
mine those heavily used basic blocks where superblock formation should be 
started. For this purpose, there are two methods for determining profile points. 
One is simply to profile all basic blocks. Another is to use heuristics based on 
program structure to select a narrower set of good candidate start points and 
then to profile only at those points. One such heuristic is to use the targets of 
backward branches as candidate start points. Heavily used code will very likely 
be part of a loop, and the top of every loop is the target of a backward branch. 
A second heuristic is to use an exit arc from an existing superblock. These arcs 
are good candidates because, by definition, the existing superblocks are known 
to be hot, and some exit points will also be hot (although perhaps somewhat 
less so than the original basic block). In addition, exit points are often not 
the targets of backward branches and would otherwise be overlooked by the 
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first heuristic. Using heuristics for determining candidate start points reduces 
the initial number of points to be profiled significantly, and it reduces those 
that must be monitored for "hotness" as the incremental formation process 
proceeds. 

Regardless of how candidate start points are selected for profiling, most 
superblock formation methods define a start threshold value. When a profiled 
basic block's execution frequency reaches this threshold, a new superblock is 
started. In IA-32 EL (Baraz et al. 2003), profiling continues until a certain 
number of hot basic blocks have reached the threshold (or until one reaches 
twice the threshold); at that point, superblock formation is started. The value 
of the start threshold depends on the staged emulation tradeoffinvolving inter- 
pretation versus translation overhead, as discussed earlier; a threshold of a few 
tens to hundreds of executions is typical. 

Continuation 

After a superblock is begun at an initial basic block, the next consideration is 
which subsequent blocks should be collected and added as the superblock is 
grown. This can be done using either node or edge information. There are two 
basic heuristics for using this information: One is most frequently used and the 
other is most recently used. 

In an example of the most-frequently-used approach (Cifuentes and 
Emmerik 2000), node profile information is used to identify the most likely 
successor basic block(s). For this purpose, a second threshold, a continuation 
threshold, is set to determine the possible candidates. This continuation thresh- 
old will typically be lower than the start point threshold; for example, a typical 
continuation threshold might be half the start threshold. Because blocks other 
than start points must be profiled, a relatively complete set of profile data must 
be collected for all basic blocks. 

At the time the start threshold is reached and superblock formation is to 
begin, the set of all basic blocks that have reached the continuation threshold 
is collected. This is the continuation set. Then the superblock formation algo- 
rithm starts with the hottest basic block and builds a superblock, following 
control flow edges and including only blocks that are in the continuation set. 
When a superblock is complete (stopping points are discussed shortly), the 
emulation process can resume with profiling until another basic block achieves 
the start threshold. An alternative, however, is to go ahead and form additional 
superblocks using the members of the continuation set. That is, of the blocks 
remaining in the continuation set, take the hottest as a new start point and 
build a second superblock, removing blocks from the continuation set as they 
are used. This process continues until all the blocks in the continuation set 
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have been exhausted. This method of building multiple superblocks at once 
has the advantage of amortizing some of the superblock formation overhead 
over multiple superblocks. 

A most-recently-used method (Duesterwald and Bala 2000) relies on edge- 
based information. The superblock formation algorithm simply follows the 
actual dynamic control flow path one edge at a time, beginning at the time the 
start point is triggered. That is, it is assumed that the very next sequence of 
blocks following a start point is also likely to be a common path ~ a reasonably 
good assumption, given the observations on program behavior in Section 4.1. 
With this method, only candidate start points need to be profiled ~ there is 
no need to use profiling for continuation blocks. Hence, one benefit of this 
approach is that the profile overhead can be substantially reduced versus a 
most-frequently-used algorithm. A similar approach has been advocated for 
procedure layout (Chen and Leupen 1997). 

Finally, an alternative and more sophisticated approach combines edge 
profiling and the most-frequently-used heuristic (Berndl and Hendren 2003). 
This approach relies on correlating sequences of conditional branches (edges 
in an edge profile) to detect the most likely paths that connect basic blocks into 
superblocks. 

Stopping Points 

At some point the superblock formation process must stop. Again, heuristics 
are typically used, and the following are possible choices. Any given system 
may use some or all of these heuristics (or possibly others). 

1. The start point of the same superblock is reached. This indicates the 
closing of a loop that was started with this superblock. In some systems, 
superblock formation can continue even after a loop is closed, which in 
effect leads to dynamic loop unrolling. 

2. A start point of some other superblock is reached. When this occurs, 
superblock formation stops and the two superblocks can be linked together 
(Section 2.7). 

3. A superblock has reached some maximum length. This maximum length 
may vary from a few tens to hundreds of instructions. A reason for having 
a maximum length is that it will keep code expansion in check. Because a 
basic block can be used in more than one superblock, there may be multiple 
copies of a given basic block. The longer superblocks grow, the more basic 
block replication there will be. 
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4. When using the most-frequently-used heuristic, there are no more 
candidate basic blocks that have reached the candidate threshold. 

5. An indirect jump is reached, or there is a procedure call. The use of 
this stopping heuristic depends on whether partial procedure inlining is 
enabled, and, if enabled, whether the procedure satisfies criteria for inlin- 
ing. Tradeoffs involving inlining are discussed further in the context of 
HLL VMs (see Section 6.6.2). 

Example 

As an example, we first use the most-frequently-executed method for 
superblock formation (Cifuentes and Emmerik 2000). Consider the control 
flow graph shown in Figure 4.17. Say the start point threshold is set at 100 and 
the continuation threshold at 50. Then, as shown in the figure, basic block A 
has just reached the start point threshold. Blocks D, E, and G have reached the 
continuation threshold. Because A has reached the start threshold, superblock 
formation begins, and superblock ADEG is formed. In this example, formation 
stops because of the branch from G back to A. At this point, the superblock can 
be optimized as a unit, with any needed compensation code being added at the 
exit points. Then, as execution proceeds, block B may next reach the threshold 
and superblock BCG will most likely be formed. Again, superblock formation 
stops because G leads to the start point of existing superblock ADEG. Finally, 
block F might eventually reach the threshold, causing superblock FG to be 
formed. IfF never reaches the threshold, then it is never placed in a superblock. 
Figure 4.23 shows the final code layout for the example superblocks. Each 
superblock is a contiguous-code region, and basic block G is replicated three 
times. 

If the most recently executed method is used (Duesterwald and Bala 2000), 
then only block A is profiled, because it is the only target of a backward branch 
in this example. When the profile count for block A reaches a threshold value, 
say, 100, then superblock formation immediately begins and follows the exe- 
cution flow as it happens. This will most likely lead to superblock ADEG (if the 
branches are decided in their most probable direction). Then block B is initial- 
ized for profiling, because it is now the destination of a superblock exit. After 
the profile count of B reaches 100, then another superblock will be formed, 
again following the "natural" flow as it occurs. In this case, it will most likely be 
BCG. Hence, both the most-frequently-executed and most-recently-executed 
methods seem to have the same result. However, note that at the time A reaches 
the threshold, there is about a 30% chance that the branch exiting A will go 
to B rather than D, and superblock ABCG will be formed rather than ADEG. 
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A subsequent superblock would then be DEG. This illustrates that there are 
cases where a most-recently-executed method may not select superblocks quite 
as well as a most-frequently-executed method. Tree groups, described in the 
next subsection, are aimed at just those situations. 

4.3.5 Tree Groups 

Although traces and superblocks (as well as dynamic basic blocks) are the 
most commonly used units for translation and optimization, there are other 
possibilities. Traces and superblocks are based on the principle that conditional 
branches are predominantly decided one way (Figure 4.7). However, there are 
some branches for which this is not the case. For example, in Figure 4.7, almost 
20% of the branches range between 30-70 and 70-30, taken versus not-taken. 
Almost 10% of the branches are about 50-50. For branches that tend to split 
their decisions, a superblock or trace side exit is frequently taken. When this 
happens, there is often overhead involved in compensation code (Figure 4.2). 
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Figure 4.24 Tree Group. A tree group encompasses multiple commonly followed control flow paths. 

Furthermore, optimizations are typically not done along the side exit path, 
thereby losing performance opportunities. 

For those situations where conditional branch outcomes are more evenly 
balanced, it may be better to use tree regions or tree groups rather than 
superblocks (Banerjia, Havanki, and Conte 1997). Tree groups are essentially a 
generalization of superblocks, and they offer more optimization opportunities. 
They have one entrance at the top and may have multiple exits, but they can 
incorporate multiple flows of control rather than a single flow of control as 
with a superblock. That is, as the name suggests, they form trees of connected 
basic blocks. A tree group for the code illustrated in Figure 4.17 is given in 
Figure 4.24. A tree group is formed by using tail duplication, as is done with 
superblocks. The branch at the end of block A in Figure 4.17 is a 30-70 branch, 
so we include both exit paths in the tree group. On the other hand, the edge 
from F to G is rarely taken, so it is not included in the major tree region. 
However, it may later be used as part of a smaller tree region, as shown in the 
figure. 

Just as with traces and superblocks, tree groups can be constructed using 
collected profile information. For example, a variation of the most-frequently- 
executed heuristic might set a start threshold at 100 and a continuation 
threshold at 25 (the continuation threshold is lower than with superblocks, 
to "encourage" the formation of larger trees). Then for our example code, an 
initial tree group would consist of blocks ADEGBCG, as show in Figure 4.24; a 
later tree region might be the smaller FG. Tree groups can also be constructed 
incrementally. For example, in Figure 4.24 one might first form the tree group 
ADEG (actually a superblock). Then after additional program emulation and 
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profiling, the path BCG can be added to form the final tree group. The problem 
with forming tree groups incrementally, however, is that reoptimization may 
be needed each time a new path is added to the tree group. 

In the following sections, we begin with traces and superblocks and consider 
ways of optimizing code within these large translation blocks. In this section, 
we first discuss some of the overarching issues that are common to all the 
optimization methods. 

In general, dynamic optimization, as discussed in this chapter, differs 
from static compiler-based optimization in that the optimizer operates only 
over well-delineated, "straight-line" code regions, e.g., traces or superblocks. 
Another difference is that high-level semantic information from the original 
program is not available; information must be extracted from the executable 
binary. For example, data structure declarations are unavailable. The overall 
philosophy is that fast, low-overhead optimizations should be used to gather 
the "low-hanging fruit." In contrast, dynamic optimization for HLL virtual 
machines (Chapter 6) is much less restricted. In HLL VMs, there is more 
semantic information available to the optimizer, and the scope of optimization 
may be much larger than with the optimizations discussed in this chapter. 

Dynamic optimizations are performed in addition to any optimizations the 
original compiler may have done. Because optimization is being performed 
at run time, however, there are new optimization opportunities that may not 
have been available to the static compiler. In general, these new opportunities 
involve optimizations along frequently followed paths that cross basic block 
boundaries. For example, when consecutive blocks are considered, redundant 
instructions may be found and removed, or instructions may be reordered 
across basic block boundaries. 

4.4.1 Approach 

Figure 4.25 illustrates the overall approach to optimization. Based on profile 
information, basic blocks are first collected to produce a straight-line code 
sequence that forms a trace or superblock. These instructions are converted 
into an intermediate form and placed in a scheduling/optimization buffer by 
the translation software. The intermediate form contains essential dependence 
information but would typically use a single assignment format (Cytron et al. 
1991) so that nonessential dependences do not appear. In order to simplify 
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Figure 4.25 Major Steps in the Scheduling/Optimization Process. 

eventual target code generation, the intermediate form is similar to the one 
that a compiler might use for the target instruction set. Then code scheduling 
and optimization take place, followed by register assignment. As the code is 
optimized, side table information is also generated. For example, a side table 
may be used for tracking the relationships between source register values and 
target register values in order to implement precise state recovery in the event 
of a trap or interrupt; this is explained later. In some cases, compensation code 
is added at the intermediate entry and exit points of the scheduled, optimized 
trace (Figure 4.26). In practice, these entries and exits will be infrequently used, 
but, as we shall see, the compensation code is still required for correctness in 
the event they are used. 

An example of an interbasic block optimization that uses dynamic infor- 
mation was given at the beginning of this chapter (Figure 4.2), where the 
knowledge that the most common control path went from block A to block C 
allowed formation of a superblock containing basic blocks A and C. Then as 
an optimization, the assignment to R1 in block A was removed. This resulted 
in compensation code being added at the exit to block B. 

4.4.2 Optimization and Compatibility 

An important consideration during the optimization process is maintaining 
compatibility. In Section 3.2 we discussed compatibility issues in general. To 
reiterate, for practical process VMs, we maintain an isomorphic relationship 
between the guest VM and the native platform (Figure 3.4). As part of this 
relationship, we first assume that all control transfer points (a system call, 
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return, trap, or interrupt) between the guest process and the OS on its native 
platform will map to a corresponding transfer of control between the guest 
process and the virtual machine runtime. Furthermore, at the time of one of 
these transfers to the runtime, it should be possible to reconstruct the entire 
guest process's state, both registers and memory. With respect to optimizations, 
it is the traps that we are most concerned with, both the control transfer aspect 
and the state reconstruction aspect, i.e., forming the precise state. We address 
both of these in the following paragraphs. 

We define a process VM implementation to be trap compatible if any trap 
(except a page fault) that would occur during the native execution of a source 
instruction is also observed during the emulation of the corresponding trans- 
lated target instruction(s). And the converse is also true: Any trap that is 
observed during execution of a target instruction should also occur in the cor- 
responding source instruction. We exclude page faults because they are the 
result not of an action of the running process but of the allocation of resources 
by the host OS. Page fault compatibility is treated in Chapter 7 in the context 
of codesigned VMs that are system VMs. 
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Consider the example on the left side of Figure 4.27. In this example, the 
first instruction of the source code (on the left) computes rl, which turns out 
to be a "dead" assignment, because the next instruction does not read rl but 
overwrites it. This apparent redundancy may have occurred as a by-product 
of forming dynamic translation blocks. An obvious optimization would be 
to remove the instruction making the redundant assignment (rl ~-- r2 + r3). 
However, this could violate trap compatibility as we have defined it because 
the removed instruction may trap due to overflow. That is, if the instruction is 
removed, an overflowing instruction in the original source code is skipped, and 
the program's execution after optimization is not exactly the same as before 
the optimization. 

With respect to the converse condition for trap compatibility given earlier, 
it may sometimes be the case that a trap will occur due to the execution of a 
target instruction that would not have occurred during execution of the source 
program. However, if the runtime is able to detect these traps and not make 
them visible to the guest program, then the converse condition still holds. That 
is, the trap is not "observed" by the guest program because the runtime filters 
out any spurious traps. 

At the time of a trap, the memory and register state corresponding to 
a particular point in the guest program's execution (as identified by the 
trap/interrupt PC) becomes visible. Memory and register state compatibility 
are maintained if the runtime can reconstruct them to the same values they 
would have had on a native platform. The requirement of supporting state 
compatibility can have a significant effect on the optimizations that can be 
performed. For example, in Figure 4.28 (on the left), it might be beneficial to 
reorder the instruction that computes r6 to a point higher in the code sequence 
to allow its execution to be overlapped with independent instructions (because 
multiplications typically take several cycles to execute). In this example, the 
multiply instruction can be overlapped with the add instruction that writes to 
r9. The rescheduled code is shown in the middle of the figure. However, if the 
add that produces R9 should overflow and trap, then the value in R6, as seen 
by the trap handler, will not be the same as in the original code sequence. 
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Register compatibility is easier to maintain than memory state compatibility 
because register values can be backed up (or checkpointed) more easily. This 
is illustrated in the rightmost code sequence of Figure 4.28. Here, the code is 
reordered, but the result of the multiplication is initially placed into a scratch 
register, S1. The value in S1 is then copied into register R6 at the same place 
R6 would have been updated in the original code. If an overflow trap should 
occur, the runtime can recover the original state from $2, using techniques to 
be described in Section 4.5. 

In the case where intrinsic compatibility (see Section 3.2.1) is required, then 
optimizations should be restricted to those that make all register and memory 
state recoverable at the time any potentially trapping instruction is emulated. 
However, if the developer of the VM software can make some assumptions 
about the producer of a binary ~ for example, that certain types of bugs 
are not present, that a particular compiler will used for the source binary, 
that only certain trap handlers will be used, or that some traps will never be 
enabled ~ then additional optimizations can be performed while still providing 
extrinsic compatibility under the given assumptions. We will return to the 
topic of compatibility in Section 4.6.2, after specific optimizations have been 
described. 

4.4.3 Consistent Register Mapping 

Initially, we assume there are always sufficient target registers available to map 
source register values to target registers and to accommodate any optimizations 
that may be performed. This may require that there be more available target 
registers than original source registers. This is not an unreasonable assumption, 
however, because the IA-32 is a commonly used source ISA, and the target ISA is 
often a RISC ISA, with many more registers than an IA-32. The relative numbers 
of source and target registers are an important consideration, however, and this 
issue was discussed in Section 3.3.1. 
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Superblock A 

R1 ~--~ rl 

R3 ~ rl 

Superblock B 

R2 ~-~ rl 

Interpreter 

Figure 4.29 

Superblock C 

An Inconsistent Register Mapping. When one superblock branches to another, the source-to-target 
register mapping must be correctly managed. Furthermore, when jumping to the interpreter, the 
interpreter must know the specific mapping being used so that it can correctly update its register 
context block in memory. 

Given a sufficient number of target registers, we assume that individual 
source registers can be permanently mapped to target registers. Although in 
theory a less permanent mapping could be done on a per-translation-block 
basis, such a flexible mapping method leads to complications when a transition 
is made from one translation block to another or from a translation block to 
the interpreter. This is illustrated in the following example. 

Figure 4.29 shows a situation where two different translated superblocks (A 
and B) branch to the same translated superblock, C. If superblocks A and B 
use different register mappings (e.g., one uses R1 for source register rl while 
the other uses R2), then one (or possibly both) of them may be inconsistent 
with the mapping in the common destination superblock, C. Consequently, 
extra register copy instructions must be inserted at the end of superblocks A 
and B to make their mappings consistent with the destination superblock, C. 
A similar situation occurs if superblock B jumps to the interpreter because the 
conditional branch at its end is not taken. When interpreter is entered, then 
the runtime must copy target register values into the register context block the 
interpreter keeps in memory. If the register mapping is not consistent among 
translation blocks, then a side table must be provided to assist the runtime 
with the copying. The table would indicate the specific mapping used by each 
translated superblock. 
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To simplify the process, often a fixed source-to-target register mapping 
is maintained at all translation block boundaries, with the mapping being 
more flexible within the superblock boundaries. In some cases, this may cause 
additional register copy instructions at the time a translation block is exited. 
It must be noted, however, that such a fixed mapping is not necessary 
through careful bookkeeping at the time translation is performed, the translator 
(with the assistance of side tables) can make sure that source and destination 
mappings always match when a transition is made; this process will be explored 
in Section 4.6.3. 

An important optimization performed in a number ofvirtual machine applica- 
tions is code reordering. In many microarchitectures, performance is affected 
by the order in which instructions are issued and executed. The most signifi- 
cant examples are simple pipelined microarchitectures that execute instructions 
strictly in program order. This was done in many of the early RISC processors 
and is still done in a number of embedded processors. Another example is 
VLIW processors that expect the compiler to reorder instructions so that several 
independent instructions can be packed together within the same long instruc- 
tion word. The Intel IPF (formerly IA-64) implementations (i.e., Itanium) 
are modern high-performance processors that take this approach. Finally, in 
many cases, performance of dynamic out-of-order superscalar processors can 
benefit from code reordering because of variations in functional unit latencies, 
especially cache memory latencies. 

Because of its importance, we will consider code reordering before look- 
ing at other optimizations. Code reordering is a fairly easy optimization to 
understand, and several important issues can first be discussed with respect to 
reordering and later extended to other types of optimizations. 

4.5.1 Primitive Instruction Reordering 

The key issues related to code reordering are easier to understand if we first 
consider reordering pairs of instructions. This will enable us to see the steps that 
are required for implementing precise traps or for adding compensation code 
at side entry and exit points to ensure correctness. This pairwise-reordering 
approach may seem a little pedestrian, but it is conceptually useful for under- 
standing the important issues. By considering reordering in this manner, we 
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are reducing the problem to "primitives" from which more complex algorithms 
are built. 

The types of reordering allowed and any required compensation code, i.e., 
the rules for reordering, depend on the types of instructions involved. We 
therefore divide instructions into four categories. 

Register updates, denoted as " r e g " ~  instructions that produce a reg- 
ister result, i.e., that change the register portion of the architected state. 
This category typically includes load instructions as well as ALU/shift-type 
operations that write to registers. These instructions have the property 
that their state modification(s) can be "undone," e.g., by saving about- 
to-be-overwritten values in other target registers or spilling them to a 
region of memory. The saved state may be required in the event that a 
reordered instruction traps and the runtime needs to recover the precise 
source ISA state. 

Memory update instructions, " m e m " ~  instructions that place a value 
in memory; i.e., that change the portion of architected state residing in 
main memory. In most instruction sets, only memory store instructions 
are in this category. A key property is that the updating of the memory state 
cannot be easily undone. In general, any instruction whose modification 
to the process state cannot be undone should be put in this category. This 
includes memory accesses to volatile locations (described below). 

Branch instructions, " b r " ~  a branch instruction that determines control 
flow but does not produce any register or memory result. Branches cannot 
trap. 

loin points, " j o i n " ~  the points where a jump or branch target enters the 
code sequence (i.e., the trace). Although these are not instructions strictly 
speaking, they can affect scheduling when instructions are moved above or 
beyond join points. 

As an example, the instructions in Figure 4.30 have been designated with 
the category to which they belong. In this and other examples, we use a register 
transfer notation to make the various instruction dependences easier to see. 

Accesses to volatile memory locations ~ A volatile memory location is 
one that may be accessed by an entity other than the process at hand, for 
example, by another process or thread in a multiprocessing system or by the 
I/O system if memory-mapped I/O is being used. Very often, there are severe 
constraints on optimizations when volatile memory locations are involved. 
For example, instructions accessing volatile locations cannot be removed, 
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Figure 4.30 

RI'+- mem(R6) reg 
R2 ~- mere(R6 +4) reg 
R3 ~- R1 + 1 reg 
R4 ~- R1 << 2 reg 
Br e x i t  i f  R7 == 0 b r  
R7 ~ - R 7  + 1 reg 
mere ( r 6 )  ~ - R 3  mem 

Code Sequence with Instructions Denoted According to Scheduling Category. 

and in many cases they may not be reordered. More discussion of memory 
reordering in multiprocessor VMs is in Chapter 9. For our analysis of 
code reordering, it is best to categorize volatile memory accesses as "mem" 

even if they are not stores. For example, in Figure 4.30 if the first two 
load instructions are to volatile memory locations, then they should each be 
categorized as "mem" rather than "reg." A final comment is that in some VM 
applications, the emulation system does not know a priori whether memory 
locations are volatile and must then make very conservative assumptions 
about optimizations involving any memory operations. 

We now consider scheduling situations in terms ofthe foregoing instruction 
categories. There are 16 different cases; i.e., both instructions in a pair are one 
of the four types. A few of the 16 cases are degenerate, however; e.g., reordering 
two join points has no real effect. The focus ofthis discussion will be the require- 
ments of maintaining a consistent register assignment and implementation of 
precise traps (to be discussed in greater detail in Section 4.5.2). 

To provide some overall organization, we consider first code movement 
involving branches, then code movement around join points, and finally code 
movement in straight-line code. 

The first two cases we consider are illustrated in Figure 4.31 a. These involve 
moving instructions from above to below a branch exit point. Instructions that 
change the architected state, whether writing to a register or to memory, can be 
moved below a conditional branch that exits a trace or superblock. When this 
is done, compensation code is added at the exit point to duplicate the update 
performed by the instruction being moved. This ensures that if an early exit 
is taken, the state is the same as in the original code sequence. For example, 
in Figure 4.3 lb, a shift instruction is moved after a conditional branch. In the 
event that the branch is taken, a duplicate of the reordered instruction is placed 
on the target path as compensation code. 

The cases where instructions are moved above a conditional branch are 
illustrated in Figure 4.32a. A register update instruction can be moved ahead 
of a conditional branch as shown, but special provisions must be made for 
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Figure 4 .31 

RI'~- mem(R6) 
R2 <-- mem(R6 +4) 
R3 ~- RI + 1 
R4 ~- R1 << 2 
Br e x i t  i f  R7 == 0 
R7 ~ - R 7  + 1 
mem (R6) ~- R3 

(b) 

R1 ~- mere(R6) 
R2 r mem(R6 +4) 
R3 ~- R1 + 1 
Br e x i t  i f  R7 == 0 
R4 ~- R1 << 2 " ~  
R7 ~ - R 7  + 1 
mem (R6) ~- R3 

R4 ~- R1 << 2 

Moving Instructions Around a Conditional Branch Instruction. (a) Two cases are shown: moving a 
register update instruction below a branch and moving a store below a branch. In both cases, compensation 
code is required. (b) An example of a register update instruction (R4 ~-- R1 << 2) being moved below a 
conditional branch; a duplicate is used as compensation code on the taken branch path. 

supporting precise traps. If a register instruction writes to register R in the 
original sequence, the old value in R must be maintained, at least until the flow 
of execution reaches the original position of the register update instruction 
(i.e., after the branch). One way to do this is to place the new value into a 
temporary register, T (thus saving the old value of R) and then later copying 
the new value into R. This is illustrated in the first two code sequences of 
Figure 4.32b. Here, a multiply instruction is moved above the branch. The 
result of the multiply instruction is held in register T1, and then later (after the 
branch) it is copied into the original destination register, R6. In many cases, 
the explicit copy instruction may not be needed. For example, in the rightmost 
column of Figure 4.32b, the explicit copy is removed. Temporary register T1 is 
still needed to prevent overwriting the value in R6 in the event that the branch 
is taken. The key point is that at every instruction in the sequence (including 
at the branch exit), the correct value of R6 is available, either in R6 itself or 
in some other register. In other words, in the target code, the live range of the 
original value in register R6 is extended at least to the point where it would 
have been overwritten in the original code sequence. 
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Figure 4.32 

R2 R1 2 
Br e x i t  i f  R8 == 0 
R6 ~- R7 * R2 
mem ( r 6 )  ~ - R 3  
R6 ~- R2 + 2 

R2 RI 2 
T1 ~ R7 * R2 
Br e x i t  i f  R8 == 0 
R6 ~- T1 
mere (T1 )  ~ R3 
R6 ~- R2 + 2 

(b) 

o .  

R2 ~- R1 << 2 
T1 ~ R7 * R2 
Br e x i t  i f  R8 == 0 
mem (T1)  ~ - R 3  
R 6 ~ -  R2 + 2 

Moving Instructions from Below a Conditional Branch to Above. (a) A register update instruction 
can be moved above a branch instruction as long as the old value remains available until after the 
branch. This may require the update value to be placed in a temporary register in case the branch 
exit is taken. A mere update (store) instruction cannot be moved above a branch. (b) An example 
where a multiply instruction (R6 +- R7 * R2) is moved above a conditional branch. 

Also, as illustrated in the rightmost code sequence of Figure 4.32a, a mem 
instruction cannot be moved ahead of the branch because we are assuming 
that once a mem instruction writes to memory, the previous memory value is 
unrecoverable. Hence, it would not be possible to back up the old value as was 
done with the register instruction. 

We now turn to cases where an instruction is moved up past a join point 
(found in traces but not superblocks; there are no entry points in superblocks 
except at the top). This is the "dual" situation to the foregoing cases, where an 
instruction was moved past a branch exit point. 

As shown in Figure 4.33a, both types of state-updating instructions, reg 
and mem instructions, can be moved above a join point. The compensation 
code is a duplicate of the moved instruction. The compensation guarantees 
that the state is correctly updated, regardless of the way the block is entered. 
Also, note that the moved instruction is actually the one at the join point, and 
the join point essentially moves down one instruction. Consequently, no actual 
code movement takes place; only the target of the join point is changed. This 
scheduling operation is useful only if additional upward code movements can 
be made. Figure 4.33b is an example where a load instruction at a join point 
is moved above the join point. The case where a mem (store) instruction is 
moved above a join point is similar. 

Moving state-updating instructions (register updates or stores) below a join 
point will cause the state to be updated regardless of the entry path. In all but a 
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Figure 4.33 

~ R1 + 1 R7 <---mem (R6) <.__ R1 + 1 
R7 <--mere (R6) ~ R7 <--mere (R6) 
R7 <--- R7 + 1 R7 <- R7 + 1 
, , , , , , 

(b) 

An Instruction Is Moved Above a Join Point. (a) A register update or a mere instruction (a store) 
can be moved above a join point; if so, compensation is added by performing a duplicate instruction 
on the join path. (b) An example where a load instruction is moved above a join point. 

few very special situations, this will result in an incorrect state update if the join 
path is used. Consequently, we will not consider rescheduling that involves this 
type of code motion. 

Now we turn to code movement in straight-line regions of code. First 
consider instructions that update registers as shown in Figure 4.34a. This case 
is similar to moving a register instruction above a branch point. When the 
instruction is moved, it initially updates a temporary register, T. Then later, 
at the point where it would have updated the register in the original sequence, 
the temporary register can be copied into the architected register. Of course, 
as was the case earlier, if the value is overwritten before the block of translated 
instructions ends, then the copy instruction is not needed. An example is 
in Figure 4.34b. If a memory-update instruction should cause a trap, then 
the state can be restored to that prior to the mem instruction in the original 
sequence, and interpretation can then be used to emulate execution in the 
original program order. In this case the trap will occur again and the state will 
be correct. 

Other types of straight-line code reordering lead to problems, most notably 
moving a store above any other instruction that modifies the state. As noted 
earlier, the store cannot be "undone," so if there is a trap caused by the instruc- 
tion that precedes it in the original schedule (but follows in the final schedule), 
the precise state cannot be restored. 
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Figure 4.34 

�9 R 1  * 3 
R1 <-- R1 * 3 T1  ~-  R7 << 3 
mem(R6) ~ R1 

m e m ( R 6 )  ~ R I  
R7 ~ R7 << 3 

R7 <-- T I  
R9 ~ R7 + R2 R9 ~ T1 + R2 

(b) 

Code Movement  in Straight-Line Code Sequences. Register updating instructions can be moved 
above potentially trapping instructions, but the computed value is held in a temporary register, in 
case a trap does occur. 

Summary 

The various types of code reordering are given in Table 4.1. The columns of 
the table are the instruction types that are the first instruction of a pair to be 
reordered and the rows are the second. The table entries indicate the action that 
can be taken: whether reordering is allowed, and, if so, the action to be taken 
when reordering is performed. These actions permit precise state recovery 
when traps occur. We observe that reordering is always possible if a register 
instruction is the second of the pair; i.e., a register instruction can be moved 
"up" in a schedule arbitrarily (as long as data dependences are not violated). 
Other allowed code motions involve the movement of reg or store instructions 
from above to below branches, and the movement of a store from below to 
above a join point (with proper compensation). 

4.5.2 Implementing a Scheduling Algorithm 

Now that we have discussed scheduling primitives, we consider a complete 
code-scheduling algorithm. The algorithm is based on one given by Bich 
Le (1998) and schedules code that has been organized into superblocks. 
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Table 4.1 Instruction Reordering by Type 

First 

Second reg mem br join 

reg Extend live range of reg Extend live range of reg Extend live range of reg 
instruction instruction instruction 

mere Not allowed Not allowed Not allowed 

br Add compensation Add compensation Not allowed (changes 
code at branch exit code at branch exit control flow) 

join Not allowed (can only Not allowed (can only Not allowed (changes 
be done in rare cases) be done in rare cases) control flow) 

Add compensation 
code at entrance 

Add compensation 
code at entrance 

Not allowed (changes 
control flow) 

No effect 

For handling precise traps, register assignments are performed to maintain 
extended live ranges so that if a trap occurs, the register state can always be 
backed up to some point prior to the trapping instruction. Then interpretation 
of the original source code can establish whether the trap is in fact real and will 
provide the correct state if it is. The example given here translates from an IA- 
32 instruction sequence to a PowerPC sequence. In the example, maintaining 
IA-32 condition codes is initially ignored; then at the end of this section is a 
discussion of condition code handling. 

Step 1: Translate to Single-Assignment Form 

The instructions belonging to the superblock are translated to the target ISA 
and placed in a rescheduling buffer. As the instructions are placed in the 
instruction buffer, they are put in single-assignment form (a register is assigned 
a new value only once). To help with maintaining the consistent register map- 
ping, incoming register values are mapped to their consistent target registers. 
Any new values generated in the superblock are placed in temporary"registers," 
labeled ti, in order to maintain the single-assignment discipline. 

Original Source Code Translated in Scheduling Buffer 
add %eax,%ebx t5 ~- r l  + r2, set CRO 
bz LI bz CRO, L1 
mov %ebx,4(%eax) t6 ~- mere(t5 + 4) 
mul %ebx,10 t7 ~- t6 * 10 
add %ebx,1 t8  ~- t7  + 1 
add %ecx,1 t9  ~- r3 + 1, set  CRO 
bz L2 bz CRO, L2 
add %ebx,%eax t lO~- t8  + t5 
br L3 b L3 
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Step 2: Form Register Map 

A register map (RMAP) is generated to track the values as assigned in the origi- 
nal source code. For each of the IA-32 source registers, eax, ebx, etc., the RMAP 
keeps track of the single-assignment register that holds the corresponding value 
at any given point in the code sequence. 

Register Map (RMAP) 
Original Source Code Single Assignment Form eax ebx ecx 
add  %eax,%ebx t5 ~- r l  + r2,  set  CRO t5 r2 r3 
bz L1 bz CRO, L1 t5 r2 r3 
mov %ebx,4(%eax) t6  ~- mere(t5 + 4) t5 t6  r3 
mul %ebx,lO t7  ~- t6  * 10 t5 t7  r3 
add %ebx,1 t8  ~- t7  + 1 t5 t8  r3 
add %ecx,1 t9  ~- r3 + 1, set  CRO t5 t8  t9  
bz L2 bz CRO, L2 t5 t8  t9  
add %ebx,%eax t lO~- t8  + t5 t5 t l O  t9  
br L3 b L3 t5 t lO  t9  

edx 
r4 
r4 
r4 
r4 
r4 
r4 
r4 
r4 
r4 

Step 3: Reorder Code 

The instructions in the intermediate form are reordered. As the code is 
reordered, the rows of the RMAP are reordered along with the correspond- 
ing instructions. Here, the instructions are denoted with labels a:, b:, c:, etc. to 
make their identification in the rescheduled code easier. In this example, the 
load instruction, c, is moved up above branch b to give the load a longer time 
to complete before its output value is needed. Similarly, the add instruction, e, 
which depends on the multiply, d, is moved downward, below the branch that 
follows it. As explained earlier, the movement of the add instruction below the 
branch requires compensation code to be added at exit label L2. 

Before Scheduling 
a: t5  ~ tO + t l , s e t  CRO 
b: bz CRO, L1 
c: t 6  ~ mem(t5 + 4) 
d: t 7  ~ t 6  * 10 
e: t 8  ~ t7  + 1 
f :  t 9  ~ t3  + 1 , s e t  CRO 
g: bz CRO, L2 
h: t l O  ~ t8  + t5  
i :  b L3 

Register Map (RMAP) 
A~erScheduling eax ebx ecx edx 
a: t5  ~ r l  + r 2 , s e t  CRO t5  r2 r3 r4 
c: t 6  ~ mem(t5 + 4) t5  t6  r3 r4 
b: bz CRO, L1 t5  r2 r3 r4 
d: t7  ~ t6  * 10 t5  t7  r3 r4 
f :  t 9  ~ r3 + 1 , s e t  CRO t5  t8  t 9  r4 
g: bz CRO, L2 t5  t8  t9  r4 
e: t 8  ~ t7  + 1 t5  t8  r3 r4 
h: t l O  ~ t8  + t5  t5  t l O  t 9  r4 
i :  b L3 t5  t l O  t 9  r4 

Compensati on"  

L2" t8  ~- t7  + 1 

Step 4: Determine Checkpoints 

Instruction checkpoints are determined. These are used when an instruction 
traps or there is an early exit branch from the superblock. When a trap occurs, 
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it must be possible to back up to some earlier point where a precise state can 
be recovered so that interpretation can proceed forward. These checkpoints 
are places where all instructions in the original sequence have been com- 
pleted up to that point. To find these points, we consider an instruction to 
be "committed" if all preceding instructions in the original sequence have been 
completed. The points at which instructions commit are listed here. Then, for 
each instruction, the checkpoint (in other words, the backup point if it traps) 
is the closest instruction that has been committed. These are shown in the 
checkpoint column in the example. When the superblock is entered, the initial 
register mapping is the checkpoint, denoted as @. 

Register Map (RMAP) Commit Checkpoint 
After Scheduling eax ebx ecx edx 
a: t5 ~- r l  + r 2 , s e t  CRO t5 r2 r3 r4 a @ 
c: t6  ~- mem(t5 + 4) t5 t6  r3 r4 a 
b: bz CRO, L1 t5 r2 r3 r4 b,c  a 
d: t7  ~- t6  * 10 t5 t7  r3 r4 d c 
f :  t9  ~- r3 + 1 , s e t  CRO t5 t8  t9  r4 d 
g: bz CRO, L2 t5 t8  t9  r4 d 
e :  t8  ~- t7  + 1 t5 t8  r3 r4 e , f , g  d 
h: t lO~-  t8  + t5 t5 t lO  t9  r4 h g 
i :  b L3 t5 t lO  t9  r4 i h 

Step 5: Assign Registers 

Registers are assigned in a more or less conventional way, except for the way 
live ranges are determined. For determining live ranges, we need to consider 
the normal live ranges in the rescheduled instruction sequence and extended 
live ranges that are necessary for precise state recovery if there is a trap. The 
extended live ranges are based on the checkpoints. For each instruction that is a 
checkpoint, the live ranges of registers in its register mapping must be extended 
to the last point where it is used as a checkpoint. For example, instruction d 
serves as a checkpoint until instruction e appears in the reordered sequence. 
Registers t5, t7, r3, and r4 are in the register map for instruction d. Con- 
sequently, these registers must be kept live until instruction e appears in the 
reordered sequence. This means that if instruction e should trap, say, due to 
an overflow, then the register values at instruction d will be available and can 
be restored. 

Actually, live range extension can be relaxed somewhat. We need to main- 
tain checkpoints only for instructions that can trap or branch out of the 
superblock, because these are the only points where it is necessary that cor- 
rect source state be available. In our example, the places where live ranges have 
been extended are marked with an "x." 
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Register Live Ranges 
r l  r2 r3 r4 t5 t6  t7  t8  t9  t l 0  

I I I 
x I I 
x I I 

I I I 
I I 
x I 
x I 

After Assignment Register Map (RMAP) 
eax ebx ecx 

a: r l  ( -  r l + r 2 , s e t  CRO r l  r2 r3 
c: r5 ( -  mem(r l  + 4) r l  r5 r3 
b: bz CRO, L1 r l  r2 r3 
d: r2 ( -  r5 * 10 r l  r2 r3 
f :  r5 ( -  r 3 + l , s e t  CRO r l  r2 r5 
g: bz CRO, L2 r l  r2 r5 
e: r2 ( -  r2 + 1 r l  r2 r3 
h: r2 ( -  r2 + r l  r l  r2 r5 
i : b L3 r l  r2 r5 

After live ranges are determined, then registers are assigned as shown. 
Because the PowerPC has many more registers than the IA-32, there are plenty 
of registers available for the assignment. During assignment, it should be an 
objective for the consistent register mapping to be in place when the trace or 
superblock is exited. Thus, the RMAP of the last instruction should, as much as 
possible, reflect the consistent register mapping. Copy instructions, if needed, 
are then added to force the consistent mapping. Similarly, if a side exit should 
be taken, it may be necessary to add compensation code in order to restore the 
RMAP. 

Step 6: Add Compensation Code 

Compensation code is added. In the example, compensation code is needed 
because instruction e was moved below branch g. Consequently, the same 
operation (r2 ~ r2 + 1) must be added at the target of branch g. In addition, 
register r5 must be copied to register r3 in order to restore the consistent 
register mapping. The final translated and reordered PowerPC code is shown 
here on the right. 

After Assignment 
a: r l  
c: r5 
b: bz 
d: r2 
f :  r5 
g: bz 
e: r2 
h: r2 
i : b  

Compensation Code Added PowerPC Code 
�9 - r l + r 2 , s e t  CRO a: r l  ~ r l + r 2 , s e t  CRO a: add. r l , r l , r 2  
�9 - mem(r l  + 4) c: r5 ~- mem(r l  + 4) c: lwz  r5 ,  4 ( r l )  

CRO, L1 b: bz CRO, L1 b: beq CRO, L1 
�9 - r5 * 10 d: r2 ~- r5 * 10 d: mu l i  r 2 , r 5 , 1 0  

r 3 + l , s e t  CRO f :  r5 ~- r 3 + l , s e t  CRO f :  a d d i c ,  r 5 , r 3 , 1  
CRO, L2 g: bz CRO, L2'  g: beq CRO, L2'  

�9 - r2 + 1 e: r2 ~ r2 + 1 e: addi  r 2 , r 2 , 1  
�9 - r2 + r l  h: r2 ~- r2 + r l  h: add r 2 , r 2 , r l  

L3 i : b L3 i : b L3 
r3 ~ r5 mr r3 ,  r5 

L 2 " r 3  ~ r5 L 2 " m r  r 3 , r 5  
r2 ~ r2 + 1 addi  r 2 , r 2 , 1  

edx 
r4 
r4 
r4 
r4 
r4 
r4 
r4 
r4 
r4 

Precise State Recovery 

Continuing with our example, when a trap occurs, the runtime first finds the 
trapping superblock and corresponding source basic blocks (possibly with the 
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aid of side tables). It then reconstructs the RMAP at the checkpoint for the trap- 
ping instruction. It does this by retranslating the original source basic blocks 
and then performing rescheduling and register assignment. At that point, the 
runtime can use the reconstructed RMAP to reset the register values corre- 
sponding to the trapping instruction's checkpoint. The checkpoint algorithm 
guarantees that this can be done. Then the runtime can begin interpreting the 
original source code at the checkpoint. 

For example, say that instruction d traps. Then the runtime needs to back 
up to a precise state with respect to the original source sequence. Hence, it backs 
up to instruction d's checkpoint. In this case the checkpoint is instruction c. 
When the RMAP entry for cis reconstructed, the registers eax, ebx, ecx, and edx 
map to rl, r5, r3, r4, respectively. Therefore, the runtime restores these values 
to the mapped IA-32 registers and begins interpreting forward, beginning with 
instruction c. The trap will recur when instruction d is interpreted, and the 
state at that time will be correct. 

As another example, assume that instruction c traps but the branch at b 
will be taken (and will exit the superblock prior to c in the original code). 
In the translated target code, instruction c executes and traps. The check- 
point for c is instruction a. The registers rl, r2, r3, and r4 hold the register 
state at instruction a. Consequently, if interpretation starts at instruction a 
with these values, the branch will be taken, and the trap does not occur. 
Eventually, as interpretation proceeds, a source PC will map to a translated 
superblock in the code cache, and the emulation will jump back into the code 
cache. 

As an alternative to interpretation, one can also maintain a simple (not 
reordered or optimized) binary translation off to the side. Then rather than 
interpreting after the state has been restored, the runtime software can branch 
into the simple, in-order translation. This faster method for handling traps 
requires more memory and can be applied to those specific cases where a given 
instruction traps repeatedly. 

Finally, a complementary method for precise state reconstruction is to add 
repair code (Gschwind and Altman 2000), executed by the runtime after a trap 
occurs. Repair code is similar to the compensation code placed at the side exits 
ofa superblock. However, in the case of precise trap implementations, the "side 
exit" is actually a trap. The concept is illustrated in Figure 4.35, which is taken 
from the example in Figure 4.28. Here, the code sequence is reordered, with 
repair code (the instruction R9 +- R1 + R5 in this example) being recorded 
in a side table. Then if the multiply instruction should trap, the repair code is 
executed by the runtime trap emulator to generate the correct precise value for 
register R9. 



198 �9 Chapter 4--Dynamic Binary Optimization 

Figure 4.35 

Source 

rl"<-- r2 + r3 
r9 ~- r l  + r5 
r6 ~- r l  * r7 
r3 ~- r 6 + 1  
, .  o 

Target 

RI"~-  R1 + 3 

reschedule ER6 <- RI * R7" ~ 
R9 ~- R1 + R5 Repair code 
R3 ~ R6 + 1 R 9 ~  R1 + R5 

Using Repair Code to Reconstruct Precise State After a Trap. The instruction sequence is reordered, 
with repair code being generated at a potential trap (exit) point. If the multiply instruction should 
happen to trap, repair code executed by the runtime trap handler recovers the precise value for 
register R9. 

Condition Code Handling 

For handling condition codes, an efficient method is to use lazy evaluation, 
as described in Section 2.8.2. With lazy evaluation, condition codes are only 
evaluated when needed. For the purposes of conditional branch evaluation, 
data flow analysis can be performed within a translation block to determine 
which condition codes will actually be needed by the executing code. In the 
extended reordering example, only two instructions set condition codes that 
are potentially used within the translation block (instructions a and f), so these 
are the only instructions where condition codes are actually evaluated; but note 
that even then, the target ISA (PowerPC) versions of the condition codes are 
generated, not the source ISA (IA-32) versions. 

A more difficult problem occurs when an interrupt or trap is triggered and 
condition codes must be materialized in order to provide the precise source ISA 
state. The basic method is similar to the one used for providing precise register 
state. More specifically, lazy evaluation can be implemented by extending the 
live ranges of the input operands to condition code-setting instructions. If 
needed, these operands are used by the runtime's trap/interrupt routine to 
materialize the condition codes. 

In the foregoing code-reordering algorithm, "condition code checkpoints," 
similar to the regular checkpoints, are maintained. The only difference is 
that these checkpoints are restricted to the committed condition code-setting 
instructions. Then the condition code checkpoints extend the live ranges of the 
operands that feed into a condition code-setting instruction. In the example, 
instructions a, d, f, e, and h correspond to IA-32 source code operations that set 
condition codes. In the example, the condition code checkpoints are similar to 
the regular checkpoints, except the condition code checkpoint for instruction 
d is a (not c, because c does not change condition codes). Consequently, the 
live ranges of the mapped registers at instruction a must be extended through 
instruction d in the reordered code. Taking this into account, the initial value 
of r l must have its live range extended (denoted with a "y" in the following 
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table). This further affects the register assignment because the original value 
in register rl must be kept beyond instruction a, in case instruction d should 
trap and condition codes (generated by instruction a) must be materialized. 
In this example, the PowerPC versions of the condition codes happen to be 
generated by instruction a. However, these are not adequate for generating all 
the needed IA-32 condition codes. Extending the live range of register rl means 
that register r6 must be used for holding the result of instruction a. This will 
eventually result in an additional register copy (rl +-- r6) when the translation 
block is exited, in order to maintain the consistent register mapping. 

Step 5a: Assign Register with Condition Codes 

Register Live Ranges 
r l  r2 r3 r4 t5  t 6  t 7  t 8  t 9  t l 0  

I I 
y x 
y x 

After Assignment Register Map (RMAP) 
eax ebx ecx edx 

a: r6 ~- r l + r 2 , s e t  CRO r6 r2 r3 r4 
c: r5 ~- mem(r6 + 4) r6 r5 r3 r4 
b: bz CRO, L1 r6 r2 r3 r4 
d: r2 ~- r5 * 10 r6 r2 r3 r4 
f :  r5 ~- r 3 + l , s e t  CRO r6 r2 r5 r4 
g: bz CRO, L2 r6 r2 r5 r4 
e: r2 ~- r2 + 1 r6 r2 r3 r4 
h: r2 ~- r2 + r6 r6 r2 r5 r4 
i :  b L3 r6 r2 r5 r4 

Now, if instruction d happens to trap, the register state can be backed 
up to instruction c (as before), and the operands that produce the condition 
codes (registers rl and r2 at the time the translation block is entered) can 
also be restored for condition code evaluation. Interpretation is then used 
for materializing the correct register state and condition code state at instruc- 
tion d. 

4.5.3 Superblocks Versus Traces 

As mentioned earlier, most dynamic translation systems use superblocks rather 
than the more general traces. To understand why, we need to examine a 
number of issues. First, we consider instruction cache and branch prediction 
performance, and then we consider issues that come into play when dynamic 
superblock/trace formation and optimization are implemented. 

An obvious consideration with respect to instruction caching is that a 
superblock may add replicated code due to tail duplication, which can increase 
the working set size and decrease instruction cache efficiency. Mitigating this 
effect is that only heavily used regions of code are converted to superblocks. 
Also, superblocks lead to more straight-line code fetches, which will enhance 
the cache-fetch efficiency. If code expansion due to tail duplication becomes 
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excessive (and the runtime can keep track of this as it forms superblocks), then 
additional constraints can be put on superblock formation, such as restricting 
their length. 

With respect to branch predictors, as with instruction caches, there is a 
working set size disadvantage; e.g., in Figure 4.22b block G is triplicated so 
the branch at its end will have three different entries in a branch predictor 
table. On the other hand, superblocks may also be beneficial because, in effect, 
a superblock encodes some global branch history information. For example, 
the three branches corresponding to the end of G belong to three different 
paths. Hence, superblocks essentially embed path correlation information and 
perhaps a simpler branch predictor can be used, or a given predictor may work 
better. 

As far as optimizations are concerned, both side exit and join points may 
inhibit interbasic block optimizations involving code motion because it may 
not always be possible to add compensation code (see Table 4.1). For example, 
code often cannot be moved below a join point. Getting rid of join points, 
therefore, removes some code reordering constraints. 

Another advantage of removing join points becomes evident by considering 
the trace/superblock formation and optimization process. It is important to 
keep in mind that the basic blocks that are observed during trace/superblock 
formation are dynamic basic blocks, not static basic blocks. Consequently, 
determining whether a code region join point is already part of an existing trace 
adds complexity and bookkeeping to the formation algorithm. In particular, 
because only dynamic basic blocks are observed, it is not known a priori that 
a point in the middle of the block may later be discovered to be a join point. 
Hence, during the code-discovery process, checking to see ifa branch target has 
already been translated requires not only looking at known branch targets, but 
also keeping track of, and searching, address ranges within already-translated 
basic blocks. 

A related problem occurs because a preexisting translated trace has pre- 
sumably been optimized, and this optimization may have been done without 
knowledge that a join point would later be discovered and added. Conse- 
quently, the optimization may no longer be safe after a join is discovered and 
added, so the optimization may have to be undone or at least revised, adding 
further complication. 

It is perhaps worth noting that trace scheduling was originally implemented 
in a static compilation environment (Fisher 1981) where the complete control 
flow graph could be analyzed when forming traces and where there were fewer 
compatibility constraints that would inhibit optimizations~that is, only com- 
patibility with the high-level language program had to be maintained, not 
compatibility with an existing binary. 
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From a different perspective, one thing that makes superblocks simple is 
that they require compensation code only at exit points, which is relatively 
straightforward. Furthermore, the only entry point is at the top, where the 
initial conditions (i.e., register state) are more easily maintained. In effect, the 
tail duplication required by superblocks is like adding superset compensation 
code at all join points and skipping all the analysis; i.e., the compensation 
code is "pre-added." Because it performs exactly the same state updates in the 
same order, it does not have to be segregated as special compensation code but 
remains main-line code. 

There are a number of optimizations that can be applied within translation 
blocks to reduce execution time. Even if the original source binary code was 
optimized when it was produced, additional optimization opportunities are 
often present in the dynamic environment. For example, superblock formation 
removes control flow join points, creating a locally different control flow than 
in the original code. Partial procedure inlining converts what would originally 
be interprocedural analysis into intrablock analysis. 

In general, many code optimizations have been proposed and used in prac- 
tice (Aho, Sethi, and Ullman 1986; Cooper and Torczon 2003), and we will 
focus on ones that are more likely to be present during dynamic optimization. 
We begin by describing a set of common optimizations through examples. It is 
often the case that performing an optimization of one type enables additional 
optimizations. The examples are structured to illustrate this point. 

4.6.1 Basic Optimizations 

Figure 4.36 illustrates a combination of common optimizations. The first is 
constant propagation. Here, the constant value 6 is assigned to R1; then R1 
is used in the following instruction, so the constant 6 is propagated into the 
next instruction (which would effectively become R5 ,-- 6 + 2). Then an 
optimization known as constant folding is performed. The constants 2 and 6 
are combined into the constant 8, and the add instruction is replaced with the 
assignment of the constant 8 to register R5. Following constant propagation 
and folding, the multiplication in the third instruction is converted via strength 
reduction into a shift by 3. 

The foregoing example may at first appear to be far-fetched. What compiler 
would have generated such nonoptimal code in the first place? Actually, this 
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Figure 4.36 

Figure 4.37 

R1 ~ 6 R1 (-- 6 R1 <-- 6 
R5 ( -  R1 + 2 R5 <-- 8 R5 ( -  8 
R6 <-- R7 * R5 R6 <-- R7 * R5 R6 <-- R7 << 3 

(a) (b) (c) 

Constant Propagation and Folding (a) to (b) Followed by Strength Reduction (b) to (c). 

R1 <- 28 ~ R1 ~ 6 
R5 (-- R I  + 2 
R6 ( -  R7 * R5 

A Control Flow loin Point That Inhibits Code Optimization. 

example illustrates a point made earlier. Consider Figure 4.37, which illustrates 
the original source code. It is the same as in Figure 4.36a, except we see that the 
assignment to R5 was at a control flow join point in the original code. Hence, in 
the original sequence, the compiler could not perform constant propagation. 
It is only because superblock formation removed the join point that the 
constant propagation (followed by other optimizations) was enabled. 

Another example where superblock formation leads to a potential opti- 
mization is shown in Figure 4.38. Often the assignment of a value may be 
partially dead. That is, it is dead on one control flow path but not on others. 
This is illustrated in Figure 4.38a. Here, the assignment to R3 above the BNE is 
dead ifthe branch is not taken, but it is not dead ifthe branch (to L1) is taken. 
This suggests an optimization known as code sinking. If the first assignment 
to R3 is moved below the branch, with a compensating copy being placed at 
destination L1 (Figure 4.38b), then the partially dead assignment leads to a 
fully dead assignment on the not-taken path. Consequently, the assignment to 
R3 on the not-taken path can be removed (Figure 4.38c). This optimization 
is most beneficial if the not-taken path is the most common one. In terms of 
superblock optimization, the sequence of instructions on the not-taken path 
might be part of the superblock. Then code sinking is simply a reordering, with 
compensation code being added at a superblock exit. 

Figure 4.39 illustrates another pair of common optimizations. In the origi- 
nal code sequence, there is a copy from register R1 into R4. Copy propagation 
causes register R1 to be substituted for R4 in the multiply instruction. This does 
not reduce the number of instructions, but in a superscalar processor it will 
increase parallelism because the copy and the multiplication can be performed 
in parallel after copy propagation. Finally, after copy propagation, the value 
held in register R4 is dead; i.e., it is not read by any following instructions 
before it is overwritten. As a second optimization, therefore, dead-assignment 
elimination removes the copy to R4. 
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R1 ~- 1 R1 ~ 1 
R3 ~ R3 + R2 Br L1 i f  R7!=O 
Br L1 i f  R7!=O R3 <-- R3 + R2 
R3 <-- R7 + 1 L I :  R3 ~- R3 + 1 R3 <- R7 + 1 

(a) (b) 

L I "  R3 <-- R3 + R; 
R3 ~- R3 + 1 

Figure 4.38 

R 1 ~ - 1  
Br L1 i f  R7!=O 
R3 ~- R7 + 1 L I :  R3 ~ R3 + R2 

R3 <-- R3 + 1 

(e) 

Example of code sinking. (a) The assignment to R3 is partially dead; (b) after code sinking, the 
assignment on the not-taken branch path is fully dead; (c) the dead assignment to R3 can then be 
removed. 

Figure 4.39 

R1 <- R2 + R3 R1 <-- R2 + R3 R1 ~- R2 + R3 
R4 <--- R1 R4 <-- R1 
R5 ~- R5 * R4 R5 ~- R5 * R1 R5 <-- R5 * R1 

�9 ~ . 

�9 . . 

R4 ~- R7 + R8 R4 ~ R7 + R8 R4 ~- R7 + R8 

(a) (b) (c) 

Copy Propagation (a) to (b) Followed by Dead-Assignment Elimination (b) to (c). 

Figure 4.40 

R1 ~ R2 + R3 R1 ~- R2 + R3 R1 ~ R2 + R3 
R5 <-- R2 R5 ~- R2 R5 ~- R2 
R6 <--- R5 + R3 R6 ~- R2 + R3 R6 ~ R1 

(a) (b) (c) 

Copy Propagation (a) to (b) Followed by Common-Subexpression Elimination (b) to (c). 

Another example of an optimization enabled by copy propagation is in 
Figure 4.40. Here, the copy from R2 to R5 is propagated to the second add. 
Then R2 + R3 becomes a common subexpression that can be eliminated from 
the second add. At this point, the copy to R5 may become a dead assignment 
and can be removed (not shown in the figure). 

The final example optimization is the hoisting of an invariant expression out 
of a loop, Figure 4.41. Here, if neither R2 nor R3 is modified in the loop, then 
the add to register R1 is invariant throughout the loop's execution. Hence, it 
needs to be done only once, before the loop is entered. 
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Figure 4.41 

LI"  R1 ~ R2 + R3 
mem (R4) ~ - R 1  
R4 ~- R4 + 4 

L I "  
R1 ~- R2 + R3 
mere (R4) ~ - R 1  
R4 <-- R4 + 4 

Br L1 i f  R7!=O Br L1 i f  R7!=O 

(a) (b) 

Hoisting a Loop Invariant Expression Out of a Loop. (a) The computation of R1 done repeatedly 
inside the loop is (b) moved outside the loop and clone only once. 

This completes our survey of common optimizations: redundant branch 
removal, constant propagation, copy propagation, constant folding, code sink- 
ing, strength reduction, dead-assignment elimination, and hoisting ofinvariant 
expressions. Although any of these optimizations, as well as others, can be 
applied, the different optimizations have different effects on compatibility, 
and this is often a critical factor in deciding whether they should be applied. 

4.6.2 Compatibility Issues 

An optimization is safe with respect to traps if, after the optimization is 
performed, every trap in the original source ISA code is detected in the trans- 
lated target code and either traps to a handler in the runtime or branches 
directly to the runtime. Furthermore, the precise architected state at that point 
must be recoverable. There are no hard-and-fast rules for determining exactly 
which optimizations are safe, but optimizations that do not remove trapping 
operations tend typically to be safe. For example, copy-propagation, constant- 
propagation, and constant-folding optimizations are usually safe. There may 
be some end cases where compatibility becomes an issue, for example, if con- 
stant folding happens to result in overflow. This case can be determined at 
optimization time and can be disabled in those rare cases where it occurs. 

On the other hand, a number of optimizations may not always be safe. 
Dead-assignment elimination, if it removes a potentially trapping instruction, 
is not safe because it may break trap compatibility ~ e.g., the original source 
code might trap if an instruction performing a dead assignment is executed. 
If the dead-assignment elimination removes a nontrapping instruction then 
it is likely to be safe. However, if such nontrapping dead-assignment code is 
removed, then it may still be necessary to extend the live ranges of its input 
values, just in case some other instruction traps and the values are needed 
for precise state construction. 

Similarly, hoisting instructions out of loops may not be safe because trap 
compatibility may be violated. For example, in Figure 4.41 a potentially 
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trapping instruction is hoisted. In a static sense the instruction has not been 
removed, but in a dynamic sense instructions have been removed ~ in the 
original code, the hoisted add was executed every time through the loop. 

Strength reduction may be safe in some cases but not in others. For exam- 
ple, the reduction of a multiplication to a shift in Figure 4.36 is likely to be 
unsafe, because an overflow during the multiplication will not occur when the 
substituted shift is performed. On the other hand, reducing a multiplication 
by an addition (e.g., replacing Rl*2 with R1 + R1) would likely be safe ~ an 
overflow will be detected. 

4.6.3 Inter-superblock Optimizations 

All the optimizations discussed thus far have a scope that is restricted to a 
single superblock. During the optimization process only a single superblock is 
buffered and analyzed. The register state at the time the superblock is entered 
and exited is precisely consistent with the register state at the same points 
in the source code. Even though superblocks are relatively large and provide 
good optimization opportunities, there may be room for additional optimiza- 
tions that span superblock boundaries. One solution is to use tree groups, as 
described in Section 4.3.5. Another solution is to optimize across superblocks 
incrementally. 

At the time two superblocks are linked together, they can both be reex- 
amined and reoptimized, based on the new knowledge of control flow and a 
more complete context. In theory, this could be a complete reoptimization and 
reformulation of both superblocks that are being linked. However, this would 
lead to additional optimization overhead and could affect the recovery of pre- 
cise state (i.e., superblock exits may no longer be precise exception points with 
a consistent register mapping). Furthermore, the original superblocks are opti- 
mized to take into account the most common control flow path, and modifying 
some of these optimizations to account for early exit paths may be counterpro- 
ductive. Consequently, it is probably a better approach to stick with the original 
superblock optimizations and optimize across superblocks only at the "seams." 

An example is given in Figure 4.42. Here, register r2 is dead within the 
first superblock but may be live on exit path L1. If, however, the destination 
superblock of the early exit branch is examined when the superblocks are 
linked, it is apparent that the assignment to r2 is in fact dead within the original 
superblock and may be removed (subject to safeness requirements discussed 
earlier). 

This optimization can be implemented via two side tables (Bala, 
Duesterwald, and Banerjia 1999). An epilog side table keeps a mask indicating 
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Figure 4.42 

Superblock 1 

r2 ( -  r7 

Br L I  i f  r4==O 

r2 <- r l  + 2 

Superblock 2 

L l " r 2  (-- r3 + 2 

Two Superblocks to Be Linked. After linking, the first assignment to r2 can be determined to be 
dead. 

the registers that are potentially dead at the time a superblock is exited, along 
with a pointer to the last instruction to assign the register a value (this is the 
potentially dead register). A prolog side table keeps a mask indicating the regis- 
ters that are written before being read when a superblock is entered. Figure 4.43 
illustrates the tables for the example given earlier in Figure 4.42. When two 
superblocks are to be linked, the bit masks ofthe exited and entered superblocks 
are ANDed. Any bits that remain set indicate dead register values. The pointer 
in the epilog can then be used for finding them. 

Another possible optimization is to remove some of the register copies at 
exit points that are intended to maintain a consistent register state mapping. 
In the final code for the extended example given in Section 4.5.2, the copies 
of r5 to r3 (both at the bottom of the superblock and at the early exit) are 
present only to provide a consistent mapping of register ecx to r3. Here, if the 
mapping could be changed (so that ecx is mapped to r5) when the subsequent 
superblock is entered, then the copy instructions are no longer needed. To 
implement this optimization, there should be a side table for each superblock 
entry point, indicating the register mapping when it is entered (or indicating 
those mappings that differ from the standard consistent mapping). This table 
is also be consulted when there is a trap or interrupt to ensure that the correct 
precise state is restored. 

4.6.4 Instruction-Set-Specific Optimizations 

Each instruction set has its own features and quirks that could lead to special 
optimizations that are instruction-set specific. We now show two examples 
that illustrate the principles involved. 

The first example is unaligned load optimization. Some ISAs, primarily 
RISC ISAs, are designed so that load and store instructions provide better 
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Superblock 1 

Superblock 2 

Epilog side table 

r l  r2 r3 r4 . . .  rn pointers 

0 1 1 . . .  "". I 

Prolog side table 

r l  r2 r3 r4 . . .  rn 

0 1 0 . . .  i - '" 

/ 

Superblock 1 

r2 <-- r7 

Br L1 i f  r4==O 

r2 <- r l  + 2 

" '~0 1 1 . . .  0 
AND 

. y O l O . . .  1 
s 

s 0 1 0 . . .  0 

register r2 is dead along path from 
superblock 1 to superblock 2; instruction 
r2 ~ r7 in superblock 1 can be removed 

Figure 4.43 Epilog and Prolog Side Tables. Epilog and Prolog side tables detect dead registers across superblock 
boundaries. 

performance if their addresses are aligned to "natural" boundaries; e.g., a word 
address has its two low-order bits as 00 (see Section 2.8.5). If a load or store 
instruction should access data that is not naturally aligned, i.e., is "unaligned," 
then it will trap. The trap handler can then perform the unaligned access using 
multiple instructions. Because it relies on a trap, this method is extremely slow, 
so an alternative is to use the normal aligned load or store for those accesses 
that have very high probability of being aligned and using an inlined multi- 
instruction sequence for those cases that have some significant probability of 
being unaligned. Ofcourse, the static compiler for such an instruction set strives 
to align data as much as possible. The compiler also knows when data may 
be unaligned and inserts the multi-instruction sequences. However, when a 
source ISA that features unaligned accesses is emulated by a target ISA that does 
not, handling unaligned accesses leads to a dynamic optimization opportunity. 

If the source ISA allows unaligned accesses, then as part of dynamic profil- 
ing, the load and store instructions with unaligned addresses can be identified. 
That is, at the early emulation stage when profiling is enabled, all loads and 
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stores with unaligned addresses are recorded in a table. Then the binary trans- 
lator consults this table of profile data. If a load or store has never had an 
unaligned address, then the translator assumes this will always be the case, and 
the normal (aligned) target load/store instruction is used. If, on the other hand, 
unaligned accesses did occur for a given load or store, then the binary transla- 
tor inserts the appropriate multi-instruction sequences. Of course, there must 
still be a trap handler to cover those cases where the profile information does 
not correctly identify a memory access instruction that later uses an unaligned 
address. 

The second example of an instruction-set-specific optimization is known as 
if conversion (Mahlke et al. 1992). Some instruction sets implement special fea- 
tures to allow removal of certain conditional branch instructions. These special 
features include predication (Hsu and Davidson 1986), nullification (Kane 
1996), and conditional move instructions. An example of code that might ben- 
efit from this optimization is shown in Figure 4.44a. In this example, there 
is a small if-then-else piece of code that leads to a small "hammock" region 
(Figure 4.44b). An assembly language version of this code is in Figure 4.44c. 
To execute the example code, a conditional branch and possibly an uncon- 
ditional branch are required. Although branch prediction can often mitigate 
the performance-degrading effects of conditional branches, performance losses 
can be large when the prediction is incorrect. 

For the purpose of this example we have "enhanced" the PowerPC instruc- 
tion set by adding an integer conditional move instruction (the PowerPC 
instruction set has conditional move instructions for floating-point data but 
not integer data). This conditional move instruction (cmovgt in the example) 
moves the first source register into the destination register if the specified con- 
dition register indicates "greater than." With the conditional move instruction, 
the hammock region can be implemented as shown in Figure 4.44d. Here, both 
r5+ 1 and r5-1  are computed. Then the conditional move essentially selects 
the correct one. The result is a code sequence free of conditional branches (or 
any other branch, for that matter). 

4~ Same-ISA Optimization Systems: Special-Case Process 
Virtual Machines 

Some process virtual machines perform dynamic optimization without per- 
forming binary translation. That is, these dynamic optimizers have the 
same source and target ISAs. Although not usually referred to as virtual 
machines, they do provide a process with a performance-enhanced execution 
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I f  ( r4  > O) then r5 = r5 + 1; 
e l se  r5 = r5 - 1; 
r6 = r6 + r5 

(a) 

I f  ( r4  > O) 

/ 
then r5 = r5 + 1 e lse  r5 = r5 - 1 

/ 
r6 = r6 + r5 

(b) 

sk ip "  
next "  

cmpi crO, r4 ,0  
bgt  crO, sk ip  
addi r 5 , r 5 , 1  
b next  
subi r 5 , r 5 , 1  
add r 6 , r 6 , r 5  

(c) 

;compare r4 w i t h  zero 
;branch to  sk ip  i f  r4 > 0 
;add 1 to  r5 
;branch to  next  
;sub 1 from r5 
;accumulate r5 va lues  in  r6 

Figure 4.44 

next"  

cmpi crO, r4 ,0  
addi r30, r 5 ,1  
subi r 5 , r 5 , 1  
cmovgt r 5 , r 3 0 , c r O  
add r 6 , r 6 , r 5  

(d) 

;compare r4 with zero 
;add 1 to r5 
;sub 1 from r5 
;conditional move r30 to r5 i f  r4 > 0 
;accumulate r5 values in r6 

Example of If-Conversion. (a) Original code; (b) illustration of "hammock" formed by control 
flow; (c) assembly code with branches; (d) assembly code after if-conversion. 

environment, and they use many of the same techniques as in binary-translating 
process VMs. Unlike other process VMs, however, the objective of same-ISA 
dynamic binary optimizers is not compatibility. For example, the objective 
might be performance, as in the Mojo system (Chen et al. 2000), the Wiggins/ 
Redstone system (Deaver, Gorton, and Rubin 1999) and the original HP 
Dynamo system (Bala, Duesterwald, and Banerjia 2000), or it might be 
increased security, as in the later DynamoRIO project (Bruening, Garnett, 
and Amarasinghe 2003). Although it does not provide the same level of trans- 
parency as the systems just mentioned, Kistler and Franz (2001) also developed 
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an advanced dynamic optimization framework that employs many features of 
the process VMs discussed in this section. 

Because of their similarities, many techniques proposed for translating pro- 
cess VMs are also used in same-ISA dynamic binary optimizers, albeit in a 
simpler form. On the other hand, because the source and target ISAs are exactly 
the same, these dynamic optimizers also have some special opportunities and 
advantages for overall performance improvement. 

It is easier to perform fast initial "emulation" of the nonoptimized source 
binary because the source binary can be copied directly into a basic block 
cache, with profiling code being added. Then as hot code sections are 
found, they can be placed in an optimized superblock cache. This approach 
is illustrated in Figure 4.45, and it is used in the Mojo system as well as the 

Figure 4.45 Dynamic Binary Optimization Using a Basic Block Cache. Source basic blocks are copied into a 
code cache for initial emulation. Hot blocks are later collected into optimized superblocks. In this 
example, there is no chaining in the basic block cache because these blocks are executed infrequently 
or only during start-up. Also, in this example it is assumed that the basic block cache and superblock 
cache share a PC map table, but an implementation could also use separate tables. 



4.7 Same-ISA Optimization Systems: Special-Case Process Virtual Machines 

IA-32-based DynamoRIO. Note that the original HP Dynamo system uses 
interpretation during start-up, not basic block caching. An argument for 
using interpretation is that it avoids saving and restoring a large number 
of registers (as in the PA-RISC ISA) every time there is a switch between 
the cached "translated" code and the runtime. On the other hand, in the 
IA-32 ISA, there are only a few registers, so the method of using a basic 
block cache has more reasonable overhead. Carrying this concept still fur- 
ther, a technique known as patching (described in more detail in the next 
subsection) can be used to avoid interpretation and/or basic block caching 
of unoptimized code altogether. Patching, in effect, uses the original source 
code (not a cached copy) for initial emulation prior to optimization. Con- 
sequently, patching can be used only because the source and target ISAs are 
the same. 

�9 When the same ISA is being used, dynamic optimization is not a necessity. 
In particular, if dynamic optimization is found to provide no performance 
benefit (or even a loss), then the dynamic optimizer can "bail out" and 
simply run the original code. For example, if the instruction working set 
is quite large and there is thrashing in the code cache due to repeated 
retranslations, then a bailout may be triggered. 

�9 Sample-based profiling may be more attractive, because running the orig- 
inal code does not result in any apparent performance loss to the user. 
Hence, the original binary can be sampled over a relatively long period of 
time before optimization begins. 

�9 For software-instrumented profiling, an interesting technique that has 
been used successfully is to duplicate the code to be profiled, with one 
copy being fully instrumented and the other (original) copy containing 
branches into the instrumented version (Ronsse and De Bosschere 2000; 
Arnold and Ryder 2001). When profile information is to be collected 
(this can be controlled via the branches in the original copy), the original 
code copy branches into the instrumented version. After profile infor- 
mation is collected, the instrumented version branches back into the 
original copy. 

�9 There are no instruction semantic mismatch problems. For example, both 
the source and the target have exactly the same condition code semantics 
and hence eliminate the overhead of emulating special cases in software. 
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Problems with same-ISA optimization can occur, however, because the 
source and target memory spaces and register files are of the same size. This 
places tight constraints on the emulation process, especially with respect to 
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compatibility. Because the register files of the source and the target are the same 
size, there are no scratch registers for use bythe optimizer, and this may limit the 
types ofoptimizations that can be performed. It also may lead to problems when 
the runtime saves and restores the guest's registers, because it may be necessary 
already to have a free register in order to load/store registers to memory (Bala, 
Duesterwald, and Banerjia 2000). Also, for intrinsic compatibility, there must 
be provision for large binaries that consume most, or all, of the address space, 
as discussed in Section 3.3.2 ~ of course, if the address space requirements of 
the guest become too large, the runtime can bail out, release its address space, 
and revert to normal execution. 

4.7.1 Code Patching 

Code patching is a time-honored technique (Gill 1951) that is widely used 
in debuggers and other code profiling and analysis applications (Larus and 
Schnarr 1995; Tamches and Miller 1999; Hunt and Brubacher 1999). As noted 
earlier, code patching can also be applied to same-ISA dynamic binary opti- 
mizers. With patching, code is scanned when it is first encountered, but it is not 
copied into a code cache; rather it is left in place, with certain instructions being 
replaced with other instructions, i.e., "patches" (usually branch instructions 
that exit the source code). These patches typically pass control to an emulation 
manager and/or profiling code. The original code at the point of a patch is 
maintained in a patch table by the emulation manager so that patches can be 
later removed, if necessary. For example, if a superblock in the code cache is 
flushed, then the patch redirecting the flow of control to the superblock should 
be removed. 

Figure 4.46 illustrates the same example as given in Figure 4.45, with patch- 
ing used instead of basic block caching. Note that in this example, map table 
lookups have been eliminated. Control can be passed to optimized superblocks 
via patches made at the time superblocks are formed. A particularly interesting 
situation is illustrated at the bottom of the figure, where there is an indirect 
jump exiting superblock Y. In conventional emulation systems, this would typ- 
ically result in a map table lookup (unless software jump prediction is used and 
is successful -  see Section 2.7.2). However, with patching, the indirect jump 
at the end of superblock Y can use the source PC to transfer control directly 
back into the source code. If the destination source code has already been opti- 
mized, a patch in the source binary immediately redirects control back into 
the superblock cache. The branch at this patch point would likely be a highly 
predictable branch, so the map table lookup is avoided, and the performance 
loss is negligible. 
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Figure 4.46 Example from Figure 4.45 with Code Patching. Map table lookups are no longer needed, because 
control can be transferred directly into the original source binary. 

Besides this performance advantage, another, more obvious advantage is 
that there is less replicated code; there doesn't have to be a source code copy 
in the basic block cache. Patching also has some disadvantages; the most sig- 
nificant is that it makes the handling of self-referencing code about as difficult 
as self-modifying code. With conventional code caching, the source binary is 
left intact, so self-referencing code automatically reads the correct data (see 
Section 3.4.2). With code patching, this will not be the case. Consequently, the 
source code has to be protected by making it execute-only. Then an attempt to 
read the source code as data will result in a trap, which can be handled by the 
runtime. The runtime can use its patch table to construct the correct data to 
be returned to the reading instruction. 

The ADORE system (Lu et al. 2004) is an example of a system that supports 
dynamic binary optimization via code patching. The ADORE system targets 
the Intel IPF instruction set binaries and uses hardware-profiling informa- 
tion to support optimizations, including insertion of data-prefetch operations 
(Lu et al. 2003). 
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4.7.2 Case Study: HP Dynamo 

The Dynamo system started as a research project at HP Labs (Bala, Duesterwald, 
and Banerjia 1999). Originally developed for a platform running UNIX and 
the HP PA8000 ISA, the Dynamo infrastructure has been retargeted toward 
the IA-32 ISA with both Windows and Linux operating systems (Bruening, 
Duesterwald, and Amarasinghe 2001). Subsequently the project was trans- 
ferred to the RIO research project at MIT as the DynamoRIO system. The 
DynamoRIO system has been extensively studied and is a valuable resource for 
both its innovations in process VM implementation and its well-documented 
performance features. Many of the techniques described in this chapter are 
Dynamo innovations or are at least used in the Dynamo system. 

The basic design of Dynamo is very much along the lines of Figure 4.4. 
It starts out interpreting, and then after an execution threshold is reached it 
optimizes superblocks. As pointed out in the previous section, in the orig- 
inal HP PA8000 implementation, interpretation is chosen over basic block 
caching because of the large number of registers that would have to be saved 
and restored when a cached basic block is entered and exited (from the run- 
time). In the later DynamoRIO IA-32 implementation, basic block caching 
is used. 

For superblock formation, Dynamo profiles backward branches and exit 
points from existing superblocks. When the threshold is reached (i.e., a hotspot 
is found), it uses a most-recently-executed heuristic (most recently executed tail 
in Dynamo terminology) to build superblocks. Figure 4.47 shows data from 
the Dynamo Technical Report illustrating the relationship between the hotspot 
threshold and overall speedup for a set of benchmark programs (note that for 
programs where performance is lost, Dynamo "bails out," so little performance 
is actually lost). Overall, a threshold of 50 was deemed the best choice. 

Dynamo uses many of the optimization techniques described earlier, but it 
tends not to reorder code (it is intended to be run on an out-of-order super- 
scalar processor). The Dynamo study found that of the safe optimizations (i.e., 
those where trap compatibility can be maintained), strength reduction was the 
most commonly applicable, and redundant branch removal was second. Of 
the more aggressive, potentially unsafe optimizations, redundant loads and 
dead-assignment elimination were the most common, with code sinking also 
providing a significant number of optimization opportunities. A load instruc- 
tion is redundant if there is a preceding load (or store) instruction to the same 
address and the value previously loaded or stored remains in a register. The 
redundant load is then replaced with a register copy. Of course, if there is any 
possibility that the load or store is to a volatile memory location, then it cannot 
be considered redundant. 
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Figure 4.47 Relative Speedup as a Function of the Threshold Value for Superblock Formation. The Y-axis 
gives percent speedup over native execution. The T values are the "hot" thresholds for initiating 
superblock formation. 

For code cache management, Dynamo uses the preemptive flush method. 
That is, it monitors the rate at which new superblocks are formed. If the 
rate begins to increase substantially, it assumes a new program phase is being 
entered and flushes the code cache at that point. Repeated flushing, how- 
ever, indicates an instruction working set too large to fit in the code cache, so 
Dynamo bails out and executes the original code without optimizing it. 

As noted earlier, Dynamo researchers were faced with the lack of scratch 
registers when performing same-ISA optimization. Because the source and tar- 
get ISAs necessarily have the same number of registers, there is none left over for 
other operations. For example, software jump prediction, as in Section 2.7.2, 
requires an extra register for comparisons against an indirect jump's source 
register. Also, most operations that involve code motion result in extended 
register live ranges, and, consequently, the need to hold more register values 
at the same time. Finally, when there is a switch from the code cache to the 
runtime software, at least some registers must be saved so that the runtime can 
use them for its execution. 

In conventional systems, the solution is to spill registers to a save area. 
However, in the HP ISA (and many other ISAs), a register pointer (to the 
register save area) is required in order to save the registers (in other words, 
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a register must be freed in order to free registers); this leads to a quandary. 
The Dynamo solution is to perform a second register allocation pass after an 
optimized superblock has been formed. During this second pass, it looks for 
registers containing dead values within a superblock and uses one of them 
for the register save area pointer. If such a dead register cannot be found, 
then it temporarily spills a live register to memory in order to maintain the 
save area pointer. This general approach raises a couple of questions that are 
not directly addressed in the Dynamo report. The first is the matter of strict 
register state compatibility following a trap; i.e., reusing an apparently dead 
register destroys its contents, which might lead to register state incompatibility 
in a trap handler. The second is the issue of protecting the register save area 
(Section 3.4.3). A "rogue" load or store that happens to access the register save 
area could lead to incompatible, erroneous results. These problems indicate 
that it is difficult to achieve intrinsic compatibility in a dynamic optimizer. If 
there is some (external) assurance that applications being optimized are free 
of these problems (and many debugged applications would not exhibit these 
problems), then the dead-register approach would work well. 

In order to integrate the Dynamo process VM into the host platform, it is 
assumed that the kernel loader is used for loading the guest application. The 
kernel loader links the execution start-up code, c rt0, into the guest application. 
When the loader is finished, it transfers execution to c r t0 to initialize the 
process. In Dynamo, a custom version of c r t0 is used. This new version of 
c r t0 maps the Dynamo code as a linked library and calls Dynamo's entry point. 
Then the Dynamo runtime takes control of execution of the guest process. 

Dynamo performance is shown in Figure 4.48. Dynamo is applied to source 
binaries that have been optimized originally at different levels by the HP com- 
piler. The figure shows performance for three increasing levels of optimization 
(from +02 to +O4). The 04 level is also enhanced with conventional code pro- 
filing that is fed back into the compilation process (Figure 4.1 la). Performance 
is given as total run time (execution time), so a lower number is better. We see 
that Dynamo improves overall performance for all three optimization levels 
when applied alone, but it does not improve performance for +O4+profiling. 

The reasons are illustrated in Figure 4.49, which breaks down improvements 
for Dynamo with 02 optimization. This figure shows that the biggest part 
of the gain occurs before any of the optimizations is performed. In other 
words, most of the performance gain comes from partial procedure inlining 
and superblock formation. This is the same gain that can be provided by feed- 
back profiling (in +O4+profiling). That is, the profile information is used for 
relaying out the code to enhance locality. We also see from Figure 4.49 that the 
"conservative" (safe) and "aggressive" optimizations provide similar benefits 
(although on different benchmarks). This indicates that a significant amount 
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Figure 4.48 Dynamo Performance for Nine Benchmark Programs. 

of the overall performance gain remains if the aggressive unsafe optimizations 
are not performed. Finally, note that the cases where performance is lost with 
Dynamo (e.g., benchmarks go, jpeg, vortex, and boise), there will be a bailout, 
so that performance losses no longer occur. 

4.7.3 Discussion 

When compared with traditional off-line feedback-directed optimization (see 
Section 4.2.1), as is done with +O4+profiling in Figure 4.48, it appears that 
dynamic binary optimization holds few or no performance advantages. To a 
large extent, off-line optimization uses similar profile-based information to 
perform similar optimizations, although one significant difference is that with 
dynamic optimization, the optimizations applied to a code region can change 
if program behavior changes over the course of its execution. Also, in practice 
many binaries have not received an intensive optimization effort; i.e., for 
various reasons, binaries are sometimes "shipped" with little optimization. In 
these cases dynamic binary optimization may provide performance advantages 
by allowing optimization to occur in the field. 
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Figure 4.49 HP Dynamo Performance Improvements for Superblock Formation Only (No Optimization), 
Aggressive Optimization, and Conservative Optimization. 

An additional matter to consider is that the underlying HP hardware plat- 
form used in the initial Dynamo study does not predict indirect jumps; rather, 
instruction fetching temporarily stalls when an indirect jump is encountered. 
Consequently, replacing indirect jumps with inline branches and partial pro- 
cedure inlining, which eliminates some indirect jumps, results in significant 
performance gains on the HP hardware. When using hardware with indirect 
jump prediction (as in most current microprocessors), the performance advan- 
tages of dynamic optimization are significantly reduced. In the IA-32 version, 
DynamoRIO (Bruening, Duesterwald, and Amarasinghe 2001), indirect-jump 
handling is cited as a significant cause of overall performance losses. Much 
of the performance loss caused by indirect jumps results from the map table 
lookup that occurs in order to find the target PC value in the code cache. As 
we have pointed out, however, the code-patching method avoids these hash 
table lookups; in fact, this feature alone may be sufficient reason to favor code 
patching over complete code caching in dynamic binary optimizers. 

Summary 

Although optimization is not necessary for functionally correct VM imple- 
mentations, it is important for many practical VM implementations. Because 
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virtualization adds performance overhead, it is important to minimize per- 
formance losses, and optimization techniques can mitigate performance 
losses. 

The most common structure for a VM implementation is to use staged 
emulation with interpretation or simple translation, followed by optimized 
binary translation. Profiling is typically enabled during the earlier stages, and 
sometimes for optimized code, in order to guide the optimization process. 
Overall, the largest performance gains usually come from the formation of 
translation blocks with good locality characteristics, e.g., inlined procedures 
and superblocks. After translated superblocks are linked together, performance 
can often approach native host execution. 

The largest complication to the overall optimization process is the need 
to recover the correct state at the time of a trap or interrupt. How strict this 
requirement is depends on the type of VM being implemented and on the 
user's requirements (and applications). If very strict requirements must be 
met, e.g., if intrinsic compatibility is required, then in most VMs optimization 
is probably limited to code relayout and simple optimizations that do not 
remove instructions. 

Another complicating factor is the relative sizes ofthe guest and host register 
and memory spaces. If the host has larger register files and memory space, then 
optimization is simplified and is often straightforward. On the other hand, 
if the host has no more registers and address space (or, worse yet, less), then 
optimization becomes more complex, and in some cases there can be significant 
slowdowns. 

Finally, we often think of dynamic optimization as being applied to process 
VMs, either in conjunction with ISA translation or purely for optimization. 
However, these techniques are not restricted to process VMs. For example, 
optimization is a very important part of codesigned VMs (Chapter 7). Further- 
more, as we shall see in Section 8.2.3, code caching and/or code patching are 
important parts of some conventional system VM implementations. 



A computer system implements a particular ISA and runs a specific OS only 
as a means to an end. It is the real work done by application programs 

that is important. Nevertheless, in a conventional computing environment, a 
compiled application is firmly tied to a particular OS and ISA. To move an 
application program to a platform with a different OS and/or ISA, it must be 
ported, which involves recompilation at the least but may also involve rewriting 
libraries and/or translation of OS calls. Furthermore, porting must be done on 
a per-program basis, and, after porting is done, any later upgrades or bug fixes 
must be applied to all the ported versions, followed by recompilation. 

The process VMs described in Chapter 3 are an approach for making appli- 
cations portable in a more transparent and general way. In a process VM, a 
virtual execution environment is provided to a guest process. The process VM 
has to be developed once, and then, at least in theory, any application program 
that is developed for the VM's source ISA and OS will run without any addi- 
tional effort. This is done by emulating the application's ISA and the OS calls. 
However, as discussed in Chapter 3, the OS interface is difficult to emulate (or 
may be impossible to emulate exactly if the host and guest operating systems 
are different). Furthermore, because conventional ISAs all have their quirks, 
writing a high-performance, accurate emulator to map from one conventional 
ISA to another is a painstaking task. 

221 
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Thus, a conventional process virtual machine is a pragmatic "after-the- 
fact" solution to the application portability problem. It is after the fact in 
the sense that neither the guest program nor the host platform were designed 
with the thought that the guest program would be run on the host platform. 
In contrast, by taking a step back, one can design a special guest-ISA/system 
interface, with VM-based portability to a variety of host platforms as a primary 
goal. Therefore, to a large extent, the new ISA is designed to be free ofquirks and 
requirements for implementation-specific computational resources. Also, the 
system interface supported by the VM is raised to a higher level of abstraction 
than that found in a typical OS interface by consolidating common OS features 
and defining an abstract interface (a set of libraries) that can be supported by 
all conventional operating systems. 

Just as important as portability, the guest ISA can be designed so that it 
reflects important features of a specific high-level language (HLL) or a class of 
HLLs (e.g., object-oriented languages). This leads to efficient implementations 
of the targeted HLL(s), and it simplifies the compilation process by separat- 
ing machine-independent and machine-dependent portions of the compiler. 
Because efficient support for specific HLLs is one of the goals of these VMs, we 
refer to them as high-level language virtual machines (HLL VMs). 

An HLL VM is similar to a conventional process VM, but the ISA is usu- 
ally defined for user-mode programs only and is generally not designed for 
a real hardware processor ~ it will only be executed on a virtual processor. ~ 
Consequently, we refer to it as a virtual ISA, or V-ISA. The system interface 
is a set of standardized libraries (called "APIs") that can access files, per- 
form network operations, and perform graphics operations, for example. The 
HLL VM is designed to be supported on a number of operating systems and 
hardware platforms (ideally, all of them ~ but at least the commonly used 
ones). 

Here it is important to interject that a virtual instruction set architecture 
usually contains much more than just instructions. In a modern V-ISA, the 
data aspects are at least as important as the instructions. Consequently, the 
specification for a modern V-ISA includes lengthy definitions of metadata, and 
it is the metadata that often dominates the overall specification. In contrast, the 
instruction definitions are quite simple, by design. In fact, one could reasonably 
argue that the term data set architecture would be more fitting than instruction 
set architecture. In any event, we will use the acronym V-ISA because it is the 
counterpart of the ISA in a conventional computer system. 

1. However, Sun (McGahn and O'Connor 1998) and ARM (ARM 2002) have developed 
processors that support the Java ISA. 



5.1 The Pascal P-Code Virtual Machine �9 2 2 3  

Figure 5.1 
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(a) (b) 
Relationship Between (a) a Conventional Compiler and Loader and (b) a Compiler and Loader 
in an HLL VM. 

One can view HLL VMs from a languages/compiler perspective; see 
Figure 5.1. The conventional steps in getting from a high-level language pro- 
gram to a binary executing on hardware is shown in Figure 5.1a. The compiler 
frontend first parses the program and converts it to an intermediate form. 
Then a compiler backend takes the intermediate form, perhaps performs opti- 
mizations on it, and generates object code. The object code is in an ISA-like 
format, except for some symbolic information that must be resolved at load 
time. Finally, a loader converts the object code into a memory image that is 
executed by the underlying hardware processor. The program is generally dis- 
tributed in the object code ("binary") form, and, because this code is specific 
to an ISA and OS, it can be run only on compatible platforms. With an HLL 
VM (Figure 5. lb), the compiler frontend parses and converts the program into 
a virtual ISA form, which is in some respects similar to a conventional inter- 
mediate form. Then the program is distributed in this form. At the time it is 
ready for execution on an HLL VM, a VM loader is invoked and converts the 
program into a form that is dependent on the virtual machine implementation. 
Additional optimizations may be performed as part of the emulation process. 
Emulation involves interpretation and/or binary translation from the guest 
V-ISA to the host ISA. The VM loader and interpreter/translator are major 
components of the HLL VM implementation. 

Over the years, language designers have developed a number of HLL VMs 
targeted at specific HLLs or families of riLLs. An HLL VM that popularized the 
approach shown in Figure 5. lb was implemented for the Pascal programming 
language, using a V-ISA known as P-code. The best-known current exam- 
ple of an HLL VM was designed to support the Java programming language 
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(Gosling, Joy, and Steele 1996), although other languages have been success- 
fully compiled to it. Java programs are first compiled to Java binary classes, 2 
which contain both a rich collection of metadata and low-level instructions 
encoded as "bytecode" sequences. The Java virtual machine (IVM) then loads 
the binary classes and executes them. A more recent HLL VM, the common 
language infrastructure (CLI), is part of the Microsoft .NET framework. The 
CLI is designed to be a target for a relatively broad class of commonly used 
HLLs, with object-oriented languages being of primary interest; however, 
non-object-oriented languages are supported as well. 

Because of the importance of the Java and CLI VMs and because these 
two VMs have many similarities, the next two chapters will be structured 
somewhat differently than the other chapters. Rather than describing a variety 
of general features and then concluding with relatively brief case studies, we 
instead develop much of the discussion around Java and the IVM. The Java 
virtual machine is widely used and has been the focus of a large amount of 
well-documented study. The Microsoft CLI is also discussed, primarily to 
highlight the differences with the JVM as well as the features that are more 
clearly delineated in the CLI than in the IVM. 

This chapter concentrates on HLL VM architecture, i.e., the functional 
specification and a description of important properties. The next chapter 
concentrates on HLL VM implementation; i.e., the ways that one actually 
constructs an HLL VM, including techniques for enhancing performance of 
HLL implementations. In some cases, this division is rather arbitrary ~ it 
is difficult to discuss pure architecture without delving into some aspects of 
implementation. In these two chapters, we heavily emphasize HLL VM sup- 
port for object-oriented languages. However, it is not practical for us to discuss 
object-oriented programming languages and concepts in any significant detail. 
We provide only a brief overview of the more important Java language fea- 
tures in this chapter. Consequently, for a good understanding of this material, 
it is essential that the reader have some familiarity with an object-oriented 
language such as Java or C#. There are a number of good books that can be 
consulted for learning or reviewing this material; for example, the Java and C# 
"in a nutshell" books (Flanagan 1999; Drayton, Albahari, and Neward 2002) 
contain fairly concise descriptions. 

Before describing the important object-oriented HLL VMs, we first describe 
an important historical HLL VM ~ which will also provide an opportunity 
to illustrate important platform-independence properties of many HLL VMs. 

2. Binary classes are often referred to as class files, but they do not, strictly speaking, have to be 
stored as files; hence, the more generic term binary classes. 
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As we shall see, however, platform independence is only the tip of the iceberg 
when it comes to the features of modern component-based, network-oriented 
HLL VMs. 

The Pascal P-code virtual machine (Nori et al. 1975) was one of the keys to the 
widespread popularity of the Pascal high-level programming language because 
it greatly simplified the porting of a Pascal compiler. Because of its historical 
importance and its simplicity, a briefcase study of the P-code virtual machine is 
a good way to introduce some of the important HLL VM concepts. Figure 5.1 
illustrates the basic idea. A compiler frontend parses a Pascal program and 
generates a P-code program. P-code is a simple, stack-oriented instruction set, 
summarized shortly. The combination of the Pascal compiler and the P-code 
virtual machine yields a complete Pascal compiler and execution system for 
the given host platform. Only one compiler has to be developed (distributed as 
P-code), and porting Pascal to a new host platform is reduced to implementing 
the virtual machine, which is much easier than writing a complete Pascal 
compiler from scratch. 

There are actually two major parts of a P-code virtual machine; one is the 
P-code emulator (often an interpreter), and the other is a set of standard library 
routines that interface with the host operating system to implement I/O. For 
example, the library routines readln()  and w r i t e l n ( )  read a line of input 
and write a line of output. These routines can be called via P-code but may 
themselves be written in (or compiled to) the host platform's native assembly 
code. Writing these standard library routines in native code is part of the VM 
development process, along with writing an interpreter. 

5.1.1 Memory Architecture 

The P-code V-ISA uses a memory model that consists of a program memory 
area and a constant area, a stack, and a memory heap for data. A program 
counter (PC) fetches instructions from the program area; otherwise, pro- 
gram memory cannot be read or written. Figure 5.2 illustrates the data areas 
of memory. All the data areas are divided into cells, and each cell can hold a sin- 
gle value. The actual size of a cell is implementation dependent but clearly must 
be large enough to hold the largest value that can be specified in P-code. The 
compiler generates values held in the constant area; these are typically imme- 
diate operands used by the program. A single stack acts as both a procedure 
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Figure 5.2 P-Code Memory Architecture. 

stack, e.g., for holding procedure linkage information, parameters, and local 
variables, and as an operand (or evaluation) stack for instruction execution. 
At any given time, the mark pointer (MP) points to the beginning of the stack 
frame for the currently active procedure, and the extreme pointer (EP) points 
to the maximum extent the current frame can reach (in a valid Pascal program, 
this extreme extent can be determined at compile time). 

The heap space sits on top of the constant area and is for dynamically 
allocated data structures. At any given time the new pointer (NP) delineates 
the maximum extent of the heap. In Pascal, the user code is responsible for 
releasing heap-allocated data structures when they are no longer needed, and 
the virtual machine software is responsible for overall management of the heap 
area. Conceptually, the stack grows down from the top and the heap (sitting on 
top of the constant area) grows up from the bottom. Before the NP is adjusted 
upward, it is checked against the EP to make sure there is enough memory 
remaining; otherwise there is an exception. 

When a procedure is called, it is given a new stack frame. The stack is 
divided into several sections as shown on the right side of Figure 5.2. The 
return function value, static link, dynamic link, previous EP, and return address 
are a fixed-size region at the beginning of the stack frame, collectively called 
the mark stack. The MP points to the base of the mark stack (as well as the base 
of the entire frame). 

The function value returns a result value from the function (if there is any); 
the static link is used for linking together statically nested procedures and for 
accessing local variables within the scope of the active procedure. The Pascal 
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language supports nested procedures, with the scope of local variables deter- 
mined by the static procedure nesting. That is, the local variables declared 
within a given source code procedure can be accessed by any procedures nested 
within that procedure. The dynamic link is the MP value for the previous frame, 
and it allows the stack to be popped back to the previous frame. The previous 
EP is similarly used to establish the EP value when the active procedure returns. 
The return address is the PC value to which the active procedure should return. 

Following the mark stack on a stack frame are parameters passed to the 
procedure and the local variable declared within the given procedure. Finally, 
the operand stack is used for holding operands and intermediate values when 
stack instructions are executed. The stack pointer, SP, points to the current top 
of the operand stack and moves up and down as computation proceeds (unlike 
the EP, which marks the farthest extent of SP). 

5.1.2 Instruction Set 

The basic instruction set includes instructions that push or pop stack values 
from/to memory areas as well as arithmetic, logical, and shift instructions 
that operate on the stack. The instructions are typed; so, for example, there 
are both add integer (adi), and add real (adr) instructions. There are also 
Boolean, character, set, and pointer types. Most load and store instructions 
(that push and pop the stack) contain an opcode and an offset indicating the 
relative location of an operand. The arithmetic, logical, and shift instructions 
consist of only an opcode; they pop operands from the stack, perform the 
operation, and push the result back onto the stack. Following is an example of 
code that adds 1 to a local variable. The variable happens to be three cells above 
the mark stack. Because the variable is local to the procedure containing this 
code, it is at nesting level 0 with respect to this procedure. 

lod i  0 3 

ldc i  1 

addi 

s t r i  0 

/ /  load var iab le  from cur rent  frame (nest 0 depth),  

/ /  o f f s e t  3 from top of  mark stack. 

/ /  push constant 1 

/ /  add 

/ /  s tore va r iab le  back to loca t ion  3 of  cur rent  frame 

5.1.3 P-Code Summary 

Overall the P-code V-ISA is quite simple, consisting of a small instruction 
set with elementary operations and a virtual machine implementation that is 
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straightforward. In many respects, P-code set the standard for later HLL virtual 
machines, including the Java virtual machine; it shares the following features 
with the more recent HLL VMs. 

�9 It uses a stack instruction set that requires a host platform to provide only a 
minimum amount of register support, making it easily translated to virtu- 
ally any host ISA. Using a stack ISA for P-code also leads to small "binaries," 
an especially important feature when many desktop computers had small 
hard drives (or none at all) and supported only 64KB of main memory. 

Its memory is divided into cells, whose implementation details, e.g., number 
of bits per cell, are hidden from the ISA. 

�9 Main memory is partitioned into a stack and a heap, whose extents are 
not an architecture feature. Furthermore, instructions are never con- 
cerned with absolute memory addresses. This allows memory size to be 
an implementation feature of the host platform. 

The interface to the OS is through standard libraries. This, at least in 
theory, insulates programs from the underlying host OS. In the case 
of P-code, however, achieving OS independence tended to reduce its 
standard libraries to the least common denominator, which resulted in 
relatively weak I/O capabilities. Maintaining platform-independent, stan- 
dard libraries remains a very important consideration/problem in modern 
HLL VMs. Not only is there the least-common-denominator problem, but 
there is also a temptation to add library "extensions," which compromise 
platform independence. 

The major differences between the P-code virtual machine and modern HLL 
VMs are largely caused by the need to support a networked computing envi- 
ronment and the object-oriented programming paradigm. These differences 
are highlighted in the next section. 

5~ Object-Oriented High-Level Language Virtual Machines 

The P-code virtual machine was developed to be part of a stand-alone envi- 
ronment where users could compile and run programs on their own local 
machines. The use of P-code greatly simplifies the porting of a Pascal compiler 
to a given host platform. After a P-code emulator is developed, programs can 
be compiled and run on the host platform, with the compiler being trusted 
to provide good code. This approach has proven to be an effective one, and a 
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number of high-level language compilers have been developed with underlying 
virtual machine support. 

In the modern network computing environment the situation is much more 
complex. In this environment, there are a number of interconnected platforms, 
incorporating a variety of processor architectures, operating systems, memory 
sizes, I/O devices, etc. In this environment, it would be very difficult to compile, 
distribute, and maintain software for all the possible combinations (or even 
the more popular ones). The application of HLL VM technology can greatly 
simplify the task. A HLL VM is developed for each platform in the network, 
and any programs compiled to meet the specification of the VM can be sent 
across the network for execution on any of the various platform types. In this 
application environment, the HLL VM is not intended primarily for easing 
the porting of compilers, as was the case with P-code; rather, it enables the 
platform-independent distribution of application software. 

The degree of platform independence in a modern HLL VM also goes 
beyond that provided by P-code, by encompassing data as well as instruc- 
tions. P-code focused on the instruction set aspects of platform independence; 
the data representations are fairly basic, with layout of data structures implic- 
itly encoded in the P-code programs themselves. In contrast, the popular 
HLL VMs use V-ISAs that refer to data in a more abstract manner (via meta- 
data). Consequently, data structures and other resource-related information 
are encoded in a platform-independent fashion, just as the instructions are. 
This is illustrated in Figure 5.3. A program file consists of platform-independent 
code and platform-independent metadata. The metadata describes the data 
structures (typically objects), their attributes, and their relationships. As 
shown in the figure, the VM software consists of an emulation engine that 
can either interpret the code or translate it into native code. The VM infras- 
tructure also consists of a loader that can convert the metadata into internal 

Figure 5.3 Transformation of a Machine-Independent Program File to Machine-Dependent Code and 
Data. Dotted lines indicate transformation of code and data; solid lines indicate movement of code 
and data during emulation. 
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machine-dependent data structures, taking the host platform's word size and 
addressing features into account. 

Currently, there are two major HLL VMs being used and promoted for 
platform-independent network computing ~ the Sun Microsystems Java vir- 
tual machine (JVM) and the Microsoft common language infrastructure (CLI). 
Both JVM and CLI include the same basic techniques for HLL VM implementa- 
tion, some of which are similar to P-code and to the process VMs of Chapter 3. 
The modern HLL VMs also include a number of other interesting and rather 
sophisticated features. Besides support for platform-independent software, key 
features of network-oriented HLL VMs include the following. 

Security and Protection ~ It must be possible to load programs from 
untrusted sources (including one of the least trustworthy of sources, the 
Internet) yet execute them locally as part of a user process without com- 
promising the security of the local system. A user's files and other local 
hardware resources must be secure from any program downloaded over a 
network. Also, as an element of a secure implementation, the VM imple- 
mentation software must be protected from the application software, yet 
both application and VM software typically are part of the same process 
running on a host platform. The metaphor is that each guest program is 
executed within it own sandbox, i.e., an environment where it is confined to 
operate. The program can do what it wants within the sandbox but cannot 
disturb any resources outside the sandbox, unless given explicit permis- 
sion. In .NET terminology, a sandboxed guest program is referred to as 
managed code because its execution is performed under the management of 
the VM runtime. This management includes not only security checking but 
other functions, such as automatic garbage collection. Because it is helpful 
and descriptive, we will use the term managed code, to distinguish it from 
unmanaged code that runs outside the sandbox. As will become apparent, 
the ability to load an untrusted application and run it in a managed, secure 
fashion is a much bigger challenge than mere platform independence. 

Robustness ~ The advantages of robust software are not restricted to the 
network computing environment, of course, but robust software becomes 
critical when dealing with the complexities of a platform-independent 
network environment. For developing large-scale software systems, the 
object-oriented programming model has a number of advantages and is 
widely used. Furthermore, the object model fits very well with distributed 
computing and dynamic linking. It also fits well with component-based 
programming, which can enhance programmer productivity considerably. 
Consequently, the object-oriented paradigm has become the model of 
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choice for modern HLL VMs. Both Java and the CLI are designed to sup- 
port object-oriented software. Other features that contribute significantly to 
robustness are VM support for strong type-checking and garbage collection. 

Networking~ In some environments, available networking hardware may 
only provide limited bandwidth. This limitation favors software that uses 
network bandwidth sparingly and efficiently. Consequently, application 
software should be loaded incrementally, on demand, via dynamic linking. 
This can save bandwidth by loading only software that is used, by spread- 
ing bandwidth usage over time, and by improving program start-up time 
because execution can begin as soon as the first software routines are loaded. 
There are also advantages to using dense instruction set encodings, both to 
reduce the bandwidth required for moving a program across a network and 
to reduce memory requirements on the local platform (which may also be 
limited in some applications). 

Performance~ While offering all the features just listed, it is also desirable 
to provide good performance. In general, one might be willing to sacrifice 
some performance ~ nothing comes for free after all ~ but a good HLL 
VM should be part of an overall framework that provides the user with 
good performance. To achieve this, many of the techniques described in 
Chapters 2 through 4 for conventional process VMs can be applied. In 
addition, there are techniques that are specific to (or more advantageous 
when applied in) the object-oriented, networked environment. 

When all of the foregoing features are wound together into a single HLL 
VM, it is difficult to unravel the specific VM properties and associate them with 
specific features. The HLL V-ISAs and supporting VM implementations have 
become quite complex; many papers and thick books have been written on 
both the IVM and CLI architectures and implementations. We cannot begin to 
provide this level of detail; rather, our goal is to understand and illustrate the 
important principles and techniques. 

In the following subsections, we discuss the basic techniques for supporting 
the four primary features just listed. In subsequent sections, we describe the 
Java virtual machine in some depth because it is conceptually simpler than the 
more recent Microsoft CLI. The JVM discussion will be followed by a discussion 
of the CLI, with its differences with JVM being highlighted. 

Before proceeding, we pause briefly to discuss architecture/implementation 
terms again. First, there is some ambiguity when discussing Java virtual 
machine architecture and implementation; there is no widely used distinc- 
tion between the two. That is, the term Java virtual machine may be used for 
the functional specification, e.g., the class file format, V-ISA, etc., and the same 
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term is often applied to a specific implementation. Usually, the difference can 
be determined from the context. When there is any possibility of confusion, we 
will add architecture or implementation to Java virtual machine. The Microsoft 
common language infrastructure is an architecture, or functional specification. 
The Microsoft common language runtime (CLR) is a specific implementation 
of the CLI developed by Microsoft. The Microsoft shared-source CLI, despite 
the name, is another example of a CLI implementation (shared-source CLR 
would be more appropriate). Sometimes, it is useful to discuss only the instruc- 
tion set portion of a VM architecture. In the case of Java, it is generally referred 
to as lava bytecodes because, as we shall see, the instructions can be viewed 
as a stream of bytes. The instruction part of the CLI is known variously as 
the Microsoft intermediate language (MSIL), the common intermediate language 
(CIL), or simply the IL. The combination of a JVM implementation and a set 
of standard Java libraries (APIs) is called a Java platform. Finally, a CLI imple- 
mentation, along with a set of standard libraries, implements the Microsoft 
.NET framework. 

5.2.1 Security and Protection 

A given application running on a local platform should have access to certain 
specified files (program and data) on both its local system and on remote sys- 
tems. Meanwhile, there must be the ability to prevent the guest application 
from accessing other files on both the remote and local systems. In addition, 
the VM implementation software that is running the application should be 
protected from the application itself, even though both are running on the 
host platform as part of the same process. Therefore, the type of protection 
that must be provided is different from that supported by a conventional oper- 
ating system, where users are protected from one another, but a given user's 
programs have access to all of that user's resources. In the HLL environment, 
untrusted programs are invited into the user's domain but must have strictly 
limited access within that domain. That is, a guest program is treated as man- 
aged code that can only operate within its protection sandbox. In modern HLL 
VMs such as Java, the VM implementation provides much of this additional 
protection "above" the operating system. As we shall see, a fundamental aspect 
of the popular HLL VMs is that the high-level languages (e.g., Java or C#) are 
strongly typed and legal programs must strictly define the scope of both data 
accesses (to objects) and control flow. This information is then conveyed to 
the VM through the V-ISA. 

There are three main aspects to the overall security/protection sandbox. 
The first is gaining access to public data, e.g., stored in files that are on remote 
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systems, while being prevented from accessing any other data on the remote 
system. Here, we include locating public files as part of the overall process. 
The second aspect is that similar properties must hold for local files. And the 
third aspect is that the managed application must be prevented from accessing 
memory or executing code that is outside the sandbox, even though it shares the 
process memory space with the VM runtime software. To simplify explanation 
of the basic principles, the following discussion is based on the original Java 
sandbox model. The original sandbox is relatively inflexible and was primarily 
targeted at applets small application programs accessed via the Internet; 
it remains the default security model. The more recent security model (used 
in Java 2) provides greater flexibility, including finer-grained access control 
and significantly less reliance on trusted code. This model will receive more 
discussion in Section 6.2. 

Remote files are found via agreed-upon naming conventions. A specific 
convention is not part of a standard per se, but most current operating sys- 
tems, including Linux and Windows, use hierarchical file systems based on 
directories. Consequently, naming conventions typically rely on this hierar- 
chical structure. Furthermore, the Internet connects these systems and also 
uses a hierarchical naming system. Hence, as part of an overall framework 
whether a Java platform or the .NET framework ~ there is normally a naming 
convention based on a combination of Internet addresses and local file struc- 
ture addresses. For example, in the Java platform a particular method might 
be denoted as 

edu. wi sc. ece. j es. t e s t p a c k a g e ,  shape, area 

which is formed as a concatenation of an Internet address (in reverse order) 
ece .wi sc. edu ~ and a pathname ~ - jes/ testpackage/shape/area.  The 
critical thing is that a local system, given a name that follows the convention, 
must be able to find the stored representation of the requested item. 

Protection of resources within the remote system's domain is not really a 
responsibility of the HLL VM running on the local system, even though data on 
the remote system may be part of an overall network computing framework. It 
is up to the user(s) of the remote system to determine which data files and/or 
directories should be made accessible over the network and which permissions 
(read or write) should be granted. Hence, even if the local system gives a 
correct path, if the file is not publicly accessible, then an attempt to access 
it will be denied permission. As noted earlier, this simple protection method 
is only the Java default. By using security, authentication, and cryptography 
APIs, a much more flexible security infrastructure can be built and supported 
by HLL VM platforms; for example, the Java 2 Standard Edition platform 
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contains a number of APIs to support network-based security (Gong, Ellison, 
and Dageforde 2003). However, such VM platform security involves a number 
of higher-level issues that are well beyond our scope, although there is some 
additional discussion in the next chapter. 

As shown in Figure 5.4, a Java program consists of a number of binary 
classes (or modules in .NET terminology), in a standard format, consisting of 
both platform-independent code and metadata. These binary classes may be 
held in a local file system, or they may be accessible via a network. The VM 
implementation includes a loader (or set of loaders) able to take a binary class, 
verify that it is correct, and then translate it into an implementation-dependent 
format that is loaded into the VM's memory region. The verification process 
will be described in more detail later. A loader is trusted software; that is, the 
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local user trusts it to work correctly and to be secure. The trusted loader may 
be supplied by the user or, more likely, by a software developer trusted by the 
user. The binary classes define the loaded methods and object types, which are 
operated on by the methods. 

There are both user methods and system methods, some of which may 
be native methods. The application program contains user methods. System 
methods belong to standard libraries (APIs) that are part of the local VM 
implementation and are often handled as trusted software. 3 

Native methods are maintained as native binary code, as the name suggests. 
Native methods can be compiled from any of a number of high-level languages, 
including C, or assembly language. They are useful for interfacing with legacy 
code and features of the underlying host platform, such as OS calls. They 
can also be used by programs written in other languages to draw on the rich 
set of APIs implemented in Java. The HLL methods and native methods can 
interact by following established conventions at their respective interfaces; the 
Java/native interface (JNI) defines a convention for Java. Native methods are 
often incorporated as parts of trusted libraries, but a user may also write and 
install native methods (at his or her own risk because they are not subject to 
the same security checks as conventional methods). 

The emulation engine, another trusted component, emulates the V-ISA 
code embodied in methods using techniques similar to those described in 
Chapters 2 through 4. That is, it may use interpretation or may execute code 
that has been translated (compiled) to native instructions. If a managed appli- 
cation program needs to access a local file or any other local resource, it can 
only do so through a security manager within which the user has either directly 
or indirectly provided permissions (Section 6.2). Whenever the managed appli- 
cation requests access to a local file, for example, the request is made through a 
method belonging to a standard library. The standard library method consults 
the security manager to see if permissions should be granted. If so, the file 
access proceeds. 

The managed application code includes software in the form of actual binary 
classes and methods they contain. This untrusted application software and the 
VM software share the same address space and run at the same privilege level 
within the host system; consequently, the VM software must be protected 
from the application as it executes. For example, arbitrary access to the VM 
tables via application program load and store instructions must be prohibited. 

3. However, system methods written in Java do not have to be trusted, strictly speaking; they 
can be verified just as any other method. Doing so would tend to increase system integrity, but 
it would also slow down the IVM start-up time, so it is not commonly done. 
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Similarly, the application code should not be allowed to jump to arbitrary 
locations in the VM code. 

A combination of static and run-time checks implement address space 
protection. As the emulation engine executes a managed guest application, 
it can perform a memory bounds check on every load, store, or jump instruc- 
tion that static (load-time) code analysis cannot guarantee to be safe. These 
checks ensure that the guest only accesses its portion of the address space; 
i.e., it stays within the sandbox. Today's more popular HLL VMs, including 
both the WM and CLI, are targeted at strongly typed HLLs and rely to a high 
degree on static (load-time) checking for protection, with minimal run-time 
checking. Because the strongly typed HLL approach is widely used, it is the one 
we focus on. In contrast, with conventional binaries, as would be generated 
by C or C++, static binary code analysis is rather limited, and many loads, 
stores, and jumps would require dynamic run-time checking. An especially 
efficient implementation of this full dynamic-checking approach simply forces 
all accesses to be within predefined, easily checked guest memory segments 
(Wahbe et al. 1993). This technique allows virtually any HLL to be used for 
generating guest programs. Such an approach is taken in the Omniware system 
(Lucco, Sharp, and Wahbe 1995). 

We provide more detail in the next chapter when discussing lava virtual 
machine implementation, but the basic approach to checking is first to restrict 
the virtual ISA so that all the data structures are defined as part of the metadata 
and all memory accesses are to fixed fields within typed structures. The meta- 
data, of course, reflects the object structure defined in the high-level language 
program. Similarly, all branch instructions are to fixed offsets within the code 
region. The only indirection allowed for control transfers is through explicit 
call and return instructions. As part of the loading process, the load and store 
instructions in the machine-independent code are checked for consistency with 
respect to the metadata specifications. The loader also checks all control flow 
(branch and jump) instructions for consistency. These load-time static checks 
provide most of the protection against out-of-bounds loads, stores, and control 
transfers. Exceptions are for those accesses that use a computed index value 
into a data structure, e.g., arrays. These accesses are checked dynamically at 
run time, along with checks for accesses using null pointers (actually references, 
in lava terminology). 

In summary, we see that the sandbox around a managed execution envi- 
ronment consists of a number of interacting components. The files and other 
resources on a remote system are protected by the remote system itself, based on 
its conventional protection mechanisms. The files and other resources on the 
local machine are protected by trusted libraries and a security manager. Finally, 
the VM runtime software is protected from untrusted application software by 
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a combination of static checking performed by a trusted loader and dynamic 
checks performed by a trusted emulation engine. 

5.2.2 Robustness - Object-Oriented Programming 

As noted earlier, the two most widely used HLL VMs are both based on 
an object-oriented model. We can't possibly cover all the aspects of object- 
oriented programming here. Rather, we provide a quick overview to introduce 
terminology and to make the following discussion of riLL VM implementations 
easier to understand. 

In an object-oriented programming environment, the data-carrying entities 
are objects. The data contained in each object can only be accessed and manipu- 
lated via methods, or procedures, that are defined for that type of object. 
A class defines a type of object and its associated methods. At run time, objects 
may be created as instances of the class. In essence, the objects are a complex 
programmer-defined data type, and the methods are specific to the particular 
type for which they are defined. Objects can only be accessed via managed 
pointers, or references, that are generated at the time the object is created. 
In Java and CLI, arrays are defined as part of the language and are essentially 
an intrinsic form of object. 

The data portion of an object consists of a number of fields. These fields 
may be individual data elements, or they may be references to other objects 
and arrays. The data portion of an object can be either static or dynamic. If it is 
static, then only one copy of the associated data is created, and it is shared by 
all objects of the given type. If data is dynamic, then a new copy of the data is 
generated for each object that is created. 

Through inheritance, new classes can be defined by extending an existing 
class. A derived class has the same members (e.g., fields) as the base class from 
which it is inheriting. When a class is extended, the function of an existing 
method for the base class can be overridden, by defining a new method having 
the same name and signature. A method's signature is an ordered list of its 
argument and return types. The new, overriding method is the one applied to 
the subclass. Furthermore, a subclass can have other members and methods 
that do not exist in the base class. 

Inheritance, as just described, is a way of achieving polymorphism among 
subclasses. With inheritance and polymorphism, the exact code executed when 
a method is called depends on the specific type of the object given as an argu- 
ment. Finally, an interface is similar to a class but has no associated object; 
it only contains method signatures. However, if a class (which does have an 
associated object) implements an interface, then the methods identified by the 
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interface's signatures operate on the class's object. A subclass can only extend 
one class, but it can implement multiple interfaces. 

Invoking a method that operates on an object is often likened to "sending a 
message" to the object, where the message indicates what should be done and 
may return a response value. The actual details of the object's implementation, 
for example, the way it is laid out in memory, are hidden and can therefore be 
implementation dependent. What is important is that methods always produce 
the same results regardless of the implementation. 

There are also ways of restricting the scope over which an object can be 
accessed by other parts of a program. In Java, for example, a class may be 
declared to be public, private, or protected. These designations indicate the visi- 
bility (and ability to use) an object outside of a given library of objects. The 
public and private designations are more or less self-explanatory: If a class is 
public, it can be used by code outside the library; if it is private, it can only be 
used by other classes inside the same library. Protected classes are similar to 
private ones, except any inheriting class is given access. 

Example 

Figure 5.5 is a Java program that defines a Rectang ] e class via two methods, one 
that finds the area  and one that finds the perimeter ofthe Rectang]e. The pro- 
gram also extends the Rectangle class with a Square class. The Square class has 
a somewhat simplified per imeter  method that will override the Rectangl e's 
per imeter  method. The main program reads pairs of integers from the com- 
mand line. These integers represent a rectangle's length and width. If the sides 
are the same, a Square object is instantiated; otherwise, a Rectangl e is instan- 
tiated. Then the area  and per imeter  methods are called, with a reference to 
the Square or Rectangl e as the argument. The particular per imeter  method 
used depends on the type of object to which the reference points. That is, the 
specific per imeter  method is dynamically dispatched at run time. This pro- 
gram is admittedly c o n t r i v e d -  the si des array is somewhat superfluous - -  
but it allows us to illustrate a number of JVM features in a small example. 

Garbage Collection 

One of the nice features ofthe object-oriented model is that, from the program- 
mer's perspective, memory is a large, virtually unbounded space populated with 
objects. These objects essentially "float" in the memory space, with references 
tethering them to executing programs. Objects can be created dynamically, 
used for a while, and then abandoned by overwriting or deleting all references 
to the object. For example, in the code given in Figure 5.5, when the reference a 
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Figure 5.5 

pub l i c  class Shapes { 
pub l i c  s t a t i c  void main (S t r i ng  args [ ] )  { 

Rectangle a; 
i n t  length ,  w id th ;  

f o r  ( i n t  i = O; i < 4 ; i++) { 
length = I n t e g e r . p a r s e I n t  (args [ 2 " i ] )  ; 
width = I n t e g e r . p a r s e I n t  (argS [ 2 " i + 1 ] ) ;  
i f  ( l  ength==wi dth) 

a = new Square ( l eng th ) ;  
else 

a = new Rectangle ( leng th ,  w id th ) ;  
System. out.  pr i  n t l  n (a. a rea( ) )  ; 
System. out .  pr i  n t l  n (a. per i  meter ( ) )  ; 

c lass Rectangle { 
protected i n t  sides [] ; 
pub l i c  Rectangle ( i n t  length ,  i n t  w id th)  { 

sides = new i n t  [2] ; 
sides [Ol = length ;  
sides [1] = wid th ;  

} 

pub l i c  i n t  per imeter  ( ) { 
re turn  2*(s ides[O]  +sides [ 1 ] ) ;  

} 

pub l i c  i n t  area ( ) { 
re turn (s ides [ O ] * s i d e s [ 1 ] ) ;  

} 

class  Square extends Rectangle { 
public Square ( in t  length) { 

super ( leng th ,  l eng th ) ;  
} 
pub l i c  i n t  per imeter  ( ) { 

re turn 4*sides [0 ] ;  
} 

A Java Program That Computes the Area and Perimeter of a Sequence of Squares and Rectangles. 

is reassigned to a new Rectang]e or Square, the previous Rectangl e/Square 
object is no longer referenced and becomes garbage. 

While this model of an unbounded memory space is nice from the program- 
mer's perspective, in a real implementation the memory cannot be unbounded, 
of course. Consequently, there must be some way of recycling the memory 
resources used by objects that are no longer needed. In some object-oriented 
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languages, C++, for example, it is expected that the programmer will explicitly 
release an unneeded object so that memory management software can reuse 
its memory. This places a burden on the programmer, however, and if object 
memory is not properly released, a "memory leak" can develop where unused 
objects grow in number until the processor's memory resources are exhausted. 
On the other hand, if a program bug allows the same memory to be freed twice 
(a double-free), then a security hole may be created. 

To avoid memory leaks and double-flee bugs as well as to enhance pro- 
gram robustness, the modern HLL VMs relieve the programmer of the burden 
of keeping track of unneeded, garbage objects. In particular, the VMs automat- 
ically collect garbage in a manner that is hidden from the application program. 
The VM implementation is able to find objects for which references no longer 
exist and to collect these objects on behalf of the user. The programmer is 
not burdened with explicitly returning unused objects to memory manage- 
ment software, and the possibility of programmer memory management bugs 
is eliminated. 

5.2.3 Networking 

In the network computing environment, network bandwidth is sometimes a 
limited resource. In an HLL VM there are at least two ways that network band- 
width usage can be reduced. The first is by reducing the size of a program (or 
dynamically linked library routines) that must be moved over the network. 
This leads to program encodings (i.e., instruction sets) that can specify a pro- 
gram in a dense manner. A key point is that with a VM performing emulation, 
the information transported over the network is a specification of the program 
to be executed, not necessarily the actual instructions that will eventually be 
executed. Translation converts the specification into real native instructions 
interpretation does the same, for that matter, albeit much less efficiently. 

Using a stack-oriented instruction set with variable-length instructions 
leads to a fairly compact program specification, especially when compared 
with the relatively sparse encoding found in a typical RISC ISA, which uses 
lots of registers and fixed-length instructions. With an operand stack, it is not 
uncommon for an instruction to require only one byte, i.e., to specify the 
opcode; the operands are implied by their positions on the stack. 

Although the stack instruction sets used in most modern HLL VMs may save 
some network bandwidth, the addition ofmetadata adds to network bandwidth 
requirements. Overall, it is probably a wash, with modest savings of network 
bandwidth (at best). However, as described earlier, the presence ofthe metadata 
brings some additional advantages that a conventional program binary does 
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not offer. The bigger win with respect to network bandwidth savings comes 
from dynamic loading of program (class) files. That is, a VM implementation 
generally loads only binary classes that it anticipates it will need, thereby not 
wasting network bandwidth on binary classes that are never used. 

5.2.4 Performance 

An object-oriented language provides a number of significant advantages when 
compared with a language such as C, which is really only a step above assembly 
language. However, the object-oriented model also makes it significantly more 
difficult to achieve high performance on conventional hardware. Hence, for 
many (but not all) applications there is heavy emphasis on improving HLL VM 
performance. Most of the emulation techniques described in Chapters 2-4 can 
be used for enhancing HLL VM performance. The execution engine of an HLL 
VM implementation can use interpretation, binary translation to native code, 
or some combination. 

The Java instruction set is designed for straightforward interpretation. On 
the other hand, the Microsoft intermediate language is not intended to be 
interpreted (however, it could be, albeit very slowly). Both the Java instruction 
set and MSIL use rather constrained, well-specified control flow instructions 
(branches and method calls), so the code-discovery problem is very simple. 
As soon as a method is entered, all the code belonging to the method can be 
immediately discovered. This leads to just-in-time (JIT) compilation, where a 
method, when first entered, is compiled 4 in its entirety. Often, JIT compila- 
tion generates nonoptimized or lightly optimized code. Beyond the two basic 
methods of interpretation and JIT compilation lies a range of more advanced 
staged emulation strategies. For example, an implementation can begin inter- 
preting, with profiling added. Then hot methods can be compiled (or sections 
of hot methods). Finally, the compiled methods that are very frequently used 
can be much more highly optimized. Section 6.6 contains further discussion of 
higher-performance HLL VM implementation techniques. 

To look at HLL VMs in more detail, we focus on the Java virtual machine (WM) 
(Lindholm and Yellin 1999). The JVM came before the Microsoft CLI and is 

4. In the context of HLL VMs, translation is usually referred to as compilation. 
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in some sense a purer form of HLL VM. The CLI, on the other hand, is part 
of the more general .NET framework, where both managed and unmanaged 
applications can easily interoperate, if the user wishes. Following the discussion 
of the Java VM in this section, we overview the CLI in the next section. 

5.3.1 Data Types 

Java consists of primitive data types and references, along with objects, which 
are composed of the primitive types and references. 

Primitive Data Types 

The Java HLL VM supports a number of primitive data types from which 
objects are composed. The types are i nt (integer), char, byte, short ,  f loa t ,  
doubl e, and returnAddress.  A boo1 ean value is implemented in the JVM as 
a primitive type i nt or byte. It is important to note that the primitive types 
are defined according to the values they can take, not the number of bits of 
storage they will consume in the implementation; for example, an integer data 
type is defined to represent any integer in the range -231 to +231 - 1. Nor 
are the actual bit patterns explicitly specified. This allows the primitive types to 
be held in an implementation-dependent fashion on any given host platform. 
Of course, many implementations will represent integers with 32-bit words 
and a two's complement representation, but other implementations could use 
more storage bits and/or other representations. The returnAddress type, by 
the way, is a rather obscure type not present in the Java HLL but present in the 
Java ISA. It is used by "miniature subroutines" implemented with j s r and vet 
instructions (these are typically used in implementing the Java HLL f ina l  1 y 
clauses, and we don't discuss them any further). 

References 

In addition to the foregoing primitive types, the JVM includes a reference 
type, which can hold reference values. A reference value points to an object 
stored in memory (discussed next). A reference can also have a nul 1 (unde- 
fined) value if it has not been assigned. As is the case with primitive types, 
a reference has an implementation-dependent internal representation; the 
number of bits necessary for holding a reference is not defined as part of 
the Java ISA. 
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Objects and Arrays 

As described earlier, objects carry data held in logical structures declared by 
the programmer. As such, objects are composed of primitive data types and 
references that may point to other objects. An array  object is a special, intrinsic 
type of object, with explicit instruction set support. Each array is defined, at 
the time it is declared, to have a fixed number of elements that do not change 
during the program's execution. The elements of an array must all be of the 
same primitive type or must all be references. If they are references, then they 
must all point to objects of the same type. In their basic form, arrays have 
a single dimension, but multidimensional arrays can be built using arrays of 
references. 

5.3.2 Data Storage 

In the JVM, there are three general types of data storage ~ global, local, 
and operand. Global storage is main memory, where globally declared vari- 
ables reside. Local storage is temporary storage for variables that are local 
to a method. Operand storage holds variables while they are being operated 
on by the functional instructions (arithmetic, logical, shifts). All storage is 
divided into cells or slots, where a cell or slot can usually hold a single data item 
(the exceptions are double-precision floating-point numbers and long integers, 
which consume two slots). The actual amount of space required by a cell or 
slot is implementation dependent, but all addressing is in terms of the logical 
memory cells. 

The Stack 

Local and operand storage are allocated on the stack, and procedure arguments 
are passed on the stack as well. Instructions can never place arrays and objects 
on the stack; only references and individual array elements can be placed on 
the stack. As each method is called, a stack frame is allocated (Figure 5.6), 
with arguments, local storage, and operand storage being allocated in that 
order. Local storage for a given method is of fixed size; the proper amount of 
stack space required for local storage can be determined at compile time. As 
noted earlier, the stack holds data in slots. In many conventional ISAs, operand 
storage is a register file; but just as in P-code, both Java bytecodes and MSIL use 
the stack for operands. Depending on the actual instruction sequence, a stack 
often has advantages with the respect to instruction set encoding density (no 
instruction fields are needed for specifying registers), and a stack is amenable 
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Figure 5.6 Java Stack Structure. 
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to platform independence (the host platform can have any number of registers 
in its ISA). 

Global Memory 

The logical main memory architecture in Java contains a method area for 
holding code and a global storage area for holding arrays and objects. The 
global memory area is managed as a heap of unspecified size with respect to the 
JVM architecture; i.e., its total size is an implementation-dependent feature. 
The heap can hold both static and dynamic objects, including arrays; these 
objects are created on the heap at run time. When an object is dynamically 
created on the heap, a reference is generated to point to it at that time. Objects 
in the heap can only be accessed via a reference having a type that matches 
the type of the object. For example, in Figure 5.5 the reference a is declared to 
be of type Rectangl e, and it can only be used for pointing to objects of type 
Rectang] e (or a subclass of Rectang]e). 

Constant Pool 

Instructions often use constant values, as integer operands or as addresses in 
local memory, for example. The ISA allows some constant values to be placed 
in the instruction stream as immediate operands. But in general the constants 
have a range of lengths, and some of them are used by a number of different 
instructions. So to make the Java ISA a little more compact and uniform, 
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constant data associated with a program is placed in a block known as the 
constant pool Any instructions that need constant values can then index into 
the constant pool to retrieve them. Note that although the exact representations 
of integers and references when held in global memory or the stack are not 
defined part of the ISA, their representations when held in the constant pool 
are defined as part of the ISA. For example, an integer in the constant pool is 
represented as a 32-bit two's complement number. It is important to keep in 
mind that the constant pool is a part of a program's specification, just as much 
as the actual instructions are, and it does not change as a program executes. 

Memory Hierarchy 

Figure 5.7 illustrates the memory hierarchy in Java. In the figure, an array has 
been allocated on the heap, and a reference to the array is included as part 
of another object. Also note that in the lower left corner is an object with 
no references pointing to it. This is an object ready to be garbage collected. A 
specific field within a referenced object is accessed via an offset contained in the 

Figure 5.7 Memory Hierarchy Used by a Java Program. 
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constant pool. That is, there is no indirection when identifying a field (other 
than the indirection provided by the reference itself). 

5.3.3 Java Instruction Set 

The lava ISA is stack based, and, at least superficially, it is similar to the one 
used in P-code. 

Instruction Formats 

All instructions contain an opcode byte and zero or more subsequent bytes, 
depending on the opcode. Figure 5.8 shows the common instruction formats. 
Each instruction field consists of exactly one byte, although two or more such 
byte fields may be concatenated to form a single operand. Many instructions 
are a single byte, i.e., just the opcode, as shown in Figure 5.8a. Some instruc- 
tions consist of an opcode and an index byte (or bytes). Two examples are in 
Figure 5.8b and c. The index bytes are used as indices into the constant pool 
or into local storage locations. Another class of instruction formats consists of 
an opcode and one or more data bytes (Figure 5.8d and e). The data bytes may 
be immediate data or offsets for PC-relative branch instructions. Because the 
instructions appear as a stream of bytes m either opcodes, indices, or data 
an instruction set of this type is commonly referred to as a bytecode instruction 
set or simply as bytecodes. Using a single opcode byte implies there are 256 or 
fewer total opcodes; but a special wi de opcode, when appended to a regular 
opcode, essentially creates a new instruction that performs the same opera- 
tion as the regular opcode but with additional index bytes. And a bytecode 

Figure 5.8 

(a) Iopcodel 

(b) Iopcodel index I 

(c) lopcode li ndexll i ndex21 

(d) Iopcodel data I 

Iopcodeldatall data2 I 
Typical Bytecode Instruction Formats. 
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instruction set can always be expanded by adding "escape code" bytes similar 
to the ones used for extending conventional instruction sets when all opcodes 
have been used up. 

A basic property of the Java instruction set is that each of the primitive types 
has specific bytecode instructions that can operate on them. For example, the 
i add opcode (integer add) is defined to operate only on integer operands on 
the stack. In a legal Java bytecode program, the operand types must match 
those required by the opcode. In the following instruction descriptions, we 
will typically use the integer forms of instructions as examples; the ISA defines 
similar instructions for the other primitive types. 

The following subsections will overview the various types of instructions. 
A complete list of instructions can be found in a book focused on the Java 
virtual machine (e.g., Lindholm and Yellin 1999; Venners 1998). Instruction 
descriptions include the instruction format (opcode first), followed by operand 
byte(s), if any. All operand bytes are shown separately, even if they only have 
meaning when concatenated. For example, a 16-bit data item is represented as 
two bytes: data1 and data2. 

Data-Movement Instructions 

Figure 5.9 illustrates the basic flow of data movement. All loads and stores 
from global or local memory must be to the operand stack, and all functional 
instructions operate on operands held on the stack. 

One set of data-movement instructions push constant values onto the stack. 
There is some redundancy in these stack instructions; i.e., some constants can 

CONSTANT 
POOL 

STACK FRAME 

Instruction stream ~ Iocils 
opcode operandloperand I / 
opcode ~ operand 

ran d opcode ope ] stack 

GLOBAL 
MEMORY 

Figure 5.9 Data Movement Supported by the Java ISA. 
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be pushed onto the stack via more than one type of instruction. For exam- 
ple, any of five different instructions can push the constant 1 onto the stack. 
The advantage of having this redundancy is that it can improve code density 
and/or interpretation speed. The most common constants (e.g., small integers) 
are each given their own opcode, so a one-byte instruction is sufficient. For 
example, i cons t l  is a single-byte instruction that pushes the integer constant 
1 onto the stack. Other short constants can be pushed via the bipush data  
or si push data1 data2 instructions ~ these require two or three instruction 
bytes, respectively. Any arbitrary constant can be pushed via the 1 dc index 
instruction (two bytes total), provided it is in one of the first 256 slots in the 
constant pool. (Of course, the constant pool entry itself contains additional 
data bytes.) Finally, the I dc_w i ndexl i ndex2 instruction uses three bytes 
and can load a constant from any of 16K slots in the constant pool. The main 
difference between the 1 dc instructions and the push instructions is that the 
former requires a level of indirection when being interpreted. If translated 
(compiled) code is used, there is no practical difference between the two types 
of instructions. 

A second set of data-movement instructions manipulate the stack entries. 
For example, the pop instruction pops the top element from the stack and dis- 
cards it. The swap instruction swaps the positions of the top two stack elements, 
and dup duplicates the top stack element to form the top two stack elements. 

The third set of data-movement instructions moves values between the 
local storage area of the current stack frame and the operand stack. These 
instructions specify the local storage address via a constant ~ either directly 
in the instruction or via an index to the constant pool. Also, the type of the 
data being moved is explicitly given in the opcode. This information is used 
for type checking when the program is initially loaded (to be discussed later). 
For example, the i 1 oad_l instruction takes the integer from local storage slot 
1 and pushes it onto the stack. The i load index instruction specifies the 
local storage slot number via a constant pool entry pointed to by the index. 
Similarly, i s t o r e _ l  and i s to re  index instructions move data from the stack 
to local storage in the current stack frame. 

The final set of data-movement instructions deal with global memory data, 
either objects or arrays. An object is created via the new index1 index2 
instruction that concatenates two bytes to form an index into the constant pool. 
The constant pool entry essentially specifies the object, and a new instance of 
the object is created on the heap and initialized. A reference to the object is 
pushed onto the stack. Similarly, the newarray type instruction creates an 
array containing elements of a specified primitive type. 

For accessing data held in objects, the primary data-movement instruc- 
tions are the g e t f i e l d  i ndexl i ndex2 and p u t f i e l d  i ndexl i ndex2 
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instructions, which point to a constant field entry containing information 
regarding the field, e.g., its type, size, and offset into the object that contains it. 
As with all data-movement instructions, these move data between the addressed 
data item and the operand stack. The o e t s t a t i  c and p u t s t a t i  c instructions 
are similar, except they deal with static rather than dynamic objects. There are 
similar instructions that move data to and from arrays. 

In addition to instructions that create and access objects and arrays, there 
are instructions that can perform run-time checks to see what type of object is 
being pointed to by a reference. For example, the checkcast i ndexl i ndex2 
instruction indexes into the constant pool to find the specification for a specific 
class or interface. Then the object pointed to by a reference on the top of the 
stack is checked to see if it is an instance of the type specified by the constant 
pool entry. If not, a CheckCastException is thrown. This instruction is used 
for checking whether a run-time cast (conversion of an object reference) is safe 
(e.g., the reference being cast is to a member of the same class or a subclass 
of the object to which it currently points). This instruction allows a program 
to test for a potentially unsafe cast and to handle it in a graceful way via the 
exception mechanism (described later). 

Type Conversion 

Some instructions convert one type of data item on the stack to another. An 
example conversion instruction is i 2f, which pops an integer from the stack, 
converts it to a float, and pushes the float back onto the stack. Not every 
possible pair of primitive types is supported directly by a conversion instruc- 
tion, however. In some cases a combined pair of instructions performs a 
conversion. 

Functional Instructions: Arithmetic, Logicals, Shifts 

There are a number of instructions that take input operands, perform oper- 
ations on them, and produce a result. For the most part, these instructions 
consist of a single byte. Operands are always taken from the stack and results 
are placed on the stack. Three examples follow. The i add instruction pops two 
integers from the stack, adds them, and pushes the sum onto the stack. The 
i and instruction pops two integers from the stack, performs a logical AND on 
them, and pushes the result onto the stack. The i shfl  instruction pops two 
integers from the stack, shifts the top element left by an amount specified by 
the second element, and pushes the result onto the stack. 

Because the internal representations are implementation dependent, what 
the shift and logical instruction do, strictly speaking, is to convert the integer 
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value to a standard two's complement form before performing the operation 
and then convert it back to the internal representation before pushing it on 
the stack; i.e., the logicals and shifts operate a s  ifthe values are stored as 32-bit 
two's complement numbers, regardless of whether they are actually stored that 
way or not. 

Control Flow Instructions 

The control flow instructions (e.g., branches and jumps) are designed to 
expose all control flow paths within a method. This feature enables both 
complete discovery of all code within a method at the time it is first entered 
and load-time tracking of all variable types held in local storage (as explained 
shortly). 

One set of conditional branches compares the top stack element with zero. 
For example, the i feq data1 data2 instruction pops an integer from the 
stack and compares it with zero. If it is equal to zero, then there is a PC 
relative branch to an offset found by concatenating the two data bytes. Other 
conditional branch instructions compare two data items with each other. For 
example, the i f_icmpeq data1 data2 instruction pops two integer values 
from the stack and compares the first with the second. If they are equal, then 
there is a PC relative branch to an offset found by concatenating the two 
data bytes. Finally, there are conditional branches to check for null/nonnull 
references. For example, i fnul I data1 data2 pops a reference from the stack 
and checks it for null. 

There are also more complex control flow instructions. The 1 ookupswi tch 
instruction, given here, is typically used to implement a switch statement: 

lookupswitch default1 default2 default3 default4 
npairs l  npairs2 npairs3 npairs4 

match1_1 match1_2 match1_3 match1_4 

offset1_1 offset1_2 offset1_3 offset1_4 

match2_1 match2_2 match2_3 match2_4 

offset2_1 offset2_2 offset2_3 offset2_4 

addit ional n-2 match/offset pairs 

This is all one instruction, laid out in a way to make it more readable. In this 
instruction, the four de fau l t  bytes are concatenated to yield a PC relative 
branch offset if none of the cases match. The four npai rs bytes indicate the 
number of ma tch /o f f se t  pairs included in the switch statement. The integer 
at the top of the stack is popped and is compared with each of the match values 
(four bytes each). If a match is found, then there is a PC relative branch to the 
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corresponding offset value (four bytes). If there is no match, the branch is to 
the defaul t location. 

Methods are called via one ofthe i nvoke instructions, which take a statically 
defined set of arguments. The return instructions are defined to return either 
no value or a single value. There are four types of invoke instructions. One of 
the more commonly used is i nvokevi r tua l  i ndexl i ndex2, which begins by 
indexing into a constant pool location that contains a description of the called 
method. This description includes the address of the method, the number and 
types of arguments it takes, the number of locals it uses, and its maximum 
operand stack depth. Arguments on the stack are checked to make sure they 
match the specified argument types. If they do, a stack frame of the appropriate 
size is allocated, and the arguments are pushed as locals onto the stack. Then 
there is a jump to the called method. The return PC is saved on a stack, but 
the return PC value is not accessible, other than indirectly through a return 
instruction. 

The other types of invoke instructions are: i nvokein ter face ,  which is 
used for invoking an interface method; i nvokespeci al,  which provides special 
operations for certain types of methods, initialization methods, for example; 
and i nvokes ta t i  c, which is used for static methods. 

A typical return instruction is i re turn,  which begins by popping an integer 
from the current stack frame before removing the current stack frame. The 
integer is then pushed back onto the stack (for use by the calling method). 
Finally, there is a return jump to the calling method. The simple re tu rn  
instruction is used when there is a void return value. 

As pointed out earlier, we see that an important property of control flow 
instructions is that all control paths can be easily tracked. All branches (includ- 
ing the switches) are to fixed, compile-time PC offsets, so they are known at 
load time. Furthermore, the method calls and returns can be tracked as well, 
because they jump directly to a method (via a fixed index into the constant 
pool), not indirectly through a pointer. 

Operand Stack Tracking 

Besides the individual instruction specifications, the Java bytecode ISA also 
defines some overall properties that must hold in order for a sequence of 
instructions to be part of a valid program. These overall properties represent 
an important difference between HL V-ISAs and conventional ISAs. One such 
property is that at any given point in the program, the operand stack must have 
the same number and types of operands, and in the same order, regardless 
of the path that was followed to get to that point. This allows the loader to 
analyze the program prior to execution in order to check the types that are 
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being moved to or from memory (either global or local). That is, the types of 
the values on the operand stack can be tracked through static program analysis; 
it is not necessary to look at the actual types dynamically as the program is 
executed in order to make sure the proper types are being used. This property 
also means that the maximum depth of the operand stack can be determined 
for each method at the time it is compiled. 

Figure 5.10 presents three examples to illustrate the static stack-tracking 
property. All three examples have control flow paths that diverge (due to 
conditional branches) and then reconverge. Hence, there are multiple paths 

iload A //push in t .  A from local mem. 
iload B //push in t .  B from local mem. 
If_cmpne 0 el sel//branch i f  B ne 0 
iload C //push in t .  C from local mere. 
goto endelsel 

else1 iload F //push F 
endelsel add //add from stack; result to stack 

i store D //pop sum to D 

(a) 

skip1 

skip2 

i load B / /push i n t .  B from local  mem. 
If_cmpne 0 ski p l  / /b ranch i f  B ne 0 
i load C / /push i n t .  C from local  mem. 
i load D / /push D 
i load E / /push E 
i f_cmpne 0 sk i p2 / / b ranch  i f  E ne 0 
add / /add stack; resu l t  to stack 
i s tore F / /pop to F 

(b) 

Figure 5.10 

iload A //push in t .  A from local mem. 
If_cmpne 0 el sel//branch i f  A ne 0 
aload B //push reference B from local mere. 
goto endelsel 

else1 iload C //push integer C from local mem. 
endelsel iload D //push in t .  D from local mere. 

If_cmpne 0 el se2 
astore E //pop reference to local mem. 
goto endelse2 

else2 istore F //pop integer to local mem. 
endel se2 ... 

(o) 

Examples of Code Sequences with Reconverging Control Flow. (a) A valid sequence; (b) an invalid 
sequence where convergingpaths have different numbers of operands depending on the path followed; 
(c) an invalid sequence where reconverging paths have different types of operands depending on the 
path followed. 
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that will lead to the reconvergence point. Figure 5.10a is a legal code sequence. 
It first pushes an integer A onto the stack. Then it tests B; if B is equal to zero, 
it pushes a second integer, C, onto the stack. Otherwise, it pushes the integer F 
onto the stack. At that point the two control paths reconverge and the top two 
stack elements are added and then stored to D. The key point is that when the 
two control paths reconverge, the operand stack has two integers regardless of 
the path taken. 

The second code sequence (Figure 5.10b) is not a legal one. If B is equal to 
zero, the integer C is pushed onto the operand stack; then integer D is pushed 
onto the stack regardless of the value of B. Next, the code sequence tests E. If 
E is zero, the top two stack elements are added; otherwise nothing is done. 
Finally, the top of the stack is stored to local memory location F. This code has 
the property that if B is equal to zero, then the stack has two elements when the 
branch on the value of E is performed; otherwise the stack has only one element 
at the same point in the code. Now, it may be the case that E is zero whenever 
B is zero, and vice versa. However, it may not be possible to determine this fact 
by static analysis of the code, so the exact stack contents at the end of this code 
sequence are unknown. 

The third code example (Figure 5.10c) is also illegal. It pushes a reference 
onto the stack if A is zero; otherwise it pushes an integer. Then it pops a 
reference if D is zero; otherwise it pops an integer. Here, the stack contents 
are different, depending on the path taken to reach the compare with D. If it 
happens that D is zero whenever A is zero, and vice versa, then the data types 
will "work out" at run time. However, as in the earlier case, it may not be 
possible to determine this through static analysis. 

Because ofthe way the V-ISA specifies control flow (branches and procedure 
call/returns), a relatively simple analysis can determine if the proper stack 
discipline is followed. Because all branches are to constant locations within 
the same method, all paths in the method can be determined statically. At a 
method invocation, it is known that anything on the operand stack will not be 
touched by the invoked method, so the operand stack will have the same values 
when the method returns (with the possible addition of a return value whose 
type is given by the invoke opcode). Hence, the analysis algorithm simply 
traces all the static control flow paths and simulates a stack symbolically. If the 
symbolic stack contents ever differ at a control flow convergence point, then 
the program is not valid. 

Example Program 

Figure 5.11 is a bytecode compilation ofthe Java Rectangle per imeter  method 
given in Figure 5.5. The numbers in the leftmost column are the PC values 
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Figure 5.11 

pub l i c  i n t  per imeter  () ; 

O" i const_2 
1: aload_O 
2: g e t f i e l d # 2 ;  / / F i e l d :  sides reference 
5 : i const_O 
6: i al oad 
7: aload_O 
8: g e t f i e l d # 2 ;  / / F i e l d :  sides reference 
11: i c o n s t _ l  
12" i aload 
13" i add 
14: imul 
15" i r e t u r n  

Java Bytecodes for the perimeter Method Defined for the Rectang]e Class (in Figure 5.5). 

(as byte addresses) corresponding to the given instructions. The first instruc- 
tion pushes a constant 2 onto the operands stack, and the second instruction 
pushes local variable 0 onto the stack (by convention, local variable 0 is the 
argument being passed to per imeter ( ) ;  in this case it is a reference to the rect- 
angle object). The g e t f i e l d  instruction then gets the reference to the s ides  
array from the Rectangle object. The object reference is on the stack, and 
constant pool entry 2 contains a description of the field that is being accessed, 
i.e., that it is a reference. The ge t f i  el d instruction pushes the reference to the 
sides array on the stack. Then the next two instructions (i const_0 and i al oad) 
push index number 0 onto the stack (on top ofthe reference to array sides) and 
load element 0 from the array si des (via the reference and index number taken 
from the stack). The next four instructions are similar to the preceding four, 
and they load the value of si des [ 1 ] onto the stack. At that point, the bottom of 
the stack is a constant 2, the next stack value is si des[0], and the top ofthe stack 
is s ides[ l ] .  Then the iadd, imul sequence forms 2*(sides[0] H-sides[l]) .  
Finally, the last instruction returns, with the integer result on top of the 
stack. 

5.3.4 Exceptions and Errors 

In the Java architecture, some exceptions (or errors) are defined as part of the 
ISA and may be thrown as a result of program execution. Other exceptions 
can be user defined and are explicitly thrown by executing a th row instruction 
(described later). 

A key property of the ]VM is that all exceptions must be handled some- 

where. That is, there is no global way to turn them off, as is the case with 
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most conventional ISAs, where there is usually a mask bit corresponding to 
each trap condition. The rationale for dealing with exceptions this way is not 
really specific to high-level VMs; rather, it is an overall program robustness 
consideration. If an exception is not handled by the method that throws the 
exception, then the current stack frame is popped and the calling method takes 
over responsibility; if the calling method doesn't have a handler, then another 
stack frame is popped, etc., until eventually the main program is reached. 
At that point if there is no handler, a standard handler takes over (and likely 
terminates the program). In a way, this approach forces the programmer to 
think about all exceptions in order to deal with them actively rather than just 
turning them off and forgetting about them. 

In Java there is a distinction made between errors and exceptions. Errors are 
not necessarily caused by behavior that is inherent to the application program; 
rather, they may be caused by limitations of the VM implementation or VM 
bugs. Exceptions, on the other hand, are caused by program behavior that 
occurs dynamica l ly -  as the program executes. Static checking catches many 
programming mistakes and oversights, but some types of behavior cannot be 
caught until run time. An example of an error is $tackOverflowError, which 
indicates that the available stack space is exhausted. There is no architected 
stack size in the V-ISA, and some VM implementations may run out of stack 
space before others. Hence, when this error occurs, it is not necessarily due to a 
program bug; it may just be an indication that the host platform does not have 
enough memory for the application's needs. On the other hand, it could also 
result from a program bug, such as runaway recursion. As another example, the 
In t e rna l  Error indicates that the VM has encountered some type of internal 
bug. Just as with any well-designed program, the VM implementation software 
itself should contain internal error checking. If the VM should catch such an 
internal bug, it throws this error. 

The Java ISA defines a number of exceptions. These are the program 
exceptions that must be checked for dynamically. Two common exceptions 
are the Nul I Poi nterExcepti on and the ArrayIndexOutOfBoundsExcepti on, 
which are clearly described by their names. All references ("pointers") must 
be checked to make sure they are not null at the time they are used (although 
some explicit checks may be removed by optimizations). Also, all array indices 
must be checked. Array indices are the only way of indirectly accessing a Java 
data structure. There are a number of exceptions related to type checking 
and object accesses. For example, an Incompati bl eel assChangeError occurs 
when a ge t f i  el d instruction is applied to a static field; even though the name 
indicates an "error," it is in fact an exception. 

In the Java ISA, it is possible to specify an exception handler, depending 
on where an exception occurs. To accomplish this, the WM associates a table 
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with each method, the exception table. Here is an example entry in an exception 
table: 

From To Target Type 
8 12 96 Ari thmeti c Excepti on 

This table entry indicates that if an arithmetic exception occurs anywhere 
between instructions at locations 8 and 12, then there should be a jump to 
a handler at location 96. The table is built from information encoded in the 
high-level language program, for example, with lava try and catch regions. If a 
From/To region encloses a method call, then unless the method has a handler 
of its own, the handler in the calling method is used. 

At the time an exception is thrown, the operand stack is immediately 
flushed. The WM then looks up the exception type in the exception table. 
If the exception type and the PC at the time of an exception match a table entry 
From/To range, then there is a jump to the target PC specified in the table. 
Otherwise, the current stack frame is removed, the PC at the time of the call is 
reinstated, and the table is checked again. This continues until either there is a 
table match or the outermost procedure (main) is reached. 

Besides the exception table, ]VM support for exceptions includes the 
instruction athrow index1 index2. This instruction explicitly throws an 
exception. The values i ndexl and i ndex2 form an index into the constant 
pool. The constant pool location contains a description of the exception being 
thrown. 

5.3.5 Binary Classes 

When an HLL VM program is distributed, not only is the code included, but 
so is a detailed specification of the data structures and their relationships, i.e., 
the metadata. In Java terminology, the combination of code plus metadata is a 
binary classthat is typically included in a classfile (in the Microsoft CLI it is called 
a module). The format of the binary class is, in effect, the "official" interface 
supported by the underlying virtual machine ~ the binary class format plays 
the same specification role as in a conventional ISA. Thus far, we have described 
the components of a binary class in a general way. In the remainder of this 
section we describe the overall structure of a Java binary class. 

M1 the Java binary classes that form a complete program do not have to be 
loaded when a program is started (although they could be). Rather, the binary 
classes can be loaded on demand, at the time they are needed by the program. 
Among other things, this saves bandwidth for loading binary classes that are 
never used, and it allows a Java program to start up quickly, using only some 
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initial binary classes. For efficiency, the first time a binary class is used, it is 
parsed and placed into method memory, a part of the VM implementation. 
Then on subsequent calls, it is much more efficient to consult the preprocessed 
method information in the method memory. 

Either each component of a binary class is of a fixed size or the size is explic- 
itly given immediately before the component contents. In this manner, the 
loader can parse the entire binary class from beginning to end, with each of the 
components being easily recognized and delineated. Within each component, 
the same principle is used. 

Figure 5.12 gives the layout of a binary class. It consists first of some header 
information, beginning with a magic number that identifies this block of data 
as a binary class. The magic number is simply a character sequence that is the 

Magic Number 

Version Information 

Constant Pool Size 

Constant Pool 

Access Flags 

This Class 

Super Class 

Interface Count 

Interfaces 

Field Count 

Field Information 

Methods Count 

Methods 

Attributes Count 

Attributes 

Figure 5.12 Format of a Java Binary Class. 
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same for all Java binary classes. When presented with a file purported to contain 
a binary class the loader can use the magic number as a quick, initial check to 
gain some assurance that it does in fact contain a binary class. The header also 
contains version information for the binary class. Over time, it is expected that 
there will be extensions to the Java VM, and the version number can be used 
by the loader to restrict its checks and operations to the correct version. 

Following the header information is a sequence of large structures, each 
preceded by a size indication or the number of contained elements. The 
major structures are the Constant Pool, a table describing method Interfaces, 
a table describing object Fields, a table containing the Methods, and a table of 
Attributes that contains much of the detailed information for the other tables. 
The following subsections describe each of these major structures as well as 
some of the minor ones. 

Constant Pool 

The constant pool essentially holds all the constant values and references used 
by the methods that are to follow. Each of the constants is appended with 
type information so that type checking can be performed when the constant is 
used. Many of the constants are in symbolic form, i.e., the names of classes, 
interfaces, methods, and fields. 

Access Flags 

As the name suggests, these flags provide access information, for example, 
whether this particular type (class) is public, whether it is an interface rather 
than a class, whether it is final (i.e., it can never be dynamically overridden). 

This_Class and Super_Class 

This region contains the names of this class and the superclass of this class. 
Both are given as indexes into the constant pool. The names themselves are 
in the constant pool. All classes except for the Obj ect  class (see Section 5.4.2) 
have a super_c] ass. For the Object class, the super_c] ass is zero. 

Interfaces 

This region contains a number of references to the superinterfaces of this class, 
i.e., the interfaces through which this class can be directly accessed. These are 
given as indices into the constant pool. The constant pool entries are references 
to the interfaces. 
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Fields 

This component contains the specification of the fields declared for this class. 
This information is included in a small table for each field; the table includes 
access information (public, private, protected), a name index (an offset into 
a constant pool entry that contains the name of this field), a descriptor index 
(which contains an index into the constant pool where the descriptor for this 
field can be found), and attributes information. 

Methods 

This component contains information regarding each method, e.g., the name 
and descriptor, as well as the method itself, encoded as a bytecode instruction 
stream. Each method can also have attribute tables, for example, giving the 
maximum operand stack depth for the method and the number of locals. The 
code itself appears as part of an attribute table. Also included is the exception 
table, described earlier, which give types of exceptions to be checked and the 
PC ranges over which they should be checked. 

Attributes 

The attributes region contains the detailed information regarding the other 
components listed earlier. In general, an HLL VM would have a fairly large 
number of attribute types. 

5.3.6 The Java Native Interface 

The Java native interface (JNI) allows java code and native compiled code 
to interoperate. For example, it allows Java code to call a routine compiled 
from C, and vice versa, although we will emphasize the former situation in 
this discussion. By using the JNI, a C program can even invoke a Java virtual 
machine. 

An overview of the JNI and its operation is given in Figure 5.13. On the 
left-hand side of the figure, the "Java side," we see the Java architecture as 
described in the preceding sections. Code (and data) compiled to the native 
platform ISA resides on the right-hand side of the figure, i.e., the "native side." 
It is important to note, however, that the Java side can be compiled from any 
language where there is a compiler that can produce standard binary classes; 
for example, C# could be used. The native side can be compiled from C or from 
any other language for which JNI support exists, including assembly language. 
Each side of Figure 5.13 compiles to its own binary format. On the Java side, 
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Figure 5.13 

Java Side : Native Side 

Java HLL Program 

I Compile 
and Load 

 nv;ke 
Bytecode native method[ 
Methods ': ,q 

geffield/ ', (" JNI 

pu et/putJ 
i 

| 
| 

C Program 

( ) Compile 
and Load 

Native Machine 
Code 

~, load~store 

Native Data 
Structures 

Java Native Interface. The lava native interface allows lava software and native compiled software 
to interoperate. 

these are standard binary classes; on the native side, they are program binaries 
in the native platform's machine code. Data on the Java side exists as objects 
and arrays on the heap and variables on the stack. On the native side, data is 
organized in whatever way the compiler happens to lay it out; i.e., it is compiler 
dependent. 

The JNI provides an interface for a Java method to call a native method (as 
shown in the figure). To do this, the native method must be declared as nati  ve 
by the calling Java class. After compiling the Java class that declares the native 
method call, it can be given to a program j avah, which will produce a header 
file for the native method. Then the header and native method code can be 
compiled to form the callable native method. 

The JNI specification allows control to be transferred back and forth 
between Java code and native methods; arguments can be passed and val- 
ues can be returned. Furthermore, exceptions can be caught and thrown in 
the native code for handling in the Java application. In order for code on 
the native side to access data from the Java side (or for that matter to create 
objects on the Java side), the JNI provides a number of native m e t h o d s -  for 
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example, GetArrayLength will obtain the length of a Java array, and 
GetZntArrayElements allows the native code to obtain a pointer to a Java 
array's elements. Similarly, code on the native side can get and put object field 
data through JNI methods. 

Completing the Platform: APIs 

In Section 5.2 we stated that a Java platform is a combination of a JVM and 
a set of standard libraries, or APIs. The JVM is at the core of the platform, 
but it is the APIs that provide most of the features that are visible to users 
and software developers. These include support for secure network computing 
and component-based software, as well as many traditional functions, such as 
support for graphical user interfaces (GUIs). Similarly, the .NET framework is 
built around the CLI, but it is also includes a very large number of APIs that 
implement its rich set of features. Although the focus of this book is on the 
virtual machine, not the APIs, we would be remiss in not discussing some ofthe 
capabilities they provide. Furthermore, some of the APIs directly interact with 
the virtual machine and objects at a low level; these are of particular interest to 
us and will be discussed further. 

5.4.1 Java Platforms 

A number of computer companies provide Java platforms. To support inter- 
operable application software, these platforms must conform to a standard 
specification and contain the same APIs. The current Java specification is for 
the Java 2 platform (Shannon et al. 2000). Also specified are editions, which 
are targeted more at general categories of applications and users. Each of the 
editions is distinguished from the others bythe packages of APIs it incorporates. 

J2SE ~ S t a n d a r d  Edi t ion:  As the name suggests, this edition is targeted at 
probably the largest number of Java users and developers. The standard edi- 
tion platform supports typical PC users and client-side applications within 
an enterprise computing environment. It also incorporates APIs to sup- 
port reusable component-based software development based on JavaBeans 
(discussed briefly later). 

J2EE ~ Enterprise  Edi t ion:  This edition is directed at development of 
large enterprise software infrastructure, including server-side applications. 
It includes the Enterprise JavaBeans API, which supports component-based 
development of distributed server applications. 
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] 2 M E -  Micro Edition: This edition defines a lighter-weight platform for 
consumer-based embedded systems, which are often resource limited. Con- 
sequently, it contains a smaller set of targeted APIs. Examples of embedded 
systems that may be based on the Micro Edition range from set-top boxes 
to pagers and smart cards. 

5.4.2 Java APIs 

There is a long list of Java APIs, too many to present and discuss here. Rather, 
we give some of the more important "core" API packages that exemplify the 
variety available, and then we single out some specific, particularly important 
low-level functions for additional discussion in subsequent subsections. 

java. fang 

This is the core Java programming language API package; it contains classes 
that are at the heart of the Java programming language. These begin with the 
0bj ect  c l a s s -  the superclass of all the Java classes. It also contains "wrapper" 
classes that contain primitive data types, such as Character and In teger  
when stored in the heap as individual items. In addition, java.  ] ang contains 
low-level runtime and system static methods as well as floating-point math 
support. Other selected members of java.  ] ang that are of special interest to 
us follow. 

The Class class maintains descriptions of Java classes. Each class that is 
loaded has a Class object associated with it. Among other things, a class's 
C] ass object allows a program to extract information regarding the classes it 
is using, via a process known as reflection, described in the next subsection. 

The Process object serves as a platform-independent interface to native 
processes external to the ]VM, and the Thread class supports multithreading 
within the ]VM. Use of the Thread class is discussed further in Section 5.4.4. 

The $ecu ri tyManage r is the class that defines the methods that implement 
a security policy. These methods are called in order to determine if a requested 
operation (e.g., to read or write a file) should be permitted. The security 
manager's overall role is described briefly in Section 5.2.1, and it is discussed 
further in Section 6.2.2. 

java. uti I 

This package contains a number of classes that perform fundamental data 
structure operations as well as maintaining date and time facilities. For example, 
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the Vector class supports arrays of objects that may grow as objects are added; 
the Enumeration interface is very commonly used for looping through the 
elements of a data structure. The Hashtab] e class supports associative arrays 
(typically implemented as hash tables), java.  uti  ] .  zip contains classes with 
methods for compressing and decompressing zip files, and java.  uti  ] .  j a r  
contains classes for file archiving. 

java. awt 

The j ava.awt (abstract windowing toolkit) contains classes for constructing 
GUIs from components and graphics shapes. Layout manager classes control 
graphics components held in container objects. 

java. io and java. net 

The java.  i o API package contains classes for performing input/output oper- 
ations. These classes manage data streams and file system I/O, and they are 
the counterparts of the I/O libraries supported by conventional high-level lan- 
guages and operating systems. The j ava .ne t  API package contains classes 
for networking support. For example, the socket class allows a program to 
connect to a port and read and write data through the port. 

We now consider two general functions where the core API part of the 
Java platform interacts very closely with the lower-level operation of the JVM. 
These are by no means the only situations where such close interaction is 
required, however; they are singled out because they are fundamental to many 
applications that run on Java platforms. 

5.4.3 Serializability and Reflection 

One of the basic concepts of object-oriented programming is concealing inter- 
nal features of an object. However, there are situations where it is important 
to discover features of objects. Serializability and reflection involve exposing 
the features of an object to programs operating on the object and to the world 
outside a given VM. For example, one may want to communicate an object 
from one Java program to another; perhaps the two programs are running 
on different platforms connected by a network. This is commonly done as 
part of remote method invocation (RMI), where, for example, a client may 
want to invoke a method on a remote server and an object may be passed as 
an argument or return value. Each of the platforms may have a different way 
of storing objects in memory, so simply copying the internal data structures 
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Figure 5.14 Serialization. Serialization converts an object into an implementation-independent form that can be 
(a) passed over to a network to a different platform or (b) stored persistently for later use. 

that implement an object will not work. Instead, an object to be communi- 
cated must be converted into an implementation-independent form. Then the 
receiving program can convert the implementation-independent form into its 
own internal implementation-dependent form (see Figure 5.14a). 

As another example, objects created by a program only live as long as the 
program exists; when the program terminates, the objects go away. However, 
there are many situations where it is desirable for objects to persist between 
program executions, stored on a disk, for example. Here, again, the solution 
is to convert objects into an implementation-independent form for storage 
and later retrieval (see Figure 5.14b). These two situations are similar: In the 
network example an object is passed from one program to another through 
space, and in the other it is passed through time. 

The process of converting an object into an implementation-independent 
form is called serialization. In order to serialize an object it must be declared to 
be serializable, which means that it implements the Ser ia l  i zable interface. 
This interface then allows an object to be written as a byte stream in a canonical 
form. Serialization serializes not only a given object but all the objects for which 
the original object contains references, all the objects for which those objects 
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contain references, etc. The serialization process involves reflection, that is, the 
ability to look inside an object to find all of its members. Then once found, 
they can be organized as a standardized byte stream. 

Besides serialization, a number of other interesting applications require 
reflection in order to determine class information at run time. In a typi- 
cal program development environment, the compiler can access information 
regarding classes used by a program at compile time, so the compiler can 
incorporate this class information as it generates new binary classes. How- 
ever, there are situations where class information is not known at compile 
time, that is, where a running program may be given a reference to an object 
whose type is unknown. In these situations, information concerning the object 
must be retrieved at run time. This is done through reflection. In Java, the 
java.  lang. eel] ect  API is an interface to a class's r  object, which exists 
for every class used by a program and contains a description of the class. The 
C] ass objects are constructed by the JVM when an object type is loaded. 

Reflection is a key enabler for component-based programming. In Java, 
basic program components are called JavaBeans. To facilitate component- 
based program design, JavaBeans must conform to a set of specified design 
patterns or coding conventions. For example, all readable properties of a 
JavaBean must have an accessory method of the form getproperty_name. 
Then if a program invokes an accessory method on an object, with, for exam- 
ple, the getFi e] ds () method, it will be given an array containing Fie] d objects 
reflecting all the accessible public fields of the class or interface represented by 
this C] ass object. 

A visual component-based program design tool allows a programmer to 
work at a high level by manipulating ]avaBeans. Under programmer direction, 
the tool can load a ]avaBean and analyze the bean's interface using the Reflec- 
tion API and the ]avaBean design patterns. With the information collected via 
the Reflection API, the developer's tool presents a graphical representation of 
the ]avaBean that the developer can then use to modify the properties of the 
bean and enable communication between components by connecting an event 
source in one bean to an event listener in another. 

5.4.4 Java Threads 

In a typical JVM implementation, much of the multithreading support is 
provided by Java libraries that are part of the java.  ] ano. This makes sense, 
because support for multiple threads must ultimately be provided through 
the OS on the underlying platform, and the way to communicate with the 
underlying OS is through libraries. 
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As noted earlier, the j ava. 1 ang API includes a Th read class. Threads can be 
defined by extending this class (and inheriting its methods). Methods defined 
for the Threads class, include: run(), which starts a thread, s top() ,  which 
stops a thread, and suspend() and resume(), which, as their names imply, 
allow the suspension and resumption of a thread. Calling run () for an object 
of type Cl ass will initiate a new thread. The JVM gives each Java thread its own 
stack, and the threads synchronize through mechanisms called monitors. 

Monitors are supported at the lowest level by architected locks and two 
Java bytecode instructions. There is a lock associated with each object and each 
class (the Class object for a given class contains its lock). Only one thread 
at a time can own a particular lock. A lock actually operates as a counter 
rather than as a single bit flag (as one might expect). The bytecode instruction 
moni t o r en t e r  acquires the lock for the object pointed to by the reference on 
the top of the operand stack. If the lock is already held by another thread, 
then the requesting thread simply blocks and waits. If the lock is not held 
by another thread, then the lock is incremented and the requesting thread 
continues execution. Note that the acquiring thread may already hold the 
lock, in which case it does the increment and goes on. The monitorexi t 
instruction decrements the lock for the object pointed to by the reference on 
top of the operand stack. If the lock becomes zero as a result of the decre- 
ment, then it is released and can be acquired by a waiting thread (if there 
is one). 

The basic lock mechanism can be used for implementing monitors that 
guard critical sections or for locking individual objects. A critical section is a 
code region that only one thread can execute at a given time. Critical sections 
typically manipulate shared data structures that require exclusive access, usu- 
ally when they are updated. The synchronize keyword in the high-level Java 
language compiles down to moni t o ren te r  and moni torexi  t instructions. 

Besides the bytecode instructions, the class Object declares a number of 
methods that support additional synchronization. 

wai t ( )  - -  releases the lock and enters the wait set for the given lock. 
It remains there until it is notified (see later). The wait set is essentially 
a VM-supported pool of threads waiting for a notification regarding the 
lock. 

w a i t  ( I  ong t i  meout,  i n t  nanos) - -  releases the lock and enters the"wait 
set" for the given lock. It remains there either until it is notified or until 
t i  meout milliseconds plus nanos nanoseconds have elapsed. 

no t i fy ( )  - -  wakes up one thread in the lock's wait set. 

noti fyA11 () - -  wakes up all threads in the lock's wait set. 
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The wait and no t i fy  mechanisms are typically used for supporting monitors 
that manage cooperation among threads typified by producer-consumer inter- 
action, where, for example, one thread might produce data items and place 
them in a shared buffer to be consumed by a different thread. The producer 
thread notifies the consuming thread when data is in the buffer. The consuming 
thread, after emptying the buffer, waits until it is again notified. 

The Microsoft Common Language Infrastructure: A Flexible 
High-Level Language Virtual Machine 

The common language infrastructure (CLI) is a virtual machine architecture 
that is part of Microsoft's .NET framework (Box 2002). The common lan- 
guage runtime (CLR) is Microsoft's implementation of the CLI. Although it 
supports obiect-oriented network-based computation, iust as lava does, the 
CLI objectives are ostensibly broader than those for lava. 

5.5.1 The Common Language Interface 

The aspect of the CLI that is most similar to the lava environment is that it can 
support obiect-oriented programs within a managed runtime environment that 
includes features such as built-in protection checking and garbage collection. 
Although a number of high-level languages (some with extensions) can be 
compiled to lava binary classes, the ]VM was designed specifically to support the 
lava HLL. In contrast, the CLI is designed to support multiple, interoperating 
high-level languages, and it also can support programs that do not have to be 
(or cannot be) verified by a loader. Hence, an essential feature that separates the 
CLI from the lava virtual machine is that the CLI strives for HLL independence 
as well as platform independence. This is illustrated in Figure 5.15. 

The common language runtime (CLR) is an implementation of the CLI, 
and is part of the overall .NET framework. The modules are of a standard 
format and contain both metadata and code in the Microsoft intermediate 
language (MSIL). In the figure, modules (the analog of lava binary classes) can 
be generated from a number of languages, including, but not restricted to, C# 
(an object-oriented version of C that provides a garbage-collected heap), lava, 
Visual Basic .NET, and Managed C++. Managed C++ programs can run in 
the managed runtime environment provided by the CLR, but not all Managed 
C++ modules must be verifiable. 

In the CLI, a code module can be verified for type safety in a manner 
similar to lava binary classes, and verifiability is a desirable property to have. 
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Figure 5.15 The Common Language Interface Supports Language Interoperability. The CLI allows both 
platform independence and a high degree of high-level language independence. 

The managed C++ compiler has a flag that forces all code to be verifiable 
(and generates errors when the C++ programmer uses unsafe constructs). 
Verification helps establish a run-time protection domain that allows untrusted 
code to execute safely. Nevertheless, unverifiable (unsafe) programs are allowed 
as part of the managed program environment. A programmer may choose to 
generate unverifiable code that can still interoperate with verifiable code. In 
order to use unverifiable code, however, the user must permit it through a 
security manager. 

Regardless of whether they are verifiable, all programs must be valid. Some 
programs may be constructed in an illogical manner; for example, a program 
may have a stack underflow that is detectable by inspecting the code at load 
time. A program such as this is invalid (as well as being unverifiable) and 
should not be allowed to run. Hence, there are three categories of application 
programs: those that are verifiable and valid, those that are unverifiable and 
valid, and those that are invalid. This is in contrast to Java, which only allows 
two types (verifiable and unverifiable). Furthermore, verifiable and unverifiable 
programs may be mixed (at the programmer's discretion), so, for example, a 
verified program can call an unverifiable library routine. Because multiple 
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Figure 5.16 Overall Structure of a CLI Module. 

PE/COFF 
Headers 

CLR 
Header 

CLI Data 

! | 

Metadata 
| | 

n | 

IL Code 
| 

| 

Native Code 
and 
Data 

(optional) 

languages and both verifiable and unverifiable programs are supported in an 
integrated way, the CLI provides a more complete, all-purpose application 
program environment than the JVM. This feature may be more significant in 
the short term as unsafe legacy code is mixed with newly developed verifiable 
code. In the long term, one would expect that unsafe legacy code will eventually 
be replaced with safe, verifiable code. 

CLI modules are organized into assemblies, just as Java binary classes are 
organized into packages. Figure 5.16 shows an overview of a typical CLI module. 
It is contained in a standard Microsoft Portable Executable and Common 
Object File Format (PE/COFF), further highlighting interoperability; the OS 
handles it just like any other executable file. The module contains header 
information and CLI metadata and code, and it may also contain native code 
and data. The metadata consists of a number of regions that contain, among 
other things, object definitions and constants (called s t reams  in the CLI). In 
general the concepts are similar to those in a Java binary class. 

It is interesting to compare language interoperability in the CLI with that 
provided in Java (as illustrated earlier in Figure 5.13). An analogous figure for 
the CLI is given in Figure 5.17. Here, all programs compile onto the MSIL byte- 
codes, including C programs, for example. The data structures are all in the 
common metadata format. However, as described in the next section, the meta- 
data format includes blocks of data and unmanaged pointers, which an MSIL 
program can manipulate in any manner (as in C). This code is unverifiable, 
but it can still execute within the managed environment. 

Hence, in the CLI, interoperability is not implemented at the method call 
level (as in Java), but interoperability is supported in a more integrated way 
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via common metadata, including memory block data, that may be accessed via unmanaged pointers. 

that also extends to data: a type defined in one language can be used across 
languages. This more highly integrated approach does not come without a cost, 
however. It may require significant changes to existing language implementa- 
tions (as was the case with Visual Basic, whose object model had to be changed 
to the C# model). Achieving interoperability may also require standardization 
in programming conventions. For example, if one language has case-sensitive 
variable names and the other does not, then for interoperability they should 
probably stick to a common denominator and not rely on case sensitivity. 
The Common Language Specification (CLS) contains a set of standard rules 
intended to ensure interoperability among high-level languages. 

5.5.2 Attributes 

The CLI supports attributes to allow the programmer to pass information at run 
time via compiled metadata that is part of a package. This information may be 
directed at the runtime software or the executing program. Some attributes are 
built in; i.e., they are intrinsic to the CLI. Custom attributes are also supported 
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as a way of enabling user-defined extensions. The programmer can assign 
an attribute to virtually any item held in a module, including fields, classes, 
methods, or parameters. Then a running program can access the attribute 
via reflection, implemented with the GetCustomAttr5 bute method. Based on 
the attribute, the program can then take some action. For example, consider 
a situation where a number of different companies are working together on 
a large international engineering design product. Some of the engineers may 
be working in units of inches and others in centimeters, and each is writing 
software based on one unit or the other. Traditionally, this type information is 
conveyed by comments placed in the code or via other external documentation, 
including word of mouth. However, this places the burden on the user to 
carefully check for such documentation to avoid mistakes. By assigning an 
attribute of either [ inches]  or [cen t imeters ]  to an object's data field, the 
unit being used is automatically conveyed to other programs as part of the 
metadata. A method accessing a data field can use reflection to check the unit 
attribute and convert the value in the field, if necessary. 

Attributes can also pass information to the runtime software ~ for example, 
that an obiect has to have its fields laid out in a specific way (so that it can be 
accessed via native code, perhaps). A built-in attribute [ s e r i a l i z a b l e ]  is 
passed to the runtime to indicate than an object may be serialized and should 
therefore be implemented in a particular way. 

5.5.3 Microsoft Intermediate Language 

The instructions contained in the intermediate language MSIL (Lidin 2002) 
are similar in concept to lava bytecodes. The MSIL is stack oriented, with 
all operations taking place via an operand (or evaluation) stack. Rather than 
provide the same level of detail as we did for Java bytecodes, we instead focus 
on the significant ways in which the MSIL differs from Java bytecodes. 

Figure 5.18 illustrates the MSIL memory architecture. For a given method, 
a local data area and an argument area are defined, but they are not defined 
as part of a stack frame as in Java. In an implementation they would probably 
be held on an implementation-specific stack, but there are no instructions in 
the MSIL that assume they are part of the same stack. That is, they are simply 
regions of memory accessible when a method is executing. Rather than having 
a constant pool, MSIL supports a number of metadata tables, referred to as 
streams, which contain information similar to that held in the lava constant 
pool. Furthermore, instructions can push constant values, either long (four 
bytes) or short (one byte), onto the operand stack. The metadata tables are 
accessed via tokens that are supported by the MSIL. A token contains four 
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Figure 5.18 
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bytes: One byte is a metadata table (stream) identifier, and the other three 
bytes point to a particular entry in the table. One of the constant streams holds 
program-referenced character strings, and there is a special MSIL instruction 
that can retrieve a string. 

The instruction set depends on the same stack-tracking feature as Java to 
enable static type checking. Also, as with Java bytecodes, all verifiable con- 
trol flow instructions either have constant PC relative offsets or are method 
call/returns. Both arrays and vectors are intrinsic data types, but there are 
explicit MSIL instructions only for vectors, which are similar to the one- 
dimensional Java arrays. The multidimensional MSIL arrays are accessed via 
standard API routines. It is also possible to create a managed pointer to 
a particular array element, to avoid repeated address arithmetic and range 
checking. 

A small example of MSIL code, and its Java counterpart, are given in 
Figure 5.19. In this example, the instructions match one to one. One ISA 
difference is that MSIL has more flexibility in specifying data widths; for exam- 
ple, the . i 4 indicates an integer of four bytes. Other possibilities (depending 
on the instruction) are i l ,  i2, and i8 (integers) and ul, u2, u4, and u8 
(unsigned). Another evident difference is that when performing arithmetic, 
the Java bytecodes explicitly specify the type of operation to be performed. For 
example, in Java there are separate add-integer and add-float instructions. In 
contrast, in MSIL there is a single generic add instruction, and the particular 
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Figure 5.19 

O: iconst_2 O: I d c . i 4 . 2  
1: aload_O 1: Idarg.O 
2: g e t f i e l d  #2 2: ldobj  <token> 
5: iconst_O 5: l d c . i 4 . 0  
6: ia load 6: Ide lem. i4  
7: aload_O 7: ldarg.O 
8: ge t f i  eld #2 8: Idobj <token> 
11: i cons t_ l  1 1 : I d c . i 4 . 1  
12: ia load 1 2 : I d e l e m . i 4  
13: iadd 13: add 
14: imul 14: mul 
15: i r e t u r n  15: re t  

(a) (b) 

Example of (a) Java Code and (b) Corresponding MSIL Code. 

type can be inferred from the types of operands at the top of the stack. In 
a sense, putting the type of operation in the opcode as in lava is redundant, 
because stack tracking permits the inference of the type of operation required. 
However, implementing this inference as part of an interpreter would slow 
down interpretation. It is apparently the intention (although not an absolute 
requirement) that MSIL will not be interpreted but will always be compiled 
before being executed, e.g., by a lIT compiler. Finally, in lava, items such 
as field descriptors are all in the constant pool, whereas MSIL uses metadata 
tokens, and the tokens point to items in one of the several streams contained 
in a program module. 

If they are not specifically designed to do so, conventional programming 
languages such as C and C++ do not run as verified code in CLI. In C and C++ 
programs, memory can be allocated and accessed without the restrictions of 
Java or C# programs. Blocks of memory of unspecified type can be allocated, 
and pointers can be manipulated as data; i.e., arbitrary arithmetic, logical, and 
shift instructions can be performed on pointers, and they can be freely copied. 
To support C-like memory operations (and control flow), MSIL contains a 
number of unverifiable instructions. 

Unmanaged pointers are simply represented as 32-bit integers on the native 
platform. With unverifiable code, it is possible to allocate and access C-style 
blocks of memory. The local block-allocate instruction (]ocal]oc) creates a 
block of untyped memory; a copy-block instruction (cpblk) copies a block 
of memory from a location indicated by one unmanaged pointer to an area 
indicated by a second unmanaged pointer. The initialize-block ( in i tb lk)  
instruction initializes all the elements of a memory block to a specified value. 
Because the pointers to the blocks of memory are unmanaged, they can be used 
in much the same way as in C. 
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With regard to control flow, the managed code branch instructions are 
adequate for both verifiable and unverifiable code. For procedures calls, there 
is a call-indirect (ca] ] i )  instruction that uses an unmanaged pointer for 
identifying the called procedure. 

5.5.4 Isolation and AppDomains 

A final feature of the CLI of interest is its support for isolated, independent 
applications running on the same VM. This feature is probably most useful for 
increasing overall system efficiency when multiple application programs are 
running at the same time; this would be the common mode of operation in a 
server, for example. As a matter of security, these application programs should 
be isolated from each other, because they typically perform functions for a 
number of different users. A straightforward way of implementing isolation 
is to give each program its own virtual machine, which, in turn is supported 
as a user-level process by the host platform's operating system. This method 
is illustrated in Figure 5.20a. It is a rather heavy-weight resource-intensive 
approach, however, with lots of unneeded replication at both the VM level and 
the host process level. 

A possible solution in Java is to implement isolation via the class loader 
system, by giving each application a different namespace (see Section 6.1). 
However, class loaders, as it turns out, do not provide absolute separation, and 
this has resulted in security holes (McGraw and Felten 1999). 
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Supporting a Number of Identical Applications. (a) By running each on its own virtual machine; 
(b) by using AppDomains. 
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To solve the isolation problem in an efficient way, the CLI supports 
AppDomai ns (application domains), which provide the desired lightweight iso- 
lation. A number of independent processes can share the same virtual machine, 
with complete isolation (see Figure 5.20b). Hence, only one VM and one host 
platform are required, thereby maximizing the system resources available to 
the programs doing the work. Note that each of the processes may contain 
multiple threads, as is always the case with CLI processes. 

Process VMs targeted at conventional ISAs are in a sense backward looking, 
in that they are attempting to provide compatibility with platforms developed 
years (often decades) in the past. In contrast, The HLL virtual ISAs (e.g., Java 
bytecodes and the Microsoft CIL) are forward looking; they are developed with 
support for evolving and future applications as the goal. When coupled with 
libraries, the VM platform provides flexible support for the object-oriented 
programming paradigm, secure network computing, and component-based 
program development. 

To summarize this chapter, we compare the features of the virtual ISAs with 
those of conventional ISAs. This summary is centered on a number of issues 
identified in the preceding chapters, where process VMs are constructed and 
conventional ISAs are virtualized. This comparison provides additional insight 
regarding the features of existing virtual ISAs and may provide direction for 
developing future ones. 

5.6.1 Metadata 

A conventional ISA does not have metadata. The compiler uses information 
regarding declared data structures at the time it generates binary code and 
then throws it away; all data-structure information becomes implicit in the 
binary code. In a V-ISA, data-structure information is maintained along with 
the program's binary code. Then at load time and at run time, this metadata 
information enables type-safe code verification, which is a key part of enforc- 
ing security. And in the case of the CLI, it enables close interoperability of 
code generated from different programming languages. The metadata infor- 
mation also has potential for improving emulation performance by providing 
the underlying emulation engine with data-related information that would be 
very difficult to discover from binary code alone. 
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5.6.2 Memory Architecture 

In a conventional ISA, logical memory is a fixed size, with addresses that are a 
feature ofthe ISA (and can be made known to a running program). The address 
space may be flat and linear, or it may be segmented; but if it is segmented, the 
segments are often of fixed size. This feature can lead to a "fit" problem when 
emulating a guest ISA on a host platform that has a smaller logical memory size. 
There can also be fit problems even if the memory sizes are the same because in 
most process VMs, the VM software must share an address space with a guest 
application process. 

Furthermore, in a conventional memory architecture, the ISA makes spe- 
cific addresses visible to the user program. For example, if a sbrk () system call 
is performed in a UNIX system (to get more memory), a specific user-readable 
address pointer is returned. Furthermore, a user process can change the pro- 
tections on the basis of specific memory addresses, at page-size granularity, 
for example, with the mmap() system call. This page-size granularity leads to 
process VM implementation problems, for example, if the guest page size is 
smaller than the host page size. 

These problems do not occur in the common virtual ISAs because memory 
architecture is more abstract and is of indefinite size. The basic approach is 
to allocate memory regions (e.g., objects or stack frames) based on a process's 
logical requirements and to provide a reference to the base of the memory 
region when it is allocated. The stack and heap are of undefined size, and the 
actual contents ofthe stack pointer or an object reference are not made available 
to a user process because the V-ISA has no provisions for doing so. Memory 
accesses can be made relative to the stack pointer and object references, but the 
actual values they contain cannot be explicitly read or written. This restricts the 
V-ISA-level process to having only a logical view of memory, and real memory 
locations are irrelevant. 

Although the architected memory space (for stack or heap) is of indefi- 
nite size, the actual implementation resources must be finite. Consequently, 
it is possible for a process to ask for more memory space resources than are 
available. When this happens, there is an exception that informs the user pro- 
cess this has occurred, and the process can, perhaps, take corrective action. 
This is not a large limitation, however, because many modern high-level 
programming languages that work with stacks and heap objects have this 
limitation anyway. What is being done here is that the idea of a memory 
space of indefinite size is being moved down to the V-ISA level; e.g., even a 
V-ISA "assembly language" programmer must deal with an indefinite memory 
space. 
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5.6.3 Memory Address Formation 

In a conventional ISA, address computation is essentially unrestricted. That is, 
addresses can be generated using any of the available instructions, so arbitrary 
addresses to any part of memory can be generated for use by virtually any 
load or store. This leads to a number of problems with respect to process VM 
implementations. One problem is that the regions of memory used by the VM 
software (the runtime) are difficult to protect from the emulated guest program 
(see Section 3.4.3). This becomes especially problematic if guest registers are 
memory mapped. 

The solution used in the common V-ISAs is to prevent arbitrary address 
arithmetic for loads and stores. The first part of this solution is to force all 
addressing to take place via explicit memory pointers (references). In addition, 
performing arbitrary arithmetic on references is prohibited. This is done by 
having a special reference type and by restricting the operations that can be 
performed on a reference. Finally, if a reference is known to access only a 
given structure (an object), then the declared structure and properties of the 
object can be used to validate an address. Depending on the availability of 
information, the check can be performed statically at compile (translation) 
time or at run time. 

5.6.4 Precise Exceptions 

With a conventional ISA, the entire process state at the time of a trap or 
interrupt must be precise, and many instructions may trap. Furthermore, it is 
often the case that global mask bits can enable or disable traps and interrupts, 
and these mask bits potentially can change over the course of a program's 
execution. As we saw in Chapters 3 and 4, the requirement for precise traps can 
lead to complications and/or performance loss when a VM is implemented. 

In the case of V-ISAs, there are typically fewer instructions that can cause 
exceptions, and the requirement to test for exceptions is encoded into the pro- 
gram and cannot be changed via mask bits. Hence, the decision about whether 
an exception must be checked can be based on locally available information; 
it does not depend on global mask bits. Furthermore, the requirements for 
precise exceptions are somewhat relaxed. For example, in Java the state of the 
operand stack does not have to be precise (in fact the operand stack is discarded 
when an exception is thrown). Furthermore, if an exception handler is not local 
to a method, then none of the local variables held in the frame must be precise 
after an exception is thrown and the method's frame is discarded. 
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5.6.5 Instruction Set Features 

With regard to conventional ISA features that can facilitate (or complicate) 
emulation, the two major ones are the register set and condition codes. It is 
awkward to emulate a guest register set having more registers than the host 
register set. To binary translate such a guest instruction set, a register context 
area has to be defined in the host memory, and register load/stores have to 
be performed to move data between the host registers and the register context 
area. Besides the data-movement overhead involved, protecting the register 
context area becomes a problem, as noted earlier. 

Of course, the smallest possible register set has no registers at all; local values 
and operands can be maintained on a stack rather then being held in registers. 
It is for this reason (as well as code density) that most of the common V-ISAs 
are stack oriented. With respect to condition codes, the bigger problems occur 
when emulating an ISA with condition codes on a host platform that does not 
support condition codes. Hence, it is preferable to avoid condition codes in 
ISAs, as in current V-ISAs. 

5.6.6 Instruction Discovery 

With arbitrary ISAs, code discovery is problematic (see Section 2.6). The root 
cause is indirect jumps to potentially arbitrary locations. When combined with 
variable-length instructions and embedded data, it is hard (or impossible) 
to discover code that goes beyond an indirect jump. Clearly, the solution is 
to restrict indirect jumps. In particular, in V-ISAs they are restricted to be 
explicit procedure (or method) calls and returns where the return addresses 
are protected from modifications. Then, because all conditional branches are 
to PC-relative addresses where the offset is a constant, control flow is statically 
discoverable. V-ISAs also separate data from code, although they do permit 
variable-length instructions. However, because all control flow is exposed and 
explicit and there is no embedded data, variable-length instructions by them- 
selves do not pose a problem. The net result is that the virtual ISAs are explicitly 
designed so that at the time a method is first invoked, all the code contained in 
the method can be discovered immediately. 

5.6.7 Self-Modifying and Self-Referencing Code 

For most user applications, self-modifying and self-referencing code are not 
essential; in fact they are typically discouraged. Consequently, self-modifying 
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and self-referencing code are most easily dealt with by simply making them 
impossible to do; such operations are not embodied in the commonly used 
V-ISAs. Interestingly, and somewhat ironically, the emulation engine running 
on the host platform may rely heavily on self-modifying code in order to give 
good performance. For example, writing translated (or JIT-compiled) code 
into a code cache is a form of self-modifying code. 

5.6.8 Operating System Dependences 

As discussed in earlier chapters, when performing process emulation, it is guest 
operating system dependencies that are probably more difficult to deal with 
than instruction set dependencies. All instruction sets contain some elemental 
instructions that make them functionally complete ~ any function can be 
performed; it's just a matter of how efficiently it will be done. With operating 
systems, however, this may not be the case. Different systems may perform 
process management, file I/O, networking, graphics, etc. differently. 

Hence, in HLL VMs, the preferred way to deal with OS dependencies is 
to arrive at some kind of least common denominator set of functions and 
to implement them with standard libraries. These standard libraries must be 
ported to all desired host platforms. This approach is more easily said than 
done, however, and on some platforms the fit may not be perfect. However, 
the library interface is usually at a higher level than a conventional OS interface, 
so the library writer has more flexibility in achieving at least an acceptable level 
of compatibility. 



T he collection of binary classes or modules that make up a program specify 
its operation in terms of the HLL VM architecture. It is up to the HLL 

VM implementation to carry out the specified operations. This chapter dis- 
cusses HLL VM implementations, primarily by describing the Java VM, the 
best known of the HLL VMs. A CLI implementation is similar in many 
respects. We describe the major implementation components and then look 
at ways of improving performance in HLL VM implementations. We complete 
the chapter with a case study of a specific high-performance JVM, the tikes 
research VM. 

The organization of a typical JVM implementation (Venners 1998) is 
shown in Figure 6.1. The three major components are the class loader sub- 
system, the memory system, including a garbage-collected heap, and the 
emulation engine (sometimes referred to as the execution engine). These major 
components are, in turn, implemented with lower-level components. We 
first describe the major components briefly and then provide greater detail. 

Memory and State Registers 

The memory consists of an area for program code, a global memory area, 
and stacks for both the architected Java code and for native library code. 
The program area is implicitly defined for the most part; common sense tells 
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us there must be some region for holding the program. However, program 
memory can only be accessed via the program counter; it is never explicitly 
accessed with load and store instructions. Furthermore, the program counter 
contents can never be directly inspected. 

The Java stack area was described in Section 5.3.2 and needs no fur- 
ther explanation. The native stack and its interaction with the Java stack are 
described subsequently as part of the native method interface. Associated with 
the stack is an implied register, the stack pointer. Just as with the program 
counter, the stack pointer is used by instructions for accessing memory, but 
it is not explicitly accessible; i.e., there is no way for a program to inspect the 
contents of the stack pointer. The exact size of the stack is not architected; that 
is, it is implementation dependent. If its size is ever exceeded by a running 
program, the S t a c k O v e r f l o w E r r o r  exception is thrown. 

The global memory is a dynamically allocated heap. When a new object 
instance is created, its memory is allocated from the heap. As with the stack, the 
heap is of unspecified size. If the heap runs out of space, an OutOfMemoryError 

is thrown. To reduce the likelihood that this will happen, a garbage col- 
lector can be used to reclaim heap memory no longer needed by a running 
program. 
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Garbage Collector 

Many Java objects are created, used, and then are no longer needed by 
the program. This occurs when the last (or only) reference to an object is 
destroyed or is overwritten. At that point, the object becomes garbage, because 
it is no longer useful to the running program. Because any real JVM imple- 
mentation will have a limited amount ofmemory, it is advantageous to reclaim, 
or collect, the memory space used by the garbage objects so that the physical 
memory resources can be reused. Consequently, most JVM implementations 
have a garbage collector, which is responsible for finding those objects no 
longer needed in order to make room for other, new objects. 

Emulation Engine 

The emulation engine, supported by the native method interface and implied 
registers (i.e., the program counter and the stack pointer), is responsible for 
emulating the Java bytecode instructions. It can be a simple interpreter, or it can 
perform a full or partial translation (compilation) to native host instructions. 
Higher-performance implementations may use profiling and staged emulation 
techniques to first detect hotspots and then translate to native instructions held 
in a code cache, as discussed in earlier chapters. Even if a simple interpreter is 
used, some pretranslation of the program file is performed. For example, some 
of the indirection in the program file (such as the use of the constant pool) 
would likely be removed, with immediate values being embedded directly in 
instructions. 

Native Method Interface 

To access operating system-managed functions, the ]VM uses a set of stan- 
dard libraries. These libraries can perform file I/O and graphics operations, 
for example. Many of the libraries are written in lava, and their associated 
binary classes are loaded and emulated in essentially the same way as the 
application-specific methods. However, in practice, at least some of the library 
code is written in the host's native code in order to bridge the gap between 
the platform-independent and platform-dependent parts of the overall system. 
Many calls to the host OS are made through native methods, for example. 
Providing these native methods (along with other standard library methods) 
is part of the overall IVM implementation process. 
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Class Loader Subsystem 

The class loader subsystem performs a number of vital functions for support- 
ing a networked computing environment. Of course, it converts the class 
file containing metadata and instructions into an implementation-dependent 
memory image. It is also responsible for finding the binary classes in the first 
place, often dynamically and on demand, either from the system or from other 
systems in a network. The loader subsystem is responsible for verifying cor- 
rectness and consistency of binary classes and is an integral part of maintaining 
overall security within the network environment. We discuss class loading in 
more detail in the next section. 

When a method is called for the first time by a program, the class loader 
locates the requested binary class; typically it is held in a file. Then it checks the 
integrity of the binary class and performs any translation of code and metadata 
in order to make the requested method ready to run. 

An important aspect of the network environment is that it must be possi- 
ble to identify (name) variables, methods, and other data items in a standard, 
universal way. All variables and methods must be declared as part of a class 
(which must have a name). Each compiled class is stored as a separate entity, 
e.g., in a separate file, and one or more classes can be combined into a log- 
ical entity known as a package. Thus every method or variable has what is 
called a fully qualified name, which consists of the package name, the class 
name, and the method or variable name, separated by periods, for example, 
tes tpackage ,  block.mass. For accessing packages across the Internet, there 
is a naming convention that is based on Internet domain names. For example, 
a package might be given the following fully qualified name: 

edu. wi sc. ece. j es. tes tpackage,  shape, area 

Here, the Internet domain name ece.wisc.edu (in reverse order, by convention) 
is prefixed to an internal path name, j es. testpackage,  to provide a full 
package name. The access rights to packages, classes, and fields are defined in 
the following way. 

A package is accessible according to the access rights on the local system, 
for example, if the read or execute permission allows public access when it 
is being accessed by an external (nonlocal) user. 
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Classes within a package are accessible to all other classes within the same 
package (this scoping property is one of the reasons for having packages in 
the first place). 

�9 A class that is declared as public is accessible from other packages; a 
nonpublic class is only accessible from within its own package. 

�9 All fields of a class are accessible from within its own class. Fields are 
accessible from a different class in the same package if they are not private. 

The class loader system implements dynamic loading and is a critical part 
of the security system. A Java VM implementation must contain a primor- 
dial class loader, whose operation is defined as part of the JVM specification. 
In addition, users may also define class loaders as part of a class loader 
subsystem. The primordial class loader can be relied upon to do the right 
thing with respect to security; i.e., it is a trusted JVM component. 

As just noted, there can be multiple user-defined class loaders, but each 
one defines a separate namespace. A loaded class is "tagged" with the name of 
the loader that loaded it, so if two classes loaded by different loaders happen 
to have the same name, they are in different namespaces and can be kept 
separate. Classes loaded into one namespace cannot interact with classes in 
other namespaces; indeed they cannot even become aware of the presence of 
the other namespaces. Hence, in effect, there is a barrier between the different 
namespaces. Different class loaders are typically used to load classes from 
different origins; hence, the namespace becomes identified with the origin. 

Unlike the primordial class loader, which must be designed to be trust- 
worthy, the user-supplied class loaders are only as trusted as the user who 
supplies them. This issue can be simplified somewhat because a user-supplied 
loader can be designed so that it relies on the primordial class loader for 
assistance in loading binary classes, for example, as a means for ensuring 
security. 

After it locates a binary class, the loader parses it and translates it into 
internal data structures for emulation by the execution engine. This involves 
converting the metadata contained in the binary class into an implementation- 
dependent form that is more amenable to emulation. As part of this process the 
loader performs some consistency checks. It first checks the magic number at 
the beginning of the binary class to make sure the given data is at least claimed 
to be a binary class (this check will mostly turn up simple errors where the 
VM is being invoked for a "wrong" file). More importantly, the loader checks 
to make sure all the components are of the sizes indicated in the binary class 
and that proper formats are used in the various metadata structures. It can 
also check to make sure the numbers and types of arguments match between 
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calling and called methods. Within the binary class, fully qualified references 
are resolved. This is often done on demand. The fully qualified references 
are symbolic. After being resolved, the fully qualified (symbolic) reference is 
replaced with a direct reference. 

Another important function of the loader is to verify the integrity of the 
bytecode program. That is, it checks to make sure the stack values can be 
tracked statically, as required of all well-formed programs. Then it performs 
all the static type checking to make sure there are no program errors and that 
the protection boundaries will be respected by the program. This process is 
described in more detail in the next subsection. The loader checks to make 
sure all references in the constant pool are within the bounds of the programs, 
and it checks to make sure all branch instructions are to addresses within the 
procedure where they reside. Finally, after the program is verified as being 
properly formed, memory is initialized and control passed to the emulation 
engine. 

The basic protection sandbox was described in general terms in Section 5.2.1. 
This is the default security model used in Java, although the model has been 
greatly enhanced in the Java 2 specification. In this section we first elaborate 
on the basic security model and then describe the Java 2 enhancements. 

In the sandbox model, the overall objective is to form a barrier around 
the Java execution environment so that a user application is confined to oper- 
ate within the bounds of the sandbox and cannot affect any other system or 
network resources, whether unintentionally or maliciously. As discussed in 
Section 5.2.1, there are three main parts to the sandbox. 

First, remote files must be protected. As pointed out earlier, the protection 
of remote files is within the province of the remote system. Any files on the 
remote system are given access privileges by the owner of the file, and, ulti- 
mately, these are maintained by the remote OS, whether Windows, Linux, or 
any other OS. These are the same privileges as for any type of remote access, 
whether inside or outside the Java execution framework. 

Second, local files must be protected from a running Java program. That is, 
the owner of the local files, typically the user running the Java program, must 
control access to the files. This part of the protection sandbox is implemented 
via the security manager, described in more detail in Section 6.2.2. 

Third, the JVM code and data must be protected from the running Java 
program. That is, the Java program should not be allowed to read or write data 
associated with the Java VM side tables, for example. Furthermore, the program 
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should not be allowed to branch or jump to arbitrary locations in the ]VM. 
This third part of the protection sandbox is implemented via a combination 
of static and dynamic checking, with static checking performed by the loader 
playing a key role in this process. The next subsection discusses this intraprocess 
protection part of the sandbox, and this is followed by the discussion of the 
security manager. 

6.2.1 Intraprocess Protection 

One of the more challenging aspects of building a modern network-oriented 
HLL VM is the ability to take untrusted program code from the network, 
combine it with trusted VM code to form a single host-supported user process, 
and then execute the untrusted program efficiently. A basic objective is to 
make sure the application code only accesses its own memory locations and 
can interact with the ]VM (and the rest of the host platform) only via method 
calls to libraries containing locally trusted code. 

It is the ability to construct a protection sandbox that most clearly separates 
the modern HLL VMs from the earlier P-code-like VMs. To understand this, 
consider the typical P-code environment. Here, the compiler is a trusted ele- 
ment; i.e., it is assumed by the user to be correctly implemented. The Pascal 
language is designed so that the compiler can check data-type information at 
compile time, based on the data declarations made by the programmer. After 
this checking is complete, the P-code is generated. Then the static data-type 
information is no longer needed; rather, it is built into the code that accesses 
the data, and the user can be assured that the P-code will only access data in 
the correct way. The P-code alone can be passed to other users to run on their 
computer systems, thereby achieving platform independence. It is up to the 
individual users to trust the provider of the P-code program. 

The earlier scenario would be fine if other users were always willing to 
trust the source of their programs, but of course this level of trust is often 
not present in the networked computing environment. Yet a user would like 
to be able to execute programs that are made widely available for network- 
based computing. A solution to the problem of untrusted code is to transmit 
not only the application code but also a checkable description of the data 
structures on which the code will operate, i.e., the metadata. Then when the 
program is loaded by the end user, the (trusted) loader will perform static 
checks of the program with the declared metadata information. If the program 
code is consistent with the metadata, then the user can be assured that the 
program will only access its data in a proper (protected) way. Furthermore, 
the loader can check the control flow information of the program to make sure 
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it branches only to locations within the program itself or performs procedure 
calls using proper protocols. This is the reason that HLL ISAs stress static type 
checking and statically traceable control flow information. And, of course, the 
ability to perform this high degree of static checking derives from the strong 
typing features incorporated in the high-level language in which the program 
was written in the first place (e.g., lava or C#). 

Now we will illustrate in more detail the features of the lava ISA that 
allows intraprocess protection. There are two main elements of intraprocess 
protection. First, it must be guaranteed that the program only accesses its 
own memory; i.e., it can never make data accesses outside the bounds of its 
declared memory region. Second, it must be guaranteed that the program will 
not branch outside its own code region. It can only leave the code region via 
a library call, and the libraries are trusted code. 

We first give an informal inductive argument for the protection of data 
accesses. Just as data flow is centered on the stack (see Figure 5.9), our argu- 
ment will revolve around the stack (Figure 6.2). Before any memory accesses 
have been performed, and with an empty operand stack, the only way to put 
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a reference onto the operand stack is from the constant pool or from local 
memory. The constant-pool entries are statically checked by the loader, as 
noted earlier, so they can be guaranteed to be valid references (or are null). All 
local memory locations holding reference types are initialized to null references. 
Furthermore, all movement between the stack and local memory uses absolute 
addresses for the local memory locations. Hence, the loader can check the 
local memory types with the data-movement opcodes to make sure that only 
reference types are placed into local memory reference locations. 

Once on the stack, the types of all elements can be statically tracked (as 
described near the end of Section 5.3.3). In particular, recall that for any 
valid program, the number and types of elements on the stack can always be 
determined from the static code itself. The loader verifies this is the case at 
the time the program is loaded. Among other things, this means that any data 
movement of references from the stack to local memory can be checked for 
the correct types statically. 

Pulling all the foregoing together, starting from initial conditions, before 
any global memory accesses have been made, any reference values on the 
operand stack either are null or are verified reference values taken from 
the constant pool (either directly or indirectly through local memory). 
Furthermore, the types of these references are statically known. 

Next, consider accesses to global memory. The first access to global memory 
is to a location specified by a reference on the operand stack. Because of the 
ability to track reference types on the stack and in local memory, this reference 
type is known statically. Hence, if an object is accessed, the field information 
for the access can also be checked statically (there is an exception for arrays, 
given in the next paragraph). Ifthe access is a load, the data type being loaded is 
known statically; if it is a reference type, then the type is also known and can be 
tracked statically while it is on the stack or in local memory. Similarly, if a value 
(data or reference) is stored to an object field memory, it can also be checked 
prior to being stored because of static tracking in local storage and static field 
definitions; hence the value stored to memory will be consistent with the static 
field information. By a similar argument, and to complete the induction step, 
if all data types can be determined from static information prior to a memory 
access i; then the next memory access, i + 1, must also yield statically trackable 
type information. 

An important exception to the argument iust given involves array accesses. 
All loads or stores to arrays must use an array reference; these can also be 
statically checked for type information. However, arrays differ from other 
objects in that the exact element being accessed may be computed at run time. 
This means that the actual index into an array must be checked dynamically 
to make sure it is within the bounds of the array. Furthermore, all references, 
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whether for an array or for a general object, must be checked for null values, 
in the event that they have not been assigned to an object when they are 
first used. 

Another important place where dynamic checking is required occurs with 
dynamic casting or conversion of an object reference to a different type. Allow- 
ing arbitrary casting of references can break that part of the protection sandbox 
enabled by static checking, because static checking depends on knowledge of 
object types. However, casting can be done in situations where the reference 
is being cast to a superclass (upcasting) or a subclass (downcasting). The safety 
of upcasting can be checked at compile time; however, downcasting requires 
a run-time check to make sure the reference being cast is to a subclass (or the 
same class) as the object type to which it currently refers. 

To summarize, a program, even if it is from an untrusted source, can 
be checked to make sure it makes no unallowed memory accesses. This is 
done by a combination of static (load-time) and dynamic (run-time) checks. 
In Java, much of the checking is done statically. By relying on static type check- 
ing, dynamic checking is mostly confined to null pointer checking, bounds 
checking for array accesses, and dynamic casts to make sure they are being 
properly done within the class hierarchy. In the high-performance Java discus- 
sion to be presented later, we will include analysis methods and optimizations 
that are able to remove some of these dynamic checks. 

Finally, consider the protection provided for control transfers, i.e., the 
constraint that there never be a branch or jump that leaves the program's valid 
code region. Control transfers are only through branches, switch statements, 
and method calls. All the branches and switch statements are to PC relative 
constant values. Therefore, all the branches and jumps can be statically checked 
to make sure they branch to instructions only within the given procedure. 
The only way to exit a method is through a method call/return (or when the 
program terminates). Therefore, if all methods are internally checked, the 
overall program is checked. 

6.2.2 Security Enforcement 

In a Java implementation, the security manager is a class belonging to the 
j ava. ] an0 API that contains a number of methods for checking to make sure 
potentially unsafe operations cannot be performed. These operations include 
reading a specified file, writing a specified file, opening a socket connection 
to a specified host and port number, and creating a new process, among 
many others. Such operations are made available to untrusted user programs 
via methods in (trusted) Java libraries, e.g., the java.  i o API, that interact 
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directly with the host OS. Before performing a requested action involving an 
OS call, the trusted library methods first check with the security manager, via 
the appropriate method call, to make sure it should be allowed. 

A security manager check method simply checks the requested operation 
to see if it is permitted and either throws a security exception if it is not permit- 
ted or returns if it is. The security manager is attached when a Java application 
is initiated and cannot be changed, deleted, or replaced with another thereafter. 
Hence, an individual user can specify the checks made via the security manager, 
i.e., which files should be accessed and how, which network ports can be used, 
etc. Then whenever a Java application is started, these checks will be in effect 
as long as the application runs. 

If the user chooses to use no security manager, then the application has 
unrestricted access to the user's resources. Of course, the Java application 
cannot exceed the privileges of the user, because the JVM runs as a user process. 
Any attempt to go outside the user's resources will be caught by the underlying 
OS on the host platform. 

The security manager cannot protect against everything, overallocating 
memory or spawning too many threads, for example. In situations like this, 
it is difficult or impossible to discern the difference between an erroneous or 
malicious program and one that has large resource requirements. For exam- 
ple, how could one determine the difference between runaway recursion and 
recursion that is simply very deep? In effect, detecting the difference would 
be equivalent to solving the classic Turing Machine halting problem. Conse- 
quently, some denial of-service attacks are possible, despite the presence of 
a security manager. 

The security manager can be written to implement relatively complex 
policies. The loaders and security manager may be customized by a soft- 
ware developer or user. For example, the security manager can check to see 
if a request is made from a locally provided method or from one loaded over 
the network and can allow different resource accesses depending on which 
is the case. 

6.2.3 Enhanced Security Model 

The basic security sandbox was extended by adding signing in JDK 1.1 and then 
enhanced with access control in Java 2 (McGraw and Felten 1999). Adding 
the notion of identity and signing gets away from the all-or-nothing sand- 
box approach and allows more flexible, finer-grained security policies, where 
code from different sources may be granted different access privileges to user 
resources. 
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If particular outside program sources can be securely identified, then a 
wide variety of security policies can be implemented, each one depending on 
the specific source of a given application program. A technology that supports 
secure identification of sources is signing. The basic idea of signing is simple: 
if a piece of code brought in from the outside can be signed in a nonforgeable 
way, then the local security system can inspect the signature and provide access 
privileges appropriate for the given (signed) piece of code. 

Signing is based on public key encryption systems (Diffie and Hellman 
1976). In a public key encryption system there is public key/private key pair. 
A message is encrypted with the public key and is decrypted with the private key. 
The critical feature of the system is that the private key cannot be determined 
from the public key in any practical way. Consequently, only the owner of the 
private key can decrypt a message. 

The application of public key encryption technology to signing application 
code (and other types of data) is illustrated in Figure 6.3. The source of appli- 
cation code (a binary class) first hashes the code down to a smaller size (for 
reasons of overall efficiency) and then encrypts the hashed version with the pri- 
vate key. The hashed, encrypted version is a signature appended to the binary 
class and is sent across a network to someone who wishes to execute it. At the 
receiving end, the received binary class is again hashed (with the same hash 
function as before), and the signature is decrypted. The two versions of the 
hashed code are then compared. If they are the same, then the user is assured 
that the owner (sender) of the binary class is as claimed. The security manager 
can then grant access to local resources in accordance with a policy established 
by the local user. 

Because the identity of a program's source can be securely identified, the 
application of the all-or-nothing sandbox for all program sources is no longer 
necessary. Fine-grained, configurable security policies can be implemented. 
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For example, programs from one outside source may be allowed to open net- 
work connections, while others cannot. One program may be given access only 
to file A, while another may be given access only to file B. 

This flexible approach does pose some potential problems when binary 
classes from different sources are allowed to interoperate as part of the same 
program. For example, what if a method belonging to a binary class from 
a source not having access privileges to a given file calls a method from a 
source that does have access privileges to the file and then performs a file 
access indirectly through the called method? The security manager can solve 
this problem by inspecting the method call stack to check on access privileges 
not only of a method making a request but of all earlier methods in the call 
sequence (Wallach and Felten 1998). 

Stack inspection is illustrated in Figure 6.4. Each stack flame is appended 
with principal information indicating whether the method came from a trusted 
system source or an untrusted source. Also, there is information regarding the 
access privileges that reside with the source of the method. After a sequence 
of method calls, the resulting stack flames are shown in the figure. Untrusted 
method 2 had permissions to write file A but is restricted from accessing other 
files. On the other hand, method 4 does have permission to write to file B. 

Figure 6.4 
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Now, when method 4 attempts a write to file B, it will do so via the I/O API 
method 5 that first calls a security manager check method. The security manager 
walks the stack in reverse order, checking access permissions of all the methods 
that it finds on the stack. When it comes to method 2, it finds that permission 
to write file B should not be granted and throws an exception. 

In an obiect-oriented programming environment, objects can be freely created, 
used, and later discarded when they are no longer needed. The programmer 
is given the illusion of an unbounded memory space and does not have to 
worry about explicitly allocating and managing a fixed-size memory. Of course, 
in reality, memory resources are not unbounded, and eventually a program 
can run out of memory resources (which would result in an OutOfMemory 
exception being thrown). To prevent this from happening (or at least forestall 
it), objects that are no longer accessible (i.e., "garbage") can be collected and 
then reused for new objects. 

In our simple example in Figure 5.5, when the reference a is assigned to 
a new Rectangle object, the prior Rectangle object it pointed to becomes 
inaccessible. This is the typical way that an object becomes garbage ~ the last 
(or only) reference to it is overwritten with a reference to a different object 
of the same type. In other cases, the last reference may simply be discarded, 
e.g., by popping it from the stack. 

A garbage collector is part of essentially every IVM implementation, 
although it is not strictly required as part of the WM specification. When 
the WM is running low on memory resources or at periodic intervals, the 
garbage collector is invoked to find the inaccessible garbage objects and col- 
lect their memory resources for later use. A typical situation is illustrated in 
Figure 6.5. Here, a root set of references point to objects held in the global 
memory heap. Some of these objects, in turn, contain references that point to 
other objects, and so on. Also, there are some objects that cannot be reached 
through a sequence of references beginning with the root set; these are the 
garbage objects. 

To begin a garbage collection operation, it is first necessary to identify 
the root pointers. By referring back to Figure 5.7 (and considering the Java 
instruction set) we can see that the root set must contain references some- 
where on the stack, including both local storage and the operand stack, or 
in the constant pool. The root set must also include references contained 
in static objects. Any access to global memory, i.e., through a ge t f i  e ld or 
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Figure 6.5 A Garbage-Collected Heap. The objects G, D, and H are garbage. 

putf i  el d instruction, must get its reference from one of these places, and any 
object that cannot be accessed via a series of references beginning with some 
member of the root set simply cannot be reached. Hence, garbage collection 
finds all the objects that can be accessed, beginning with the root set of ref- 
erences; any objects not found during this process are garbage that can be 
collected. There are a number of approaches for performing these operations 
(]ones 1996; Wilson 1992; Appel 1991), and in the following subsections we 
summarize some of the major classes of garbage-collection techniques. 

During the discussion, a number of tradeoffs are considered. Time spent 
collecting garbage is time not spent computing, so the overhead of garbage 
collection is an important overall implementation consideration. Moreover, 
different methods organize the heap differently, collect the garbage into free 
space differently, and may implement object references differently. Conse- 
quently, the important tradeoffs to be considered involve garbage-collection 



296 �9 Chapter 6--High-Level Language Virtual Machine Implementation 

time, object-allocation time, object-access time, and the efficiency with which 
the heap space is used. 

Although there have been garbage collectors that keep a count of the 
number of references to each object on the heap and consider as garbage 
any object whose reference count goes to zero (Collins 1960), such refer- 
ence counting collectors are relatively uncommon in JVMs. Most JVMs use the 
general method suggested earlier, that is, to start with a set of root references 
and then trace through chains of references in the heap to find all the objects 
that are reachable or are "live." Then all the unreachable objects are considered 
garbage and are recycled. The following discussion of garbage collectors will 
focus on tracing collectors. 

6.3.1 Mark-and-Sweep Collectors 

The mark-and-sweep collector is a basic collector that starts with the root ref- 
erences and traces through all the reachable objects, marking each one as it is 
reached. Marking may consist of setting a flag bit contained as part ofthe object 
implementation or in a separate bitmap, where each entry in the map is associ- 
ated with an object. If an already-marked object is reached, then tracing down 
that particular path stops. After all live objects have been found and marked, 
there is a sweep stage, where all the objects are inspected and the unmarked 
ones are determined to be garbage and can be reused. As garbage objects 
are found during the sweep stage, they can be combined into a linked list of 
free objects. 

Overall, this is a relatively fast way of identifying and collecting garbage. 
However, the free objects are of varying size and are scattered around the heap 
space, interspersed with the live objects. Simply linking together free objects 
leads to a memory fragmentation problem that in turn leads to a significant 
inefficiency when a new object is created and a suitably sized free space must 
be found for it. Specifically, the allocation algorithm must search the linked list 
to find an appropriately sized block of contiguous free memory). Eventually 
fragmentation becomes so great that compaction is required. 

Inefficiencies can be reduced, however, by using segregated free lists. That 
is, by dividing the heap into a set of fixed-size chunks having a range of sizes, 
e.g., from 16 bytes to 2KB, and maintaining the free space as multiple linked 
lists, one for each chunk size (Comfort 1964). Then the object allocator can 
simply go to a free list and get a chunk of the appropriate size (i.e., the smallest 
one that is large enough to hold the object being allocated). Provisions must be 
made for occasionally rebalancing the space in each size category, but overall 
allocation efficiency is significantly improved. In general, dynamic memory 
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allocation is very closely associated with garbage collection. An excellent survey 
of memory allocation techniques, including segregated free lists, is Wilson 
et al. (1995). 

A conceptually straightforward approach to improving allocation effi- 
ciency is to consolidate all the garbage space into a large contiguous region 
from which new objects can be created. There are two ways of consolidating 
the garbage space: by compacting and by copying. These are described in the 
next two subsections. 

6.3.2 Compacting Collectors 

A compacting collector, as its name suggests, essentially "slides" the live objects 
to the bottom (or top) of the heap memory area so that all live objects are 
adjacent. What is left is a contiguous region of free space. For example, 
Figure 6.6 shows the contents of memory with live objects (shaded in dark 
gray) and garbage objects (shaded in light gray). During compaction, the live 
objects are moved to a contiguous region of the heap (at the bottom in this 
example), and the unused space also becomes a contiguous region, from which 
new objects can be allocated. 

Figure 6.6 Example of Garbage Compaction. 
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Although conceptually simple, a compacting collector is relatively slow, in 
that it makes multiple passes through the heap. One pass does the marking, 
and then subsequent passes compute the new locations for the live objects, 
move the objects, and update all references to point to the new locations. 
Other methods, to be summarized shortly, improve efficiency by reducing 
the number of passes and/or analyzing only a subset of the heap during each 
collection step. 

Compacting collection also highlights an issue that occurs with any of the 
schemes that move objects in memory as a part of garbage collection. That is, 
the references to the objects must be changed when objects are moved, and this 
complicates (and slows) the overall process. However, to reduce the number 
of reference updates, some systems have used a handle pool for consolidating 
pointers to each of the individual objects. Then a reference to an object points 
to the associated pointer in the handle pool. This is illustrated in Figure 6.7. 
With the handle pool, it is not necessary to find and update all the references 
to an object when the object is moved; rather, only the pointer in the handle 
pool has to be changed, and all references are then automatically modified in 
the process. The big disadvantage of this approach is that every object access 
includes an additional level of indirection. 

Figure 6.7 Handle Pool. Using a level of indirection (through a handle) can simplify pointer updates when an 
object is moved during garbage collection. 
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6.3.3 Copying Collectors 

To reduce the number of passes through the heap during collection, a copying 
collector trades memory space for collection time. It does this by dividing the 
heap into two halves. At any point in time, one half is unused while the other 
contains the active heap. When the active half fills up, the collector makes a pass 
through the heap just as it does during a mark phase; however, it combines the 
sweep with the mark phase. When it finds a live object, it immediately moves 
it into the unused half of the heap and continues the pass through the heap. 
When the pass through the heap is complete, the live objects are in contiguous 
locations in what was formerly the unused half of the heap, the remainder of 
the second half is free, and the first half of the heap (which was formerly active) 
becomes unused. A copying collector is illustrated in Figure 6.8. A copying 
collector is faster than a compacting collector, but it also has higher memory 
requirements because half of the heap space, by definition, is unused at any 
given time. 

Figure 6.8 Example of Garbage Collection via Copying. 
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6.3.4 Generational Collectors 

Both compacting and copying collectors move a very large fraction of dynamic 
objects every time collection is performed. A long-lived object may be moved 
many times during its lifetime; this rather wasteful movement can be avoided 
by observing that object lifetimes have a bimodal distribution. First, many 
objects have very short lifetimes; this is often a by-product of good object- 
oriented programming practice. Second, objects that do not have short 
lifetimes tend to have very long lifetimes. Consequently, generational garbage 
collectors attempt to group objects according to their age in order to avoid 
repeated copying of the long-lived objects. 

In a basic generational collector, the heap is divided into subheaps. For 
simplicity, we describe the implementation with two subheaps, but generali- 
zation to more than two subheaps is straightforward. Of the two subheaps, 
one is intended to hold the older, or tenured, objects. Meanwhile, the other 
subheap serves as a nursery for newly created objects. The nursery is garbage- 
collected much more frequently than the tenured subheap. If an object survives 
a certain (usually small) number of collections in the nursery, it is moved to 
the tenured subheap. Consequently, the longer-lived objects eventually are 
placed in the tenured section of the heap, where the garbage collections are 
infrequent, thus avoiding unnecessary object movement. 

Not only is the total overhead for collecting reduced, but a smaller portion 
of the heap is collected each time the collector is invoked. This means that if 
the running process is stopped while collection takes place, the "pause" time 
is much reduced. With a large heap and a conventional compacting or copying 
collector, the time that a program is stopped for collection can be noticeable 
to the user. 

The two subheaps of a generational collector do not necessarily have to 
be managed the same way. In fact, they can be managed differently to take 
advantage of performance tradeoffs. A specific hybrid algorithm studied as 
part of the Jikes JVM project (Attanasio et al. 2001) uses a copying collector 
for the nursery, which yields fast allocation of new objects, and a mark- 
and-sweep collector for the tenured objects, which reduces collection time 
by eliminating pointer updates. 

6.3.5 Incremental and Concurrent Collectors 

All of the basic collectors described earlier stop program execution while 
they perform collection and then return control to the program. Collection 
can be time consuming (even if generational collection is used), so program 
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Figure 6.9 A Problem with Concurrent Garbage Collection. A reference in an object may be modified after the 
object has been marked. 

execution may pause for a significant time period while the collector is 
working. Collection time may be spread out if collection is done incremen- 
tally as the program runs rather than all at once. Furthermore, in real-time 
applications, the garbage-collection time may be limited to provide adequate 
response latencies. If multiple processors are available, it may be advantageous 
to collect garbage concurrently with one thread while normal program exe- 
cution proceeds using other threads. In both cases, a partially collected heap 
may be in a state of flux while the program is running. This implies there must 
be some synchronization between the running program and the garbage col- 
lector, so the program does not attempt to reference an object at the time it 
is being moved; i.e., at a time when pointers may be temporarily inconsistent. 
Or the program may be changing references at the time the collector is tracing 
a reference path, leading to similar synchronization problems. 

Many of the conventional stop-and-collect methods can be converted to 
incremental versions. A basic problem with concurrent or incremental collec- 
tions is that at any given time, an object may have been scanned and marked. 
Then while collection is still in progress, a reference in the already-scanned 
object may be changed to point to an object that has not yet been marked. 
An example is in Figure 6.9. In this example, the objects A and B have 
been marked (as indicated by the bold boxes). The other objects have not 
yet been marked. Then before they can be marked, the pointer to object B is 
replaced with a pointer to object D. If this is the only pointer to D, then D 
may never be marked and will be incorrectly discarded as garbage. The object 
B may also be incorrectly retained, but this is not a problem; it will be collected 
on the next garbage-collection pass. 

There are a number of solutions to this problem; they all provide some 
form of synchronization between the running application (which may change 



302 Chapter 6~High-Level Language Virtual Machine Implementation 

the contents of the heap) and the collector. One of the common solutions 
is to provide write barriers for references to objects that have already been 
marked. These write barriers basically check for the case where a pointer in an 
already-marked object is overwritten. When this occurs, the object pointed 
to is marked (and put on the queue of objects whose pointers should be 
followed as marking proceeds). 

6.3.6 Discovering the Root Set 

As stated at the beginning of this section, before beginning garbage collection 
it is necessary to identify the root pointers. The root set for Java programs 
(and similarly for CLI) consists of references held in the stack, the constant 
pool, and contained in static objects. However, this is what one might call 
the "architected" root set. In a particular VM implementation, the actual 
pointers may reside in registers and various implementation-specific runtime 
memory locations. For example, the architected stack elements may be assigned 
to registers by the dynamic compiler, and some of these could be spilled to 
memory. 

Therefore, at the time garbage collection is invoked, it is necessary to 
construct the architected root set from the implementation storage locations 
that may potentially hold root set pointers. The basic solution for finding the 
root set is for the compilation/optimization system to keep side tables, or maps, 
that indicate where the architected root set elements may be found, if needed 
for garbage collection. This solution requires that the VM runtime and com- 
pilers keep track of the architected root values as dynamic compilation and 
optimization are performed (Stichnoth, Lueh, and Cuerniak 1999). 

The foregoing approach is referred to as type accurate or exact because it 
uses the exact root set as a starting point. A less conservative solution is to 
take all the implementation registers and memory locations that can possi- 
bly hold root pointers and assume they do hold root pointers (Boehm and 
Weiser 1988). These will form a superset of the true root set. Some of these 
may be eliminated from consideration (e.g., if they hold small integer val- 
ues that are clearly not memory addresses). Then the garbage collector begins 
with this root superset. This approach frees the compilation/optimization sys- 
tem from keeping track of root set references and saves runtime side table 
space for keeping track of the mappings at all potential garbage-collection 
points. A problem with this superset approach, however, is that a garbage 
collector that moves objects, e.g., a compacting collector, cannot be used, 
because a region of memory may be identified as an object of a given type 
when it is not really an object. Then if such an apparent "object" is moved, 
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it will damage any real objects that contain the apparent object as part of their 
memory region. 

6.3.7 Garbage-Collection Summary 

No one collector works best across all programs because programs vary in 
working set size, object sizes, heap sizes, and the rate at which objects are 
created (and freed). Hence, we cannot arrive at hard-and-fast conclusions 
regarding the "best" collector (as the hundreds of papers on the topic attest). 
We can summarize the important performance tradeoffs in general terms, 
however. Table 6.1 qualitatively compares the major collector categories in 
terms of (1) collection time, (2) object allocation time, (3) object access time, 
and (4) memory efficiency (i.e., the relative total heap space that can maintain 
a working set of a given size). In addition to these criteria, all the "moving" 
collectors, i.e., the compacting and copying collectors, require an exact root 
set, as noted earlier. 

The use of a generational collector is a somewhat orthogonal consideration 
because a generational collector can be used with any of the basic approaches 
(or as a hybrid). The advantage of a generational collector is that it reduces 
collection time by focusing only on those objects where garbage is most likely 
to be found (the nursery). Today, generational collection is usually consid- 
ered to be a winning strategy. A study of garbage collection in the Jikes JVM 
(Attanasio et al. 2001) describes the performance tradeoffs with respect to 
specific benchmark programs. 

Table 6.1 Comparison of Basic Garbage Collectors 

Collector 

Object 
Collection Allocation Access Memory 
Time Time Time Efficiency Comments 

Mark and sweep 

Mark and sweep 
(multisizes) 

Compacting 

Copying (with 
handles) 

Copying (without 
handles) 

Good Poor Good Medium 

Good Medium G o o d  Medium 

Poor Good Good Good 

Medium Good Poor Poor 

Medium to poor Good Good Poor 

Allocation requires search for 
proper-size free memory block 

Multisizes help allocation time 
more than it benefits memory 
efficiency 

Collection requires multiple 
passes 

Memory efficiency poor due to 
unused space 

Pointers must be found and 
updated for all moved objects 
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Java Native Interface 

The Java native interface (JNI), as described in Section 5.3.6, is a way of allowing 
Java programs and native compiled programs to interoperate. An important 
consideration when implementing the JNI is the accessing of Java data struc- 
tures in a safe way, i.e., in a way that maintains the integrity of Java objects 
and the stack. 

From the perspective of a Java program, a call to a native method is in 
some respects similar to executing a single (very complex) instruction. There 
are arguments and a return value, but the lava stack is not used by the called 
method; rather, the native methods use their own platform-dependent stack. 
The management of this native stack must be done by trusted JVM code. The 
JVM implementation supports both a Java stack and a native stack, with one 
native stack per Java thread (see Figure 6.10). When there is a call to a native 
method, it is intercepted by the JVM, which then sets up the native stack frame, 
transfers arguments, and then transfers control to the called method. Similarly, 
on a return, it places a result onto the Java stack frame and returns control to 
emulation. In the JNI, a native method may "call back" a Java method; when 
this happens, a Java stack frame is placed on the stack frame of the calling 
native method. 

Figure 6.10 Java and Native Stacks. In a VM implementation, the native library stack is managed separately 
from the architected VM stack. 
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A native method can be given access to objects and arrays via the JNI. 
However, once the native method has an array or object reference, the array or 
object must be protected from garbage collection. That is, the native method 
assumes the object to be at a particular memory location, and an object-moving 
garbage collector would violate this assumption. Even with a nonmoving col- 
lector, if the native method should happen to have the only reference at some 
point, then the garbage collector may attempt to collect it (because the refer- 
ence will not be in the garbage collector's normal root set). To prevent this 
from happening, the JNI method that passes the native method a reference 
also "pins" the referenced object so that it will not be moved or collected. 
With a non-moving collector, the JVM could also add the reference to the 
root set. 

The emulation engine in a WM can be implemented in a number of ways, 
with different complexities and performance levels. The simplest method uses 
straightforward interpretation of bytecode instructions. In general, this is no 
different than interpretation of a conventional ISA as described in detail in 
Chapter 2. A more advanced, and commonly used, emulation method per- 
forms just-in-time (JIT) compilation (Tabatabai et al. 1998; Aycock 2003). 
With a JIT compiler, methods are compiled at the time they are first invoked, 
i.e., "just in time" for execution. This compilation essentially performs a 
translation from the bytecode instructions to native host instructions. Method- 
at-a-time JIT compilation is enabled because, in contrast to a conventional 
ISA, the Java ISA is designed so that all the instructions in a method can easily 
be discovered at the time the method is first entered. 

A JIT compiler bears a very close relationship to the binary transla- 
tors discussed earlier in this book and could just as easily be called a JIT 
"translator." In fact, it seems that the reason one is called a "compiler" and 
the other is a "translator" is that two different groups of people came up with 
the names. A JIT compiler differs from a conventional compiler in that it 
doesn't have a frontend that parses a high-level language program and per- 
forms syntax checking before converting it to an intermediate form. The 
bytecode program, having passed through the loader, is assumed to be syn- 
tactically correct. The bytecode instructions are essentially an intermediate 
representation themselves, although most JIT compilers will transform the 
bytecode instructions into a different intermediate form before performing 
optimizations. 
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A dynamic, run-time compiler can perform most (if not all) of the opti- 
mizations performed by a classical static compiler as well as others that 
are more specific to Java programs. Many optimizations are time consum- 
ing, however, and this adds to the run-time overhead of executing a Java 
program. Consequently, a ]IT compiler may include multiple optimization 
levels, with more sophisticated optimizations being applied to methods that 
are more frequently executed. This leads to a form of staged optimization 
applied at the method level. An even more efficient strategy is to apply opti- 
mizations selectively only to code regions that are heavily used rather than to 
the entire method that may contain such a region. 

A typical high-performance emulation engine begins with interpretation, 
supplemented with profiling to locate frequently used methods. Then when a 
usage threshold is reached for a given method, the method is compiled with 
minimal optimization. Later, depending on the level of use, selected code 
sections within hot methods may be further optimized. The Sun HotSpot 
(Meloan 1999; Paleczny, Vick, and Click 2001) and the IBM DK (Suganuma 
et al. 2000) follow this overall strategy. Some systems skip the initial interpre- 
tation step in favor of a simple compilation; this approach is taken in the Jikes 
RVM (to be described in more detail later), for example. A more complete 
discussion of dynamic optimization in HLL VMs is given in the next section. 

As with most other virtual machine applications, performance is an impor- 
tant consideration in HLL VMs. There are two challenges when dealing with 
HLL VMs. The first is the same as in other dynamic optimizing VMs: to 
offset the run-time optimization overhead with the program execution-time 
improvement. The second challenge is to make an object-oriented program 
go fast. Object-oriented programs typically include frequent use of addressing 
indirection for both data and code, as well as frequent use of small methods 
(which suffer the relatively high overhead of method invocation). In this 
section we will discuss optimization techniques for HLL VMs. These will be 
discussed in the context of Java, using Java examples, but similar techniques 
are equally applicable to the CLR, running C# programs, for example. 

We begin with a brief discussion of the overall framework of a high- 
performance HLL emulation engine. Then we describe optimizations that 
can be performed by a run-time compiler and the virtual machine run- 
time system. A comprehensive survey of adaptive optimization, including an 
extensive bibliography, can be found in Arnold et al. (2005). 
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Optimization Framework 

The general flow of a dynamic optimization framework is given in Figure 6.11. 
This flow should look familiar ~ it is similar to the one used for dynamic 
binary optimization in process virtual machines discussed in Chapter 4. Many 
of the same principles hold, so we will not discuss them in detail here. The 
framework supports a progression from simple interpretation to successively 
higher levels of compilation, depending on the frequency at which sections of 
code (i.e., methods) are executed. In some schemes, the interpretation stage is 
skipped, and the number of optimization levels also varies depending on the 
particular implementation. 

Profiling is an important part of the overall optimization strategy. Profile 
data can be collected by the interpreter, or it can be provided by compiled 
code as it executes. A spectrum of instrumentation and sampling techniques 
can be used, as described in Section 4.3. Often, profiling is done at the method 
level rather than the basic block level as in Chapter 4. One can construct a 
call graph, similar to a control flow graph, which has methods as nodes and 
arcs connecting caller and callee nodes. An example is given later as part of 
Figure 6.12. 

At a minimum, the profile data should track method usage, e.g., node 
counts in the call graph. When a method usage threshold is reached (or some 
more complex cost-benefit analysis indicates that it is called for), the next level 
of optimization is applied to the "hot" method. Other profile information can 

I Bytecodes 

Interpreter 

Simple I Optimizing 
Compiler Compiler 

ptimized Code 

Host Platform 

Figure 6.11 A Typical Dynamic Optimization Framework. 
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track edge counts in the call graph to guide method inlining, or conventional 
edge profiling can be used for code layout optimizations. Finally, dynamic 
data and pointer information may be profiled in order to generate specially 
optimized code that takes advantage of the values and/or data types that occur 
very frequently within a code region. 

The compilers can provide a range of optimizations, some of which are 
applied at a relatively low level, e.g., involving redundant-subexpression 
elimination or strength reduction. Other optimizations restructure and spe- 
cialize code. Some optimizations are rather specific to the object-oriented 
paradigm, and others are more general. Finally, some optimizations are per- 
formed directly via the compiler acting on the bytecode program as input. 
Other optimizations are performed dynamically by the runtime system, apart 
from the compiler. These latter optimizations may support garbage collec- 
tion or enhance data locality by reorganizing heap objects, for example. 
In the next section we discuss a number of the more important optimization 
techniques, including both compiler-based optimizations and runtime-based 
optimizations. 

6.6.2 Optimizations 

Code Relayout 

Just as with dynamic binary optimization discussed in Chapter 4, code relay- 
out is a simple and very effective optimization when applied in the context 
of HLL VMs. Figure 4.19 illustrates code relayout. Most code relayout algo- 
rithms "straighten" the code so that basic blocks along the most commonly 
followed control flow paths are in contiguous locations in memory (Pettis 
and Hansen 1990). The benefits are more efficient instruction fetching, due to 
both improved temporal and spatial locality, and improved conditional branch 
predictability. Code relayout often provides one of the larger performance 
benefits among all the optimizations. 

Method Inlining 

Method inlining is referred to as procedure inlining in Section 4.3.1. With 
inlining, a method call is replaced with the actual code contained in the 
method; i.e., the method code is placed "inline" with the calling code 
(Suganuma, Yasue, and Nakatani 2002). The overheads of passing parame- 
ters, managing a stack frame, and the actual control transfers (e.g., a jump and 
return) are saved, at the possible expense of a larger binary program image. 
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Object-oriented programming tends to encourage many small methods, so 
performance can often be improved significantly by avoiding all the overhead 
code, i.e., the calling sequence that is associated with a method call. Another 
significant benefit of inlining is that it increases the scope over which later code 
analysis and optimizations can take place; e.g., analysis can make less conser- 
vative assumptions regarding potential data accesses outside the method being 
optimized. Inlining very small methods, where the code size of the method is 
less than the code size of the method's calling sequence, is almost always a win. 
When inlined, such a small method will not only execute faster, but it will also 
consume less instruction space than the original (noninlined) code, resulting 
in improved instruction cache behavior (or at least no degradation). 

With larger methods, the benefits of inlining are reduced because the call- 
ing sequence takes a smaller percentage of the overall execution time and 
because there is an increase in total code size (and instruction cache require- 
ments). If not applied selectively, the inlining of larger methods, especially 
those called from a number of different sites, can lead to code explosion, result- 
ing in poor cache behavior and performance losses. Therefore, to apply inlining 
on medium-to-large methods, some kind of cost-benefit analysis is required, 
and the cost-benefit relationship can be rather complex. The cost in terms 
of code expansion can be estimated relatively easily, but how this translates 
to performance cost is more complex and would typically be a programmed- 
in function derived from off-line experimentation. The benefit is primarily a 
function of the size of the method and the frequency with which a method 
is called; that is, the most frequently called methods will lead to the greatest 
benefit and are the primary candidates for inlining. 

To determine the frequency of method calls, a common technique is to 
instrument the method call sites with counters to collect profiles ofcaller-callee 
pairs. At certain intervals (perhaps fixed time intervals or when some profile 
counter exceeds a threshold), the optimizing system can construct a call graph, 
with edges annotated with call (method invocation) frequencies. An example 
call graph is given in Figure 6.12a. In the figure, the mai n method calls methods 
A and X; method A calls methods B and C, and method • calls methods C and u 
The edges of the call graph are annotated with the number of calls during 
the sampling interval. For example, in Figure 6.12, method C has been called 
1500 times by method A and 25 times by method • After constructing and 
maintaining such an annotated graph, the dynamic optimization system can 
analyze the graph to determine which methods should be inlined. 

Then, for example, one might define a "start" threshold for triggering 
inlining analysis as 1500; that is, when an edge in the call graph is traversed 
for the 1500th time, the dynamic optimization system is invoked. During 
the analysis, other methods besides the one that triggers the analysis may be 
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Figure 6.12 
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Tracking Method Calls. (a) With a call graph; (b) via stack frames. 

inlined, depending on the cost-benefit analysis; e.g., a small method is more 
likely to be inlined than a larger one, even if they both have the same invocation 
counts in the call graph. In this example, it may be decided that method C 
should be inlined in A and that A should then be inlined in mai n, so mai n, A, 
and C are all merged together. Also, it may be decided that method Y should 
be inlined in x. 

This overall approach to inlining is a good one, but it requires construction 
of the call graph and typically involves some kind of overall analysis of the 
call graph. A simpler technique that avoids constructing the call graph and the 
overall analysis is to wait until a profiling counter reaches the start threshold 
and then to "walk" backwards through the stack to view what is effectively 
the currently active portion of the call graph (HOlzle and Ungar 1996). In 
our example, at the time the start threshold of 1500 is reached, the stack is 
as shown in Figure 6.12b. The profile counts are included in their associated 
stack frames, although they can also be held in a table off to the side. In any 
event, a walk up the stack may decide to inline 13 and A, as before. Although this 
technique uses a very narrow view of the call graph, it is nevertheless effective. 
In the example, method Y is not inlined as before, but if the • call count 
later reaches the start threshold, it may be inlined at that time. 

Optimizing Virtual Method Calls 

In general, inlining can easily be applied to static methods and methods 
declared by the programmer to be final methods. When one of these methods 
is invoked from a given call site (e.g., via the invokestatic instruction), the 
method code called never changes. Hence, once inlining is performed on one 
of these methods, the inlined code will always be the correct code. 
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Invokevi rtual <perimeter> 

I f  (a.isInstanceof(Square)) { 
in l i ned  code fo r  per imeter  o f  a square 

Figure 6.13 

} 
Else  i n v o k e v i r t u a ]  < p e r i m e t e r >  

An Inlined Method Call Protected by a Guard. 

In an object-oriented language, however, many methods are not static or 
final; i.e., the methods are associated with dynamic classes. Because of class 
hierarchies and resulting polymorphism, the actual code to be executed by a 
virtual method invocation can change, depending on the particular subclass of 
the object being referenced. Returning to the example given in the previous 
chapter (Figure 5.5), if the perimeter method is applied to a Rectangle 
object, the Rectang]e version of the peri meter method code is invoked; in the 
case of a Square, a different perimeter method is invoked. The determination 
of which code to use is determined at run time via a dynamic method table 
lookup. Because a virtual method's code can change dynamically, depending 
on the type of object it is given, method inlining would appear to be inhibited 
for any method called via the i nvokevi rtua] instruction. However, in many 
cases a virtual method is invoked with the same type of object the vast majority 
of the time (or all of the time). For example, say the earlier example has a 
much larger loop (reading input from a file instead of a command line), the 
Square shape is much more common than the Rectangle shape; or, in the 
extreme case, the Square may be the only shape that actually occurs for a given 
execution of the program. Such a situation can be determined by profiling the 
types of references for which a given virtual method is invoked. 

If one particular method is invoked the vast majority of the time, then 
the method code for the most common subclass can be inlined, with guard 
instructions placed above the inlined code. The guard simply tests the type 
of reference on which the following method is to be invoked. If it is of the 
expected (common) type, then the guard will let control pass to the inlined 
version of the method. On the other hand, in the rare case when the reference 
is for a subclass different from the expected one, the guard can branch to 
a noninlined i nvokevi r tual  instruction. For our earlier example, such a 
guarded inlined method is given in Figure 6.13. The If statement checks the 
type of the object reference on which the perimeter method is being invoked 
(via the i s Ins tanceof  method) and then performs the inlined code version if 
it is a Square. 
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invokevirtual 
perimeter 

�9 �9 . 

Figure 6.14 

/ 
cail... PIG stub/1 

if type = circle / I  
jump to circle perimeter code / ] ~ !  

else if type= square j /  i 
jump to square perimeter code ~ ] 

else call lookup I >l 

Polymorphic Inline Cache sub 

Example of Polymorphic Inline Caching. 

circle perimeter code I 

square perimeter code ] 

update PIC stub; 
method table lookup code 

If the method call is truly polymorphic so that full inlining is not use- 
ful, then at least the overhead of a dynamic method table lookup can be 
avoided using a technique similar to that for software jump prediction during 
binary translation (Section 2.7). This technique is referred to as polymorphic 
inline caching (PIC) (H61zle, Chambers, and Ungar 1991) and is illustrated in 
Figure 6.14. In this example, it is assumed there is a much wider variety of 
shapes than in our rectangle/square example. With a PIC, the runtime system 
is responsible for maintaining the stub code, placing the most frequently used 
jumps at the top of the sequence. 

Multiversioning and Specialization 

The foregoing approach to inlining of virtual method calls is essentially 
a form of multiversioning (Artigas et al. 2000; Gupta, Choi, and Hind 2000). 
With multiversioning there are two (or more) versions of code, and one version 
is selected, depending on run-time information, for example, data values or 
type information. With method inlining one version is inlined method code, 
the other version is an i nvokevi r tual  instruction, and the guard selects one 
of the versions. This same general approach can be applied to other types of 
code, not just virtual method calls. 

For example, in Figure 6.15, profiling data values may determine that the 
elements of the array A are almost always zero. A guard (shown in italics in 
the figure) checks to see ifA[i ] is zero; if so, it uses a version of code that skips 
the rest of the instructions and simply sets B [i ] to zero. 

An important aspect of multiversioning is specialization (Grant et al. 1999; 
Suganuma et al. 2001). If some variables or references are always assigned data 
values or types known to be constant (or from a limited range), then simplified, 
specialized code can sometimes be used in place of more complex, general 
code. This is the case in Figure 6.15, where the specialized case occurs when 
A[i ] is zero. Specialization can be used in conjunction with multiversioning, 
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f o r  ( i n t  i = O; i < 1000; i++)  { 

f o r  ( i n t  i = O; i < 1000; i++)  { 

i f  ( A [ i ]  < O) B [ i ]  = - A [ i ] * C [ i ] ;  
e lse  B [ i ]  = A [ i ] * C [ i ] ;  ,- . . . . . .  

Figure 6.15 

i f  (A[ i ]  == 0) 

B [ i ] =  . ,, f ( A [ i ]  < O) B [ i ]  = - A [ i ] * C [ i ] "  
: e lse  B [ i ]  = A [ i ] * C [ i ] ;  

} 

Multiversion Code. For the common case where C[i]=O, there can be a simpler, specialized code 
version. 

as shown in Figure 6.15, or it can be enabled via code analysis that indicates 
that only a single, specialized version is ever needed. 

An alternative to constructing multiple versions is to compile only a single 
code version (or a small number of versions) and to defer compilation of the 
general, more complex case (Chambers and Ungar 1991; Whaley 2001). For 
example, profiling may find that only one value has occurred up to some point 
in a program's execution, so an optimizing compiler may skip the general 
case code. In effect, it is speculating that only the special case ever occurs. 
However, there should be a guard to check for the general case; if it occurs, the 
general code can be compiled at that time. Deferred compilation is illustrated 
in Figure 6.16. This is the same code as in Figure 6.15, except that if A[i] is 
nonzero, the code jumps to the dynamic compilation system so that it can 
produce the required code to allow execution to proceed. 

On-Stack Replacement 

The stack is at the center of instruction execution in most HLL VMs, including 
both Java and the Microsoft CLI. Consequently, the stack is also an important 

Figure 6.16 

f o r  ( i n t  i = O; i < 1000; i++)  { 

i f  ( A [ i ]  < O) B [ i ]  = - A [ i ] * C [ i ] ;  
e lse  B [ i ]  = A [ i ] * C [ i ] ;  

} 

f o r  ( i n t  i = O; i < 1000; i++)  { 

if CAFi] --- o) 

= ~ u m p  to dynamic 
B [ i ] , compiler for deferred 

' compilation 

} 

Deferred Compilation. With deferred compilation, code is not generated for the uncommon case 
until it actually occurs. 
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consideration when optimizations are performed. To understand the relation- 
ship between the stack and program optimizations, a distinction should be 
drawn between the architected stack, i.e., the stack as specified by a Java or 
MSIL program, and the implementation stack, which is actually used during 
program execution (after compilation and/or optimization). For example, after 
method inlining, the actual implementation stack will not contain frames for 
inlined methods; the frame for the calling and the inlined method are merged. 
Furthermore, the implementation stack contents may differ from the archi- 
tected stack contents after some types of optimizations, such as specialization. 
That the implemented stack differs from the architected stack makes no dif- 
ference as long as the results are correct. The architected stack is a means for 
specifying the function to be performed by a program; it does not necessarily 
reflect the exact manner in which the function is implemented. 

An important corollary to the foregoing is that at a given point in a pro- 
gram's execution, the implementation stack contents (including both the 
number of frames and the number of elements in each frame) may depend 
on the optimizations that have been performed on the program. Furthermore, 
there are situations where dynamic optimization may require that the contents 
of the implementation stack be modified on the fly. This process of modifying 
the stack in response to a dynamically changing optimization level is referred 
to as on-stack replacement, or OSR (H61zle, Chambers, and Ungar 1992; Fink 
and Qian 2003). Some of the situations where OSR may be used to support 
optimization include the following. 

1. When inlining (or any other optimization) is performed, the cleanest way 
to insert the newly optimized code into the program flow is to wait until the 
method containing the optimized code is called the next time. However, 
this approach obviously does not provide benefits until the method is next 
called, and it may be a long time before a long-running method is called 
again. The extreme case occurs when a program is dominated by a single 
loop containing the optimized code and the loop is executed many millions 
(or billions) of times. In this case, the optimized method may never be 
called again, and therefore the optimized code must be inserted earlier if 
any benefits are to accrue. 1 

1. It is not clear, however, that this type of behavior happens often enough in real programs 
to make such a technique worthwhile. This type of behavior is sometimes observed in kernel 
benchmarks (also known as microbenchmarks), and this may in fact be the prime motivation for 
considering such an optimization method in the competitive benchmark-oriented environment 
in which high-performance VMs are often developed. 
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Figure 6.17 

extract architected state generate new 
stack frame 

On-Stack Replacement. With on-stack replacement, one version of a stack frame is replaced by 
another. This typically occurs when the optimization level of the code accessing the stack frame changed 
dynamically. 

2. When deferred compilation is implemented, new code may be generated 
while a method is in midexecution. That is, if the guard indicates that an 
uncommon path is to be followed, new code has to be generated, and the 
current implementation stack frame may have to modified to account for 
the newly compiled (and possibly much larger) code region. 

3. When a debugger is implemented as part of an overall VM framework, 
the user would expect to observe the architected instruction sequence 
and stack contents rather than the results of optimized code and the 
implementation stack contents. In this situation, it may be necessary to 
deoptimize a method. This is the opposite of the two earlier situations; 
here, OSR may be called upon to modify the implementation stack into a 
form that is less optimized and more nearly approximates the architected 
version. 

On-stack replacement is illustrated in Figure 6.17. Here, the optimization 
level of code accessing the stack is being modified on the fly, so the structure 
and/or contents of the implementation stack frame change. The basic steps 
of OSR are: (1) Extract the architected frame state from the current imple- 
mentation frame (and any other implementation data that may be maintained 
for this purpose); (2) generate a new implementation frame that is consis- 
tent with the new code version; (3) replace the current implementation stack 
frame with the new one. 

An important application for OSR is illustrated in Figure 6.18. Here, 
multiple stack frames are being replaced by a single frame (or vice versa). 
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Figure 6.18 
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On-Stack Replacement. On-stack replacement can be used to replace multiple stack frames with 
a single frame (or vice versa). 

This may happen if method inlining is being performed (or is being removed 
for debugging). 

In general, OSR is a relatively complex operation, both in constructing 
the architected stack state and in building a new implementation stack frame. 
If the initial stack frame is being maintained by an interpreter or a nonopti- 
mizing compiler, then extracting the architected stack state is straightforward. 
If the stack frame is for optimized code, however, there must often be some 
special provision for OSR. For example, the compiler may define a set of 
program points where OSR can potentially occur and then ensure that the 
architected values are live at that point in the execution. This is reminiscent of 
checkpoints and live range extension that are used by some binary optimizers 
when rescheduling code (see Section 4.5.2). 

In many cases, the steady-state performance benefits enabled by OSR are 
relatively small. However, OSR allows the implementation of debuggers that 
work in the context of optimizing compilation systems. In addition, when 
used with deferred compilation, start-up times can be reduced by avoid- 
ing compilation/optimization of unused code sections, and the instruction 
"footprint" is smaller, which can improve cache performance. 

Optimization of Heap.Allocated Objects 

By its very nature, good object-oriented programming freely creates a large 
number of heap-allocated objects. However, there are a number of overheads 
associated with objects. Creating objects and garbage collection have rela- 
tively high costs. Furthermore, because accessing fields held in an object often 



6.6 High-Performance Emulation �9 317 

Figure 6.19 

c l a s s  square  { 
i n t  s i d e ;  
i n t  a rea ;  
} 
v o i d  c a l c u l a t e ( )  { 

a = new s q u a r e ( ) ;  
a . s i d e  = 3; 
a . a r e a  = a . s i d e  * a . s i d e  
System. o u t .  p r i  n t l  n (a .  a rea )  ; 

v o i d  c a l c u l a t e ( )  { 
i n t  t l  = 3; 
i n t  t2  = t l  * t l ;  
System. o u t .  p r i  n t l  n ( t 2 )  ; 

} 

Scalar Replacement. With scalar replacement, an object field is replaced by a scalar variable so that 
access delays are reduced. 

involves levels of address indirection, individual object field accesses suffer 
small overheads that add up. To deal with creation overhead, if profiling indi- 
cates a particular type of object is frequently allocated, then the code for the 
heap allocation and object initialization can be inlined. 

Scalar replacement (Carr and Kennedy 1994) is an optimization that can 
be very effective in some situations for reducing object access delays. This 
optimization replaces an object field with a scalar value. An example is shown 
in Figure 6.19. Here, on the left, a small object a is created, its two integer 
fields are assigned values, and one of the fields is printed. If it can be deter- 
mined that object a is only used by this piece of code before being discarded, 
the object creation (and later garbage collection), along with the field ref- 
erences, can be replaced by simple scalar references, as shown on the right 
in Figure 6.19. Scalar replacement when applied to objects requires refer- 
ence escape analysis (Choi et al. 1999), that is, an analysis to make sure all 
references to the object are within the region of code containing the opti- 
mization. In this example, no references to a escape from the optimized code 
region. 

The physical placement of data fields within an object is an 
implementation-dependent feature. Consequently, improved data cache per- 
formance can be achieved by ordering object fields according to usage patterns 
(Chilimbi, Davidson, and Larus 1999; Kistler and Franz 2000). Furthermore, 
some field references can be removed entirely by using conventional compiler 
optimizations. For example, redundant getf ie ld and putf ie ld operations 
can be found and removed. This is illustrated in Figure 6.20. Here, the same 
field is accessed twice (as a. s i de and as c. s i de). Based on dataflow analysis, 
the redundant access can be found, and the corresponding field value is held in 
(and copied from) a temporary location, tl (possibly a register), avoiding the 
second getfield (to c. si de). 
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Figure 6.20 

a = new s q u a r e ;  

b = new s q u a r e ;  

c = a ,  

a s i d e  = 5; 

b . s i d e  = 10;  
z = c . s i d e ;  

Example of Redundant g e t f i e l d  (load) Removal. 

> 

a = new s q u a r e ;  

b = new s q u a r e ;  

c = a ;  

, , , 

t l  = 5;  

a . s i d e  = t l ;  

b . s i d e  = 1 0 ;  

z = t l ;  

Low.Level Optimizations 

Besides the optimizations given earlier, which tend to be especially effective 
when applied to object-oriented programs, many conventional optimiza- 
tions, discussed earlier, in Chapter 4, can also be applied. These include 
dead-code removal, branch optimization, copy and constant propagation, 
strength reduction, and code rescheduling, among others. Because they have 
already been covered we will not go into further detail here. However, we do 
cover some extensions and other considerations that are more specific to the 
object-oriented context. 

One potentially significant overhead found in object-oriented HLL VMs 
is the need to perform array range and null reference checking. In theory, 
every time an array is accessed or a reference is used, these checks must be 
performed; perhaps just as important, an exception may be thrown. This 
means there are two potential causes of performance loss. One is the need 
to perform range/null check itself, and the other is the inhibition of other 
optimizations because of a potential thrown exception if the check should 
fail. In the latter case, the architected process state must be precise at the time 
of an exception, and, just as with binary optimizers, some optimizations may 
be inhibited if a precise state must potentially be materialized. 

The overhead of null pointer checking can be largely eliminated by using 
an "illegal" out-of-range address to represent the null pointer value, i.e., 
a memory address for which the Java process does not have read or write 
privileges. Then an attempt to use a null pointer will result in a trap, which, 
via an OS-supported signal mechanism, can be reported back to the JVM run- 
time system. However, the potential for an exception (and the need to restore 
a precise state) remains, so some code optimizations, for example, involving 
code motion, may still be inhibited. 

A common way to deal with range/null check operations is to treat them 
as if they are regular instructions and then to perform the analogous opti- 
mizations. For example, just as a redundant instruction can be removed or an 
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Figure 6.21 

p = new Z p = new Z 
q = new Z q = new Z 
r = p  r = p  

. . .  . . .  

p . x . . . .  < n u l l  c h e c k  p> ~> p . x . . . .  
. . . .  p . x < n u  l I c h e c k  p >  . . . .  p . x 

< n u l l  c h e c k  p >  

. , ,  . . .  

q . x . . . .  < n u  l I c h e c k  q>  r . x . . . .  

. . .  q . x  . . . .  
r . x . . . .  < n u  l I c h e c k  r ( p )  > 

< n u l l  c h e c k  q>  

Removing Redundant Null Checks. After redundant null checks are identified and removed, 
optimizations involving code motion are enabled. 

f o r  ( i n t  i = O; i < j ;  i + + )  { 
sum += A [ i ] ;  < r a n g e  c h e c k  A> 
} 

I f  ( j  < A . l e n g t h )  
t hen  f o r  ( i n t  i = O; i < j ;  i + + )  { 

sum += A [ i ] ;  
} 

e l s e  f o r  ( i n t  i = O; i < j ;  i + + )  { 
sum += A [ i ] ;  < r a n g e  c h e c k  A> 
} 

Figure 6.22 Hoisting an Invariant Check. An array range check is hoisted outside a loop. Then in the common case, 
no inner loop range check is required. 

invariant instruction hoisted out of a loop, so, too, a redundant or invariant 
check can be removed or hoisted. A simple example is in Figure 6.21. Here, 
the same object reference (held in p and r) is used for a series of g e t f i e l d  
and pu t f i e ld  operations. If the first pu t f i e ld  (p.x . . . .  ) passes the null 
check, then the g e t f i e l d  using the same reference will as well. The null 
check property can also be propagated to reference r. Thus, only the first 
null check for p is needed, and the later checks for p and r become redundant. 
After the redundant null checks are removed (right-hand side of the figure), 
then the pu t f i e ld  to q.x can be rescheduled after the pu t f i e ld  to r .x .  

An example of hoisting an invariant check is in Figure 6.22. In the code on 
the left, an array range check is performed every loop iteration. However, the 
check can be hoisted outside the loop (right-hand side of the figure) and only 
needs to be performed once. After the check has been hoisted outside of the 
loop, it takes the form of a guard for two versions of the code, one that does 
not perform the check and the other that does. 

As a final example, a technique known as loop p e e l i n g  can be performed 
to avoid null pointer problems. In Figure 6.23 the loop body contains an 
object reference with a null check. Hence, code motion around the reference 
is inhibited. However, the first loop iteration can be peeled (right-hand side 
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f o r  ( i n t  i = 0;  i < 100;  i + + )  { 
r = A [ i l  ; 
B [ i ]  = r * 2 ;  
p . x  += A [ i ]  ; < n u l l  check p> 

} 

r = A [ O ] ;  
B [0 ]  = r * 2 ;  
p .x  = A[O] ; < n u l l  check p> 
f o r  ( i n t  i = 1; i < 100;  i + + )  { 

r = A [ i ]  
p . x  += A [ i ]  ; 
B [ i ]  = r * 2 ;  

} 

Figure 6.23 Loop Peeling. By peeling the first loop iteration, the null checks in the remaining loop iterations 
can be removed. 

of the figure); if this first iteration does not cause a null pointer exception, 
none of the other iterations will. Hence, the null check is not needed for the 
remaining loop iterations, and other code optimizations can be enabled. 

Optimizing Garbage Collection 

Garbage collection is a key part of a high-performance VM implementation, 
and there are a number of ways the compiler can provide assistance to the 
Java runtime to enhance garbage-collection efficiency. First, there may be 
times when the heap state is temporarily inconsistent, for example, when 
object references are being modified. At these points, to avoid errors, garbage 
collection should not be initiated. Consequently, the compiler can provide 
the garbage collector with "yield point" at regular intervals in the code. At 
these points a thread can guarantee a consistent heap state so that control can 
be yielded to the garbage collector. Also, the compiler can help with specific 
garbage-collection algorithms. For example, if a generational collector is used, 
then write barriers must be provided by the compiler. 

6~ Case Study: The Jikes Research Virtual Machine 

The Jikes research virtual machine (RVM) was developed at IBM Research and 
has been made available to the general VM research community (Arnold et al. 
2000). Jikes is based on an earlier research effort, Jalapeno, and was initially 
described in research papers using that name. The discussion here is based 
on descriptions of both the Jalapeno and the Jikes systems. 

The overall optimization strategy is to compile only; there is no interpre- 
tation step. First, there is a baseline compiler that translates bytecodes directly 
into native code. This compiler performs no register allocation per se; rather, 
the generated code simply emulates the Java stack. Then for optimization, there 
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Figure 6.24 The Jikes Adaptive Optimization System (AOS). 

is a dynamic compiler that supports three levels of optimization, invoked in 
stages, depending on an estimate of cost-benefit. 

Jikes is a multithreaded implementation, with threads responsible for 
optimization running concurrently with executing program threads. Jikes 
multiplexes Java application and runtime threads onto threads supported by 
the underlying host platform, e.g., AIX pth reads. To allow preemptive thread 
scheduling, the compiler places yield points, typically at method prologs, epi- 
logs, and loop back edges. At a yield point, the code tests a control bit; if the 
thread scheduler wants to preempt a thread, it will set the thread's control bit. 
At the next yield point, the thread will call the thread scheduler. 

The overall architecture of the Jikes adaptive optimization system (AOS) 
is shown in Figure 6.24. The major subsystems are the runtime measurement 
system, the recompilation system, and the controller. These subsystems all 
interact with the AOS database, which contains profiling data and a history of 
optimization decisions. 

The runtime measurement subsystem gathers raw performance data by 
sampling at yield points. That is, when a thread switches, a back-edge 
yield point increments an activity count for the method containing the edge. 
If it is at a method prolog, the activity count for the calling method is incre- 
mented; if it is at a method epilog, the activity count for the called method 



3 2 2  �9 Chapter 6--High-Level Language Virtual Machine Implementation 

is incremented. 2 The system can also support other types of compiler-inserted 
instrumentation to perform edge profiles, basic block profiles, or value profiles, 
depending on the optimizations that are under consideration. Performance 
data is initially kept in raw form. Periodically, the raw method samples are 
analyzed by a separate thread, the hot method organizer, which summa- 
rizes and puts the profile data in a form more easily used by the rest of the 
optimization system. 

The controller is responsible for coordinating the activities of the run- 
time measurement and the recompilation subsystems. It instructs the mea- 
surement subsystem to initiate, continue, or change profiling activities. When 
a method is sampled, that is, found to be active during a thread switch, 
the hot method organizer places it on the event queue for the controller 
to consider for recompilation. The controller then makes decisions regard- 
ing the recompilation, e.g., whether recompilation of the method should be 
performed and, if so, at what optimization level. 

An important part of the controller's function is to determine whether 
a method should be recompiled at a higher optimization level. To do this, 
Jikes uses an analytical cost-benefit model. Say that a given method m is 
currently compiled at optimization level i < N, where level N is the highest 
optimization level. Then the controller estimates (1) Ti, the expected time 
the program will spend executing method m if it is not recompiled; (2) Cj, 
the cost (time required) of recompiling method m at level j >_ i; (3) Tj, the 
expected execution time the program will spend in m after recompilation. 
Note that a recompilation at the same level, i, is considered because there 
may be more profiling data available than what was available the previous 
time m was compiled at level i; this additional profiling data may change the 
particular optimizations performed at level i. Then the controller determines 
the optimal level j, where Cj + Tj is minimized. Recompilation is performed 
at level j, unless, of course, Cj + Tj >_ Ti and no recompilation is done. 

Although this cost-benefit analysis seems very straightforward, the real 
difficulty comes in estimating the C and T values. Consequently Jikes uses 
a combination of heuristics and experimentally derived parameters. To arrive 
at an estimate of the T values, the controller assumes that at its current opti- 
mization level, the method will consume as much execution time in the 
future as it already consumed; i.e., that Ti = Tcurrent. The Tj values are 
determined by first estimating the speedups of the different optimization levels 
using off-line benchmarks. The speedup of optimization level k versus level 0 

2. These yield points and profiling heuristics reflect the current Jikes implementation, not the 
one in the paper describing Jikes (Jalapeno) (Arnold et al. 2000). 
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is Sk. Then Tj = Ti ~ Si/Sj. Finally, the recompilation cost Cj is estimated to 
be a linear function of the size of the method to be recompiled. The multiply- 
ing constant is again determined by off-line benchmarking. If the controller 
decides that recompilation should be done, it places the pertinent informa- 
tion into the recompilation queue, to be serviced by one of the compilation 
threads. 

The recompilation subsystem consists of a number of threads that remove 
compilation plans from the compilation queue. Because they run as sepa- 
rate threads, they can execute concurrently with the lava application threads. 
A compilation plan consists of the optimizations that should be performed, 
profile data that will be used by the optimizer, and an instrumentation plan, 
i.e., the profiling instrumentation the compiler should put in the code it 
generates (for potential future optimizations). 

The AOS database contains a history of profile data and the compilation 
plans, status, and history of recompiled methods. The controller and recom- 
pilation subsystem can query this database to guide further recompilation 
decisions and optimizations. 

The likes compiler has three levels of optimization. A brief summary of the 
optimizations performed at each level is given next. 

Level O: Includes many of the conventional compiler optimizations, such as 
copy and constant propagation, common subexpression elimination, dead- 
code elimination, branch optimizations, and several others. So-called trivial 
methods are inlined ~ these are methods where the code in the method is 
smaller than the method's calling sequence. In addition, some simple code 
relayout is performed, and register allocation follows a simple linear scan 
algorithm. 

Level 1: Because many of the classical optimizations are done in level 0, 
the additional optimizations deal with higher-level code restructuring 
there is more aggressive inlining, based on profile information, and there 
is more aggressive code relayout. 

Level 2: Uses a static single assignment (SSA) intermediate form, where 
each register variable is assigned a value only once (Cytron et al. 1991; 
Cooper and Torczon 2003). Using this form allows a number of global opti- 
mizations (or more effective versions of conventional optimizations, such 
as common-subexpression elimination). It also includes some optimiza- 
tions that can lead to significant code expansion unless judiciously applied 
(with the benefit of profile data). For example, loop unrolling replicates the 
body of a loop, thereby increasing opportunities for other optimizations 
and eliminating a number of loop-closing branches. 
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The developers of likes have published a number of benchmark results. 
We give some of the results for the SPECjvm98 benchmark suite. There are 
seven programs with class files ranging from 10KB to nearly 1.4MB. Perfor- 
mance results are given to measure "start-up" performance and "steady-state" 
performance. There are two differences between start-up and steady state. First, 
the steady-state data sets are approximately an order of magnitude larger than 
the start-up data sets. Second, each steady-state benchmark is run for five itera- 
tions by the same WM instance and the best iteration performance is reported. 
The start-up behavior will be influenced much more heavily by initialization of 
data structures, class file loading, and compilation overheads. The steady-state 
performance is closer to what one might expect in a more realistic production 
environment, where the start-up overheads have more time to be amortized. 

For comparison, a number of compilation scenarios are benchmarked and 
compared with the simple baseline compilation. In one set of scenarios, the 
compiler with each of the three optimization levels is run as a JIT compiler. 
That is, the first time a method is invoked, it is immediately compiled at the 
given optimization level and remains there throughout the program's execu- 
tion. The AOS implementation uses all optimization levels in a staged manner, 
and optimization is performed on a per-method basis. With AOS + FDO 
(Feedback Directed Optimization), more complete profiling information is 
maintained, so better inlining decisions can be made and optimizations can be 
better targeted within methods. 

Performance is evaluated as speedup over the simple nonoptimizing base- 
line compiler. Figure 6.25 shows start-up results for each of the benchmarks 
and the harmonic mean speedup for all seven. For the JIT compilers, the 
lower the optimization level, the better the performance (compress is the only 
notable counterexample where JIT 1 outperforms JIT 0). For the start-up 
benchmarks, the extra time required for optimizations cannot be amortized, 
due to the relatively short run times (with the exception of compress, where 
code quality is more important than in the other benchmarks). All the JIT 
compilers are below the baseline, because they provide at least level-0 opti- 
mization for all methods, even those executed only once. The AOS and 
AOS + FDO dynamic compilation methods perform best, giving a speedup 
of about 1.75, because they only take the time to perform compilation beyond 
baseline, possibly followed by additional optimizations, where there is good 
likelihood of performance benefit. 

Figure 6.26 shows results for the steady-state benchmarks. Here, the results 
are quite different than for the start-up case. Now, the higher the optimization 
level for the JIT compilers, the better the performance. Using level 0 as a JIT 
gives a speedup of 1.9 over the baseline, and going up to level 2 yields a speedup 
of about 2.25. Interestingly, using the AOS staged optimization typically falls 
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Figure 6.26 Jikes Steady-State Performance on Seven SPECjvm98 Benchmarks. 



3 2 6  �9 Chapter 6~High-Level Language Virtual Machine Implementation 

slightly short of the level-2 ]IT. Because the same code is executed during 
each iteration, the ]IT performance runs can complete compilation during the 
first iteration and then execute four iterations with no profiling or compilation 
overhead. On the other hand, the AOS performance runs profile and recompile 
through all five iterations. For two benchmarks, AOS without FDO actually 
beats JIT2, however, because AOS sometimes recompiles a method at a later 
time (in program execution) than JIT2 does. This later compilation allows 
more class loading to take place, eliminating some unresolved references, and 
thus the code generated by AOS is more highly optimized. Finally, because 
the AOS + FDO is able to perform additional profile-guided optimizations, for 
some benchmarks it provides significant speedup over the method-granularity 
optimizations used by the AOS implementation. 

It is also interesting to see where an advanced ]VM spends its time. 
An execution profile for Jikes is given in Figure 6.27. This particular pro- 
file is for the entire SPECjvm98 benchmark suite, with each being executed 
for one iteration. Across different applications, the execution profile may 
vary significantly from this average performance, especially in time spent in 

Figure 6.27 Where the Jikes System Spends Its Time. 
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garbage collection. Over the entire benchmark suite, performing optimized 
recompilation consumes only 7% of the total time, and all the other tasks 
related to adaptive optimization, i.e., the various control and bookkeeping 
functions, consume negligible time. We see that 86% of the time is spent in 
execution application threads and 6% is spent in the garbage collector. This 
tends to highlight the importance of garbage collection in a ]VM; about as 
much time is spent in garbage collection as in performing optimizations on 
the code. 

The conventional belief is that programs running on an HLL VM are rela- 
tively slow. This is a misleading notion. Some of the early Java VMs w e r e  slow. 
A heavy reliance on interpretation is naturally slow during steady-state emu- 
lation, and dynamic optimizing methods that are not selective, i.e., simple ]IT 
compilation, will have high start-up times. However, modern HLL VM imple- 
mentations rely on compiled code and are much more selective regarding when 
to apply optimizations and where. This leads not only to less overhead but to 
better optimizations in the steady state. Furthermore, slowdown due to the 
dynamic VM paradigm should not be confused with slowdown due to sup- 
port for object-oriented programming. Object-oriented programming leads to 
more robust programs and a high level of code reusability (among other advan- 
tages), but sometimes there is a performance cost for these important software 
engineering advantages. Inherent in object-oriented code are additional levels 
of indirection that may not be found in conventional C-type code, for example. 
But this is usually caused by the object-oriented nature of the software, not the 
fact that it is running on a VM. 

With the development of the Java platform and the more recent Microsoft 
.NET framework, HLL VMs already have achieved a "critical mass." At some 
point in the (not-too-distant) future, virtually all application programs are 
likely to be developed for a platform-independent HLL VM. This will change 
common programming practice (programming in C will be viewed in much 
the same way as programming in assembly language is viewed today), and it will 
likely change the way that hardware platforms are implemented. If all software 
is developed for a platform-independent HLL VM, the level of standardization 
is raised and the underlying hardware ISA becomes much less relevant. 



B oth hardware and software have undergone radical changes since the first 
commercially available computers appeared in the early 1950s. In con- 

trast, the basic character of the interface between hardware and software has 
been virtually unchanged during that time. Consequently, the instruction set 
architectures (ISAs) currently in use reflect a perspective and a division of labor 
between hardware and software that is decades old. At a time when hardware 
resources were very expensive and hardware was relatively simple, it made sense 
for the ISA to be a direct reflection of the specific hardware implementation. 
Ifthe hardware had an accumulator, then the ISA had an accumulator. Over the 
years, however, hardware resources have become plentiful and inexpensive. 
Today, hundreds of millions of transistors are available on a single chip. As a 
consequence, underlying processor hardware has grown to be quite different 
from the image presented by the commonly used ISAs. For example, consider 
the Intel IA-32, one of the older microprocessor ISAs in use today. The IA-32 
uses a CISC ISA, originally conceived for sequential in-order execution with 
relatively few general-purpose registers and stack-based floating instructions. 
A modern IA-32 implementation, however, converts the CISC ISA into what 
is essentially a RISC ISA running on a dynamic superscalar microarchitecture 
having lots of registers and register-based floating-point instructions (Hinton 
et al. 2001; Keltcher et al. 2003). This CISC-to-RISC conversion is done entirely 
in hardware (see Figure 7.1). 

The reason behind hardware-intensive dynamic translation of legacy 
ISAs is the need to maintain their role as the interface between hardware 
and software. Today's ISAs are valuable interfaces, ones in which huge soft- 
ware and infrastructure investments have been made. Compatibility has also 
become the largest obstacle to implementing new ISAs that are better suited 
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Figure 7.1 
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CISC-to-RISC Conversion. Conventional high-performance microarchitectures for a CISC instruction set 
use hardware to translate CISC instructions into RISC-like micro-ops. 

to today's technology. Fortunately, virtual machine technologies permit new 
ISAs by enabling a different approach to general-purpose processor design. 
Virtual machine technologies can turn processor development into a codesign 

effort, where the host architecture (the target ISA in particular) is designed 
concurrently with the VM software that runs on it. Because the host hard- 
ware is developed as an integral part of the VM, it is not necessary to use an 
existing host platform or target ISA. Taken together, however, the codesigned 
hardware and software support a conventional source ISA (and all the software 
developed for it). 

These codesigned virtual machines open new avenues for architectural 
innovation. Because software becomes part of the "hardware" platform, the 
interface between hardware and conventional software is shifted upward, and 
there are new opportunities for dividing the implementation between hard- 
ware and software in an optimal way. Because codesigned VMs support an 
entire system, OS plus applications, they are a form of system virtual machine. 
However, unlike most other system virtual machines, codesigned VMs are not 
intended to virtualize hardware resources other than the processor, nor are 
they intended to support multiple VM environments. Rather, the goals include 
performance, power efficiency, and design simplicity. 

Perhaps the first codesigned VM was the IBM System/38 (Bertsis 1980), later 
known as the AS/400 (Soltis 1996) and currently the iSeries. The System/38 
was designed to support a guest ISA with higher-level semantics than could be 
directly supported by hardware. This reduces the "semantic gap" between a 
conventional ISA and higher-level software (Myers 1982). A second objective 
was to separate the source ISA from the target ISA so that successive hard- 
ware platforms could be redesigned while maintaining software compatibility. 
The success of this approach was demonstrated as the AS~400 family evolved, 
changing its host platform ISA from the original proprietary CISC ISA to an 



7.1 Memory and Register State Mapping �9 331  

Figure 7.2 
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extended PowerPC ISA. This migration took place in a completely transparent 
way from the users' perspective. 

Another commercially available codesigned VM, developed by Transmeta 
(Halfhil12000; Klaiber 2000) implements a target instruction set where a num- 
ber of independent instructions placed in a very long instruction word (VLIW). 
The codesigned software is responsible for finding independent instructions 
in a conventional source ISA (the IA-32) and packing them into the tar- 
get VLIW ISA. Because they are independent, the instructions in a VLIW 
can be issued for execution in parallel without complicated hardware support. 
Therefore, the advantage of this codesigned VM implementation is that it does 
not require the complexity (and power consumption) of an out-of-order issue 
unit as used in most superscalar processors. 

An overview of a codesigned VM is shown in Figure 7.2. It is a system 
VM, as noted earlier, and all the VM software resides in a region of memory 
that is completely concealed from all conventional software. In keeping with 
the naming convention used for system VMs, we refer to the virtual machine 
software as a virtual machine monitor (VMM). 

The primary function of the VMM is to emulate the source ISA; in this 
respect there are many similarities to process VMs. For example, emulation is 
often done in stages, with the focus on dynamic translation into a code cache. 
There are differences with respect to process VMs, however, the two most 
significant being the following. 

ZB There must be intrinsic compatibility (Section 3.2) at the ISA level rather 
than the ABI level. Because the interface at which virtualization takes place 
is the ISA, not only must the user-level instruction set be emulated, but 
the entire system-level ISA must be emulated. This includes the memory 
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11 

architecture, for example, so page fault compatibility must be maintained. 
It also means that I/O can be dealt with at the hardware level, not the 
abstracted OS call level as in process VMs. 

The reason for using a virtual machine implementation is improved perfor- 
mance, power efficiency, design simplicity, or some combination of these. 
Compatibility is a requirement but is not the motivation for constructing 
a codesigned VM. 

Codesigned VMs also bear some similarity to conventional superscalar pro- 
cessor designs (Figure 7.1): Both perform translation from a source ISA to a 
target ISA implemented in hardware. The difference is that one does the transla- 
tion in software while the other does it in hardware. We should note, however, 
there have been a number of proposals for innovative processor implemen- 
tations that are similar to codesigned VMs, typically relying on microcode 
or special-purpose coprocessors, rather than VM software to perform trans- 
lation or to assist with interpretation (Debaere and Van Campenhout 1990; 
Nair and Hopkins 1997; Chou and Shen 2000; Patel and Lumetta 2001). 
Nevertheless, in a conventional superscalar design of a CISC ISA, hardware 
(in one form or another) must carry the burden of performing the com- 
plex decomposition from CISC instructions to the RISC micro-ops that are 
directly executed. This is no doubt a contributor to the high cost of hardware 
design verification ~ a design cast into silicon is hard to debug and expensive 
to change. 

Relying on hardware-based translation also limits the extent of the ISA 
translation that can be done. For example, inter-instruction optimization is 
difficult, and in a conventional superscalar implementation there is none. This 
is illustrated in Figure 7.3. With conventional hardware translation, Figure 
7.3a, each source instruction is translated to micro-ops independent of the 
other source instructions, i.e., in a context-free manner. On the other hand, 
with software translation and optimization, as in Figure 7.3b, blocks of source 
instructions can be translated and optimized as a group, leading to more 
optimization opportunities (May 1987). Moreover, with the conventional 
hardware method, power consumption tends to be higher, due to the large 
amount of hardware for transforming source instructions into an executable 
form and scheduling them for execution. 

Codesigned VMs are not as widely used as other types of VMs; there are 
few examples that are commercially available, and they remain the subject 
of research. They are of interest primarily because of their potential for sup- 
porting significant innovations in processor design. Furthermore, many of 
the hardware-based techniques developed for codesigned VMs can potentially 
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is translated to target instruction(s) (micro-ops); (b) context-sensitive translation, where blocks of 
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be incorporated as extensions to existing ISAs so that other types of VMs, 
e.g., process VMs and HLL VMs, can be implemented more efficiently on 
standard platforms. 

In the remainder of this chapter, we describe the implementation of 
codesigned VMs. This includes features that make the emulation process in 
codesigned VMs more efficient as well as specific performance and/or effi- 
ciency features that are enabled by the codesigned VM paradigm. The bulk of 
the chapter focuses on codesigned VMs intended to implement conventional 
ISAs; e.g., the Transmeta Crusoe implements the IA-32 ISA. It is this type 
of codesigned VM that has received the most attention in recent years, espe- 
cially from researchers. Consequently, many of the techniques described in this 
chapter are centered on fast emulation of conventional ISAs. The IBM AS/400, 
in contrast, uses a source ISA that is at a higher level than most conventional 
ISAs and therefore relies more on innovative software than innovative hard- 
ware techniques to achieve its goals. The techniques used in the AS/400 are 
discussed primarily as part of the case study in Section 7.8. 

7ol Memory and Register State Mapping 

State mapping is easier with a codesigned VM than with many conventional 
VMs. Because the target ISA is designed specifically for the source ISA, the 
host register file(s) can be made large enough to accommodate the guest's 
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requirements, with extra scratch registers left over to enhance performance 
and/or simplify the translation process. An example of PowerPC state mapping 
for integer registers, as used in the IBM Daisy processor (Ebcioglu et al. 2001), 
is illustrated in Figure 7.4. Here, the PowerPC integer registers r0-r31 are 
mapped directly to host registers R0-R31. Then the branch unit counter and 
link register are mapped to registers R32 and R33. The PowerPC MQ register 
was originally used for multiplication and division but is now obsolete; in 
the original Daisy system it was mapped to host register R34. The constant 
value of 0 is placed in R35 to allow fast emulation of those cases where r0 is 
defined to be 0 in the PowerPC ISA. Finally, host registers R36-R63 are scratch 
registers to be used by the VMM emulator for such things as holding speculative 
values produced during code optimization, for constants, and for pointers to 
VMM tables. 

For memory state mapping, the key element of a codesigned system VM 
is the concealed memory. Concealed memory is a reserved region of the mem- 
ory space where the VMM, code cache, and other emulation software and 
tables reside. There can be both concealed logical (virtual) memory and con- 
cealed real memory. The concealed memory is never made visible to any of the 
conventional guest software. 

Because the VMM takes control immediately after system reset, it essentially 
has control of the system from the beginning, including the boot process, so 
it can make sure the conventional software never sees the concealed memory. 
When the guest OS boots (under VMM control) and checks to see how much 
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Figure 7.5 Memory System in a Codesigned Virtual Machine. The shaded areas are those where host 

instructions and V M M  data reside. 

real memory is available, e.g., by reading a control register, the VMM intercepts 
the read and does not inform it of the existence of the concealed real memory. 
And any attempt to access concealed memory by conventional software results 
in exactly the same behavior as if the memory were not present (typically a trap). 

Figure 7.5 illustrates an implementation of real memory in a code- 
signed VM. The shaded area of main memory is concealed, accessible only via 
the VMM. The shaded blocks hold target ISA instructions and VMM tables. 
The concealed memory region is of fixed size and does not change after sys- 
tem initialization. Instructions either are always translated and fetched from 
the code cache or are VMM code; consequently the instruction cache hierarchy 
holds only target ISA instructions, and their presence in the instruction cache 
is concealed from the guest software. 

With respect to logical addressing of memory, it is simplest to allow the 
guest OS to manage the conventional (nonconcealed) part of real memory as it 
normally would and to map guest virtual addresses using the guest ISA's address 
translation architecture. For mapping and addressing of concealed memory, 
there are a number of options, some of which are illustrated in Figure 7.6. 

In the first option, concealed logical memory shares an address space with 
the guest (Figure 7.6a). The conventional memory addressing and address 
translation are maintained as in the guest system, so the host address space 
must be enlarged, with the guest space fitting inside. Because the guest space 
is likely to be consistent with one of the "standard" sizes (e.g., 32 or 64 bits), 
the host space is either the next-larger "standard" size (e.g., 64 or 128 bits) or a 
nonstandard size (e.g., 33 or 65 bits). This approach is straightforward, but the 
expansion of the logical address space size may make the host ISA awkward or 
expensive to implement (which defeats the purpose of a codesigned VM). 

A second option is to have two separate logical address spaces, one for 
concealed memory and one for conventional memory (Figure 7.6b). All the 
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VMM software, code cache, associated tables, etc. are placed in the concealed 
address space, which maps to concealed real memory. This approach implies 
that load and store instructions must select one of the two mapping tables 
(e.g., by using different opcodes to select the mapping table or by using a 
mode bit). Note that all instruction fetches are to concealed memory addresses. 
Because the VMM controls all instructions that are executed (either through 
interpretation or because VMM-translated code is executing), the VMM can 
always ensure that the proper load and store instructions are used. 

A third option is to use real addressing for concealed memory, i.e., to 
bypass address translation when accessing concealed memory (Figure 7.6c). 
In a sense, this is a special-case form of option 2. One way of implementing 
this is to provide separate sets of load/store instructions for accessing memory, 
one with real addresses and the other via the guest mapping table(s). Also 
note that the VMM has the option of bypassing address translation even when 
accessing conventional real memory. In effect, the VMM always operates within 
the real address space and uses logical addressing only when emulating the 
guest software. With this approach, a mode bit can then be used for selecting 
the type of memory addressing to be used, rather than using opcode-based 
selection. 

A key issue regarding concealed memory is how far into the memory hier- 
archy the concealed memory reaches. It is easiest to keep the concealed portion 
of memory in RAM and not allow it to extend to secondary storage (disks). 
If the concealed memory extends to the disk, then the disk (and any bus 
addresses it uses) must also be concealed from the guest OS. Furthermore, 
the VMM becomes responsible for managing the concealed secondary mem- 
ory, including any paging that it might support. Because VMM and the code 
cache can be kept relatively small (on the order of a few tens of megabytes) 
and because it simplifies the system design, most of the proposed and imple- 
mented codesigned VMs use the diskless option, with VMM software being 
stored in ROM. The extension of concealed memory to secondary storage is 
discussed in Section 7.5. 

~ ~. 
Self-Modifying and Self-Referencing Code 

In a codesigned VM, self-modifying and self-referencing code are generally 
handled using the techniques described in Section 3.4.2. As pointed out in the 
previous section, it is easiest to keep the original guest OS's virtual-to-real page 
mapping intact. Then, because the source code is held in the guest's memory in 
its original form, any load or store accesses to an instruction page will naturally 
proceed correctly. 
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For self-modifying code, any attempt to write into the guest code region 
must be caught, and this is most easily done by write-protecting the source 
code region, so that any attempt to write it will cause a trap that can be directed 
to the VMM. The VMM can then flush the code cache of translations derived 
from the modified page and allow the page to be written. 

In a typical process VM (as in Chapter 3), the VMM can write-protect a page 
via a system call to the host OS in order to change the page table protections. 
In a codesigned VM, however, the solution is a little more complicated because 
it is the guest OS that manages its own page tables, not the VMM. This includes 
the pages that contain the page tables themselves, so changing the page pro- 
tections in a guest page table would violate the principle of keeping all of the 
guest memory state intact. The most straightforward solution is to use the TLB 
to enforce write-protection of guest code pages. If the TLB is managed by the 
VMM, as it normally would be, then the TLB entries are enhanced with a spe- 
cial "write-protect" bit, for use only by the VMM for detecting self-modifying 
code. Whenever an entry for a code page is loaded into the TLB, the VMM 
sets the write-protect bit. In order to keep track of the source code pages, 
the VMM maintains a table of all the guest virtual pages from which it has 
translated (or interpreted) code. This is done at the time code is translated or 
interpreted. 

To reduce performance losses due to self-modifying code (both real and 
pseudo-self-modifying), the software-based methods described in Section 3.4.2 
can be applied. In addition, because of the co&signed paradigm, special hard- 
ware support can be provided to further reduce performance losses caused 
by pseudo-self-modifying code. In the Transmeta Crusoe, a special hardware 
structure is added to speedup fine-grained write-protection checking (Dehnert 
et al. 2003; Banning et al. 2002). The special hardware structure is managed by 
the VMM and is similar to a small software-managed TLB. This write-protect 
table can hold the fine-grained write-protect masks (Section 3.4.2) for a few 
source code pages, along with hardware for comparing a potentially faulting 
store address with the bits in the bit mask (see Figure 7.7). After an address 
translation is performed with the normal TLB, the real address is presented 
to the write-protect table. If the normal TLB detects a write-protect fault, 
the smaller write-protect table can automatically filter out those cases where 
the write is not to a translated code region. As noted earlier, the TLB write- 
protect bit is a special bit used solely for protecting code pages. The VMM 
loads the write-protect table with the bit masks for a set of source code pages 
that are actively being written; this is usually a small number, if there are any 
at all. 

A final issue involves I/O writes to guest code memory. If an I/O device 
writes to a guest code page, then these writes must also be caught. Again, the 
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Figure 7.7 Fine-Grained Write-Protection Method for Source Code Regions. A fault is triggered to the VMM if the 
TLB indicates a write-protect fault and there is a miss in the write-protect table or the comparison logic 
indicates the write address is to a write-protected fine-grained code region. 

VMM helps enforce this by keeping track of all the real guest pages for which 
active translations exist in the code cache. To do this, the VMM has to maintain 
a hardware table for I/O writes, most easily held in the memory controller. The 
VMM makes entries in this table for all the real pages that hold guest code 
pages. A store to any of these pages results in an interrupt to the VMM, which 
can then flush the translations that are derived from the guest code page. 

:7 Support for Code Caching 

A central element ofa codesigned VM implementation, as with other emulating 
VMs, is the code cache. Because performance and efficiency are key factors in a 
codesigned VM, code cache performance is of utmost importance. It is useful to 
consider the issues that may lead to performance losses when using a code cache. 
Because the blocks of translated code held in a code cache are of unequal size, 
accessing the code cache becomes more complex than accessing a conventional 
cache, where blocks are of equal size. A code cache access begins by hashing the 
source PC (SPC) value to an entry in a map table, reading a corresponding SPC 
value (or tag) from the map table, and performing a comparison to determine 
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if there is a hit (Figure 2.28). If so, the target PC (TPC) at the map table entry 
can be used for accessing the code cache. If the first probe of the map table 
mismatches, then additional probes of the table may be required in order to 
handle potential hash collisions. 

The access delay for the code cache can be quite long, due to the multiple 
memory accesses and indirect jumps required. A single dispatch table lookup 
can take on the order of 10-15 instructions, leading to significant performance 
losses. In a simple code cache implementation, all control-transfer instructions 
(branches and jumps) perform a map table lookup. However, to improve 
performance for direct jumps and branches, superblock chaining (Figure 2.29) 
is an effective solution. With this method, the map table lookup for direct 
jumps and branches is eliminated entirely. For indirect control transfers the 
problem is more difficult, however, because register-indirect jumps have their 
destination addresses stored in a register, and destination addresses can change 
during the program's execution. Furthermore, the register address is the SPC 
value, not the TPC value. This means that the source jump address held in a 
register must be translated from SPC to TPC every time the translated indirect- 
jump instruction is executed. A straightforward approach is to consult the 
map table for every indirect jump; but, as noted earlier, this is slow and hence 
indirect jumps will add a significant performance cost. 

To save table lookup overhead for each and every indirect jump, many 
dynamic optimizers/translators implement a form of software-based jump 
target prediction (see Section 2.7.2, illustrated again in Figure 7.8). Here, a 
sequence of instructions compares the indirect SPC address held in a register 
against an embedded translation-time SPC address. A match indicates a correct 
"prediction," and the inlined direct branch instruction to a TPC is executed; if 
there is no match, then the code jumps to the slow map table code. 

The software prediction method is of somewhat limited value, however. 
First, if the software prediction is incorrect, then time is wasted by first testing 
the possibilities when the dispatch table lookup has to be performed anyway. 
Second, there are a number of indirect jumps that are very difficult to predict 
using this method, for example, returns for procedures that have a number of 
call sites and therefore a number of constantly changing destination addresses. 
The indirect-jump problem is probably the greatest source of performance loss 
in a software-only code cache system. 

i f  ((Rx) == #addr_l)  goto # ta rge t_ l  
else i f  ((Rx) == #addr_2) goto #target_2 
else map_lookup (Rx) ; do i t  the slow way 

Figure 7.8 Example of Software Indirect Jump Prediction. 
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Figure 7.9 Jump Translation Lookaside Buffer (JTLB). This example uses a two-way set associative table. 

7.3.1 Jump Translation Lookaside Buffers 

In a codesigned VM, the high-overhead software map table can be replaced 
with a specially designed hardware cache of map table entries (Gschwind 1998a; 
Kim and Smith 2003). We refer to such a table as a jump translation lookaside 
buffer (JTLB), because it is similar in concept to the software-managed address 
TLBs used in virtual memory systems. A JTLB is illustrated in Figure 7.9. 
Each entry in the JTLB contains a tag and a TPC value. The JTLB can be 
fully associative, set associative, or direct mapped. This example is a two-way 
associative table. Entries are written into the JTLB by the VMM and always 
contain correct translations (this can be ensured, for example, by requiring 
that if a translated block is removed from the code cache, then the VMM must 
remove any associated entries from the JTLB). The JTLB is accessed by hashing 
the SPC value (this can consist of taking upper address bits as in a conventional 
TLB or cache, or it can be a more complex hash function). After the hash, 
the tag value is compared with the full or partial SPC, depending on the hash 
function used. If there is a JTLB hit, then the TPC value stored in the entry that 
hits is the desired jump address in the code cache. 

A JTLB can be integrated into a codesigned ISA in a couple of ways. The 
first is a 3TLB_Lookup instruction that accesses the JTLB with an SPC address 
held in a register and then reads out a TPC and places it in a second regis- 
ter. A third register (or condition code) indicates a hit or miss in the JTLB. 
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Figure 7.10 

JTLB_Lookup Ri, Rj, Rk ; TPC to Ri, h i t /m iss  to Rj 
Jump Ri, Rj==O ; cond i t iona l  i n d i r e c t  jump 
Jump map_lookup ; do i t  the slow way 

An Instruction Sequence That Accesses the ]TLB. 

An example is in Figure 7.10. Here, the JTLB_Lookup instruction takes an 
SPC value in Rk, puts the associated TPC value in Ri (if there is a hit), and 
places the hit/miss outcome in Rj. This instruction is followed by a conditional 
jump on the value in Rj; if there is a miss, control transfers to the map_l ookup 
routine. This routine will place the correct code cache mapping in the JTLB 
(if the code has been translated); otherwise, the VMM will begin interpreta- 
tion or will translate the accessed code. A second, simpler way to integrate the 
JTLB into the ISA is to combine the lookup with the conditional jump, i.e., a 
Lookup_Jump Rk instruction that performs the jump to the TPC if there is a 
hit, otherwise it falls through. 

This method still requires that when a jump is encountered, instruc- 
tion fetching must stall until the JTLB is accessed and the jump is executed. 
An additional enhancement is to predict the TPC value immediately after a 
Lookup_Jump instruction is fetched, using a more or less conventional branch 
target buffer (BTB) (see Figure 7.11). Then the predicted instruction stream is 
accessed from the code cache immediately. Meanwhile, the Lookup_Jump pro- 
ceeds up the pipeline (along with the predicted TPC). When the Lookup_Jump 
instruction issues and accesses the JTLB, the prediction is checked. A mispre- 
diction causes a pipeline flush, with fetching being redirected to the correct 
TPC. A miss in the JTLB causes a flush and a fall-through in the original code 
sequence (which would then jump to the map_l ookup routine). 

7.3.2 Dual-Address Return Address Stack 

Either the software prediction approach or the ]TLB approach, when sup- 
plemented with a BTB prediction, can be very effective, as long as the BTB 
prediction is correct a high percentage of the time. For many indirect jumps 
this will be the case, but for procedure return jumps it is often not the case. 
The problem is that a procedure may be called from a number of places, so a 
return jump can have a number of different targets that frequently change. 

To deal with this problem in a conventional microarchitecture, most 
modern processors employ a hardware return address stack (RAS) mech- 
anism that can predict a return instruction's target address very accurately 
(Kaeli and Emma 1991). It basically mimics the software procedure stack by 
pushing the fall-through PC onto a hardware prediction stack whenever there 
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Figure 7.11 An Enhanced Lookup_lump Instruction That Uses a BTB to Predict the TPC. 

is a procedure-call (jump) instruction. However, in a codesigned VM, this 
approach cannot be used in its conventional form because the saved return 
destination address would be an SPC, whereas the corresponding TPC is actu- 
ally needed for a return destination address prediction. Furthermore, if the 
procedure jump is at the end of a translated superblock, as it often would 
be, then the address of the instruction following the jump is not the correct 
return address anyway (the correct address is at the beginning of a different 
superblock). 

In a codesigned VM, a specialized dual-address RAS mechanism can be 
used for return address prediction (Gschwind 1998b; Kim and Smith 2003). 
Each entry in the dual-address RAS (DRAS) contains an address pair, con- 
sisting of a return address SPC and its corresponding TPC, as shown in 
Figure 7.12. The DRAS can be thought of as a hardware implementation of 
the shadow stack mechanism used in the FX!32 (see Section 2.7.3). 

In order to push an address pair onto the DRAS, a special push-DRAS 
instruction pushes both return addresses. Finding the return destination SPC 
at superblock construction time is straightforward. Finding the TPC value 
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Figure 7.12 Dual-Address Return Address Stack. The Push_DRAS instruction pushes both SPC and TPC. The return 
instruction uses TPC as a prediction. 

is similar to setting up superblock linking. If the corresponding TPC is not 
known at superblock construction time, an invalid address is written in the TPC 
field of the push-DRAS instruction. Later when the return target superblock is 
constructed, the invalid address is replaced with a valid TPC. Alternatively, if a 
]TLB is present, it is accessed at the time of a procedure call, and the TPC value 
is pushed onto the prediction RAS. In either case, the prediction RAS should 
be pushed/popped for all procedure calls and returns ~ sometimes even with 
an invalid TPC to maintain correct stack ordering. 

When a return instruction is fetched, the next fetch address is predicted 
with the popped TPC. The SPC part of the pair flows down the pipeline with 
the return instruction and is compared to the register value when the return 
instruction is issued. If the two values do not match, a RAS misprediction is 
detected, and fetch needs to be redirected. Fetch redirection is accomplished 
by a jump to the dispatch table code. This is done by having the return jump 
instruction "fall-through" to the next instruction if there is a misprediction. 
The next instruction is a jump to the dispatch table code. Note that if a ]TLB 
is also used, a simplification is to replace the dual RAS with a single RAS,  

where only the TPC is pushed. The ]TLB can be relied upon to provide the 
correct TPC. 

Implementing Precise Traps 

Just as in other VMs, implementing precise traps is an important problem in 
codesigned VMs. In general, one can use techniques similar to those described 
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in Chapters 3 and 4. That is, during the translation process, the optimizing 
software maintains software checkpoints. If code motion is involved, register 
live ranges are extended to ensure that checkpoint values can be restored when 
there is a trap. Then interpretation beginning at a checkpoint prior to a trap- 
ping instruction establishes the correct, precise state. In codesigned VMs this 
approach is facilitated because the host ISA can be designed to have enough 
registers so that live ranges can be extended without excessive register pressure. 
Nevertheless, this software-based approach does limit the types of code motion 
that can be performed (see Section 4.5.1). For example, many instructions 
cannot be moved below store instructions. By adding hardware support for 
checkpoints, this restriction on code motion can be removed, thereby relaxing 
the requirements for register live range extension. 

7.4.1 Hardware Support for Checkpoints 

In codesigned VMs, the designer has the option of providing hardware sup- 
port for precise traps in translated code. The basis for the approach is to use 
hardware to set a checkpoint at the time each translation block is entered 
(Figure 7.13a). Then if there is a trap anywhere in the translation block, the 

Figure 7.13 
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Hardware-Supported Checkpointing. (a) Checkpoints are set at every translation block entrypoint. 
(b) When there is a trap, the checkpoint is restored, and interpretation begins at the beginning of the 
source code that formed the trapping translation block. 
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Figure 7.14 Checkpoint Hardware Operation. (a) When a checkpoint is committed (and a new one is established), 
the gated store buffer is released and a new checkpoint is established. (b) I f  a trap is detected, the contents 
of the store buffer are flushed and the shadow copy is written back into the register file. 

state at the beginning of the block can be restored via the hardware. At that 
point, interpretation is used to provide the precise exception state, just as with 
the software method. The basic sequence is illustrated in Figure 7.13b. 

The mechanism for supporting checkpoints is illustrated in Figure 7.14 
(Klaiber 2000). When a new translation block is entered, the state from the 
previous block is committed, and a new checkpoint is set (Figure 7.14a). 
Setting register checkpoints is fairly easy. The host hardware can support a 
shadow copy of the guest registers (Smith, Lam, and Horowitz 1990), and reg- 
isters are checkpointed by copying them en m a s s e  into the shadow registers. 
With proper hardware design (and circuit layout) this copying can be done 
in a very small number of cycles (as few as one). An alternative approach 
uses shadow registers at a finer granularity (Nystrom et al. 2001) and avoids 
discarding all the computation done in a code block when an exception is 
detected. 

Checkpointing memory in a similar manner would be much harder because 
keeping a shadow copy of main memory would be very expensive, in both time 
and space. Hence, an alternative is to keep all memory store operations buffered 
in the processor until a translation block is exited (and its state changes can 
be committed) (Klaiber 2000). Refer to Figure 7.14a. At the time a checkpoint 
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is committed and another is set, a gate is closed at the tail of the store buffer 
so that any instructions following the gate are inhibited from completing. 
Meanwhile, the gate at the head of the store buffer (established at the previous 
checkpoint) is opened so that stores can complete by writing to memory. 
These writes can occur in the background as computation proceeds. Note that 
all load instructions must check the store buffer as well as the data cache, 
in case a load is to an address that is in the buffer. This includes preceding, 
uncommitted stores in the same translation block and any residual, committed 
stores from a preceding block. 

If an exception should occur during execution of the translation block 
(Figure 7.14b), then the buffered stores are flushed and the registers are restored 
from the shadow copy. At that point the state is the same as it was when the 
block was first entered. Then interpretation of the source code can take over to 
finish the job of locating the trapping instruction and providing a precise state. 

An advantage of the hardware-supported checkpoint method is that the 
code inside a translation block can be reordered by software in any fashion 
(subject to true data dependences, of course), even when the block includes 
store instructions. Hence, the restrictions on code motion given in Section 4.5.1 
are relaxed. The only limitation is the fixed size of the store buffer, and this can 
constrain the translation block size in some cases (the number of stores in the 
block cannot exceed the store buffer size). 

On the other hand, software reordering of loads and stores can lead to vio- 
lation of memory ordering compatibility. In a shared-memory multiprocessor 
there are hazards associated with reordering loads and stores as observed by 
other processors (see Appendix Section A.7.3), which means that reordering 
may be limited in shared-memory multiprocessor implementations. The rea- 
son is that after the software reorders the instructions, the original order is lost; 
yet correct operation in parallel programs may depend on the original order- 
ing. A method for dealing with multiprocessor memory ordering is described 
in a patent by members of the IBM Daisy project (Altman et al. 2002). This 
method is based on acquiring exclusive access to cache lines as stores enter the 
store buffer and then flushing the buffer and restarting if a different processor 
should attempt access to the line before the stores in the buffer are released. 

7.4.2 Page Fault Compatibility 

Thus far, we have not considered the recovery of the precise guest state when 
page faults occur. In most process VMs, page faults are not an issue because 
they are manifestations of OS policies, are handled by the OS, and are hidden 
from the process. A codesigned VM is a system VM, not a process VM, which 
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means that the guest OS must observe exactly the same page faults as it would if 
it were running on a native platform. If the guest OS has mapped a logical page 
to a conventional real page, then it must not trigger a page fault; similarly, if 
the guest OS has not mapped a page and it is accessed, then it must page fault. 
Implementing page fault compatibility is relatively simple for the data region 
of the guest's memory. If the host implements the same memory mapping as 
the guest (Figure 7.6) and lets the guest OS manage conventional memory, 
then page faults to the data region will be detected naturally by the host system. 
These faults will return control first to the VMM, which can use techniques as 
described in Section 4.5.2 to determine if the fault is spurious (due to optimiza- 
tions and/or code reordering) and to produce the correct, precise state before 
control is handed over to the guest OS. 

Likewise, when interpreting instructions, the interpreter loads instruc- 
tions from the conventional region of memory, so page faults for instruction 
fetches will occur naturally. For executing translated instructions from the 
code cache, however, the problem is more difficult because the guest instruc- 
tions are not actually fetched; rather, translated instructions are fetched from 
concealed memory. The codesigned VM must therefore implement some 
mechanism that will trigger a page fault when a translated instruction is fetched 
from the code cache and the corresponding guest instruction would have caused 
a page fault had it been fetched on a native source platform. There are a number 
of possible approaches to solving this problem. One approach is active, another 
is lazy. Both approaches are discussed in the following paragraphs. Note that 
in this discussion we assume an architected page table and page faults. Special 
considerations for an architected TLB and TLB faults will be discussed in a 
separate subsection. 

Active Page Fault Detection 

The active approach to instruction page fault detection is to monitor potential 
page replacements by the guest operating system. When a source instruction 
page is replaced by the OS, all the translation blocks based on the replaced 
source page should be flushed from the code cache. 

To determine when an instruction page is potentially being replaced by 
the guest OS, the VMM monitors the guest OS's modifications to the archi- 
tected page table. This can be done by marking memory that holds the page 
table as "write-protected." Assuming the page table is architected, the region 
of memory that holds the page table can be identified by the VMM. Write- 
protecting pages is most easily done if VMM software manages the TLB. 
Then the write-protection information is added to the implementation of 
the TLB and does not require any changes to the architected page table in 
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main memory. The VMM should also monitor any other operations that may 
change a virtual to real page mapping, e.g., changes to the page table pointer. 

In addition, the VMM keeps a table of virtual page numbers for each page 
containing source instructions. At the time a block of source instructions is 
translated, an entry is made in the table (if it is not already in the table). 
Then whenever the page table mapping is modified, there is a trap (or jump) 
to the VMM, and the VMM determines if the page table entry for a source 
instruction page is being modified. If so, the VMM flushes all the translations 
in the code cache derived from that page. This requires a pair of side tables. 
One side table tracks all the translation blocks derived from each page; these are 
the translation blocks that must be flushed. The second table (or an extension 
to the first), keeps track of any link backpointers (see Section 3.8.2). The link 
pointers are changed so that they point into the VMM emulation manager. 
After this is done, an attempt to transfer control into the removed page will 
instead jump to the emulation manager. Subsequently, the emulation process 
will detect the instruction page fault when it attempts to emulate an instruction 
from the code page and it misses in the page table. Finally, if hardware structures 
containing SPC-to-TPC address translations are implemented, such as the 
JTLB and DRAS (Section 7.3), then these structures should be flushed of any 
entries corresponding to flushed translations. 

Lazy Page FauR Detection 

With the lazy solution, when a source code page is replaced by the guest OS, the 
code cache is not immediately flushed of corresponding translations. Rather, it 
waits until there is an attempt to actually use the translated code. To accomplish 
this, every time the translated code crosses a source page boundary, the page 
table is probed to see if the mapping is the same as on the original translation 
(Ebcioglu et al. 2001). 

The method is illustrated in Figure 7.15. First, it must be possible to deter- 
mine when translated code crosses a source page boundary. This is most easily 
done if all the code in a translation block is derived from the same source page. 
If this is the case, then source pages boundaries are crossed only when there are 
link jumps, e.g., when block HIJ jumps to block KL in Figure 7.15. Otherwise, if 
translated code can come from different source pages, then the crossing points 
within the translated code should be distinct, at least with respect to precise state 
updates (the transition from E to F in Figure 7.15). In either case, at the time a 
source page boundary is crossed, the first instruction is a Veri fy_Trans 1 at i  on 
instruction, inserted by the translator. This instruction probes the page table 
to see if the page mapping has changed. The Veri fy_Trans] a t i  on instruction 
provides the virtual address of the newly entered source page along with the 
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Figure 7.15 Detecting Instruction Page Faults via Instructions That Probe the Page Table. 

real address at the time the block was translated. The instruction attempts to 
translate the virtual page number to a real page number and, if successful, com- 
pares it with the real address provided by the instruction. If the virtual page is 
mapped to real memory and the two real addresses match, then execution of 
the translated code proceeds. Otherwise, the VMM takes over and generates a 
page fault and/or translates the source code page that has just been entered. 

Architected Translation Lookaside Buffers 

With architected TLBs, both the active and lazy methods can be adapted in a 
straightforward way. But, because of performance issues, the active approach 
is somewhat problematic. If the active approach is used, then translations 
are flushed every time a TLB entry for a source code page is overwritten. 
Then the code must be retranslated if the TLB entry is later restored. If there is 
a fairly large number of source instruction pages and a lot of TLB activity for 
instruction pages, this approach could lead to a very high overhead. With the 
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lazy approach, Ver i fy_Transla t ion instructions can be used, as before. The 
only difference is that they generate an architected TLB fault rather than a page 
fault when the translation is not present. 

For the most part, implementing I/O in a codesigned VM is straightforward. 
If the VMM does not use any I/O devices itself, then all the guest device drivers 
can be run as is (although instructions in the driver code are emulated, just as 
all other guest instructions are). Any I/O instructions or memory-mapped I/O 
is simply "passed through" by the VMM so that the I/O system sees the same 
signals that it would if the guest were running on a native platform. 

As noted in Section 4.5.1, memory-mapped I/O results in volatile memory 
locations, and the presence of volatile memory locations should inhibit opti- 
mizations involving removal and/or reordering of memory loads and stores 
to those locations. To identify code regions that access volatile memory, an 
access-protect bit, similar to the write-protect bit of Section 7.2 can be added 
to the TLB. Then if a memory-mapped I/O routine performs loads or stores to 
an access-protected memory page, there is a trap to the VMM, which can then 
deoptimize translations containing the accesses to volatile memory in order to 
ensure that they all occur in the correct sequence (Kelly, Cmelik, and Wing 
1998). As an additional enhancement, the implementation ISA can be extended 
to include special volatile versions of load and store instructions, which do not 
trap when the access-protect bit is set; if these are used in deoptimized I/O 
code, then their execution will proceed without trapping. 

If a VMM uses no I/O devices, then it is restricted to reside entirely in 
concealed memory. This means, for example, that code translations cannot 
be cached to disk and reused as is done in the FXI32 system described in 
Section 3.10. All translations must be done from scratch each time a program 
is run; and when translated code is removed from the code cache, it is discarded 
and must be retranslated before it can be used again. 

If the requirement of complete transparency can be relaxed somewhat, then 
concealed memory can be extended to secondary storage (disk). In order for 
this to be accomplished, there must be a portion of a disk (or possibly an entire 
disk) reserved for use by the VMM as concealed secondary storage. The most 
straightforward way to do this is to provide a special disk driver that is VMM- 
aware (Figure 7.16). It is the loading of this special disk driver that breaks 
complete VMM transparency. This limits the use of the codesigned processor 
to those operating systems for which the special disk driver has been devel- 
oped and deployed. The disk driver code can restrict the OS to that portion of 
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Figure 7.16 Concealed Secondary Storage. By adding a special disk driver, concealed secondary storage (shaded) 
can be implemented. Both the guest OS and VMM software can call the driver, but only the VMM 
can access the concealed region of the disk. 

the disk that is visible (actually, the guest OS is only informed of the noncon- 
cealed region). Meanwhile, the VMM uses the disk driver to access its concealed 
region of disk. 

To avoid relaxing transparency even more, the VMM is entirely responsi- 
ble for managing the concealed secondary memory. This implies that it is not 
backed up or archived, for example, so this restricts its use to caching code 
translations (or for paging VMM software). This large, persistent code cache 
would be useful for reducing initial start-up time for big programs (including 
the OS when it is booted). However, checks have to incorporated to make 
sure that any source code with cached translations has not changed since 
the time of the translation, possibly by keeping a copy of the original source 
code and performing an instruction-by-instruction check (Conte, Sathaye, and 
Baneriia 1996). Furthermore, the concealed secondary storage would only be 
useful for large blocks of translated codes ~ for small blocks it would probably 
be faster to translate from scratch than to make disk accesses. An interest- 
ing (and less transparent) disk-based code caching approach was proposed 
for dynamic rescheduling of VLIW binaries based on page-sized code blocks 
(Conte and Sathaye 1995). 

7.6 Applying Codesigned Virtual Machines 

Thus far, we have described a number of mechanisms that allow a code- 
signed VM to emulate full ISAs and execute instructions efficiently from 
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a code cache. These mechanisms are only enablers; however, to be use- 
ful these mechanisms must be applied in codesigned VMs that provide real 
advantages, such as improved performance, power efficiency, and software 
flexibility. Advantages can be achieved at two levels, in effect at a macro level 
and at a micro level. 

At the macro level, entirely new ISAs can be implemented. Some of the 
proposed and implemented target ISAs for codesigned VMs have been aimed 
at exposing instruction-level parallelism to hardware in a more efficient man- 
ner than with conventional instruction sets. Most conventional instruction sets 
still reflect the sequential model of execution prevalent decades ago. Conse- 
quently, hardware is burdened with discovering parallelism in the instruction 
stream at run time; this is the essence of modern superscalar processors. 

Two of the better-known codesigned VMs, the Transmeta Crusoe (Klaiber 
2000; Halfhill 2000) and the IBM Daisy/BOA (Ebcioglu et al. 2001; Sathaye 
et al. 1999), implement VLIW instruction sets as their target ISA. The code- 
signed software is responsible for finding independent instructions in the 
source binary and packing them together in the VLIWs. The advantage of 
a VLIW implementation is that it does not require the complexity (and power 
consumption) of an out-of-order issue unit as in most superscalar processors. 

A proposal for a different style of codesigned VM has a similar goal 
to simplify instruction issue logic ~ but it does this by exposing chains of 
dependent instructions to the hardware (rather than independent ones as with 
a VLIW) (Kim and Smith 2003). Then multiple in-order instruction issue units 
can be given the dependent chains of instructions. Each issue unit processes 
instructions in order, which simplifies hardware, but the multiple issue units 
can issue instructions out of order with respect to each other. A research 
project at the University of Illinois (Merten et al. 2001) provides a number 
of interesting codesigned hardware components targeted primarily at profiling 
and optimization, rather than ISA innovation. 

The goal of the IBM AS/400 implementation (Soltis 1996) is to provide a 
high-level object-oriented source ISA. Besides being well suited for efficient 
support of object-oriented system and application software, this approach 
allows many of the hardware resource management mechanisms, e.g., page 
management, to be placed in the implementation-dependent VMM. Another 
advantage of the codesigned approach was demonstrated by the AS/400 
designers when they successfully replaced the original host ISA (a proprietary 
CISC) with an extended PowerPC ISA and migrated users in a completely 
transparent way. 

At the micro level, codesigned VMs permit the implementation of specific 
performance enhancements (which may be related to the selected host ISA). 
For example, in a VLIW platform, all code scheduling is performed by the 
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software translation system, so the ability to reorder instructions is crucial 
to the success of a VLIW-based computer. Consequently, in the codesigned 
VMs that use VLIW target ISAs, there is special support to enable reordering 
of instructions, especially load and store instructions, because dependences 
among load and store instructions are difficult to determine statically (i.e., to 
disambiguate them ). 

Finally, an important feature of codesigned VMs is that implementation- 
dependent profiling hardware can be built in for use by dynamic translat- 
ing/optimizing software (Conte, Menezes, and Hirsch 1996; Heil and Smith 
2000; Merten et al. 2000). This profiling hardware can be matched to opti- 
mizations used by the codesigned software translation code as well as features 
in the microarchitecture. 

To make the foregoing advantages more concrete, the next two sections 
give case studies of two of the more important codesigned VMs, the Transmeta 
Crusoe and the IBM AS/400. 

Although some elements of the codesigned VM paradigm had been used pre- 
viously, for example, to provide code portability, the Transmeta Crusoe broke 
new ground in using a codesigned VM for achieving power efficiency and design 
simplicity. The TM5000 series was introduced in early 2000; these processors 
are described here. The follow-on Efficeon (TMS000) series was introduced 
in 2003, it incorporates larger caches than the TM5000 series, and its VLIW 
instructions are twice as wide. 

The Crusoe implements the Intel IA-32 ISA with an underlying proprietary 
VLIW instruction set that uses dynamic code translation and optimization, 
centered on a code cache. The microarchitecture of the TM5800 processor is 
illustrated in Figure 7.17. The VLIW (or a molecule, in Transmeta parlance) 
consists of four instructions (atoms). It is a classic VLIW in the sense that the 
individual instruction fields in the VLIW are dedicated to specific functions. 
These instruction fields feed a branch unit, a floating-point unit, an integer unit, 
and a load/store unit. For precise traps, the Crusoe uses the method described 
in Section 7.4 and is based on shadow registers and a gated store buffer. 

The memory hierarchy is illustrated in Figure 7.18. The VMM software 
is held in compressed form in a 512KB boot ROM. At the beginning of the 
boot process, this software is decompressed into a 2MB region of concealed 
memory. In the implementation shown, the code cache and various side tables 
consume 14MB. There are conventional 64KB level-1 instruction and data 
caches, but, in addition, there are two smaller memories dedicated to the VMM. 
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These are for critical VMM code and data that the designer relies upon for 
low-latency access. 

The big optimization challenges in the Crusoe involve breaking the complex 
IA-32 instructions into RISC-like micro-ops and then finding parallelism and 
scheduling them into VLIWs. Because an in-order VLIW microarchitecture is 
used, code reordering is a key part of the optimization process. To provide 
support for reordering, the Crusoe designers built some special features into 
the implementation ISA. 

Being able to move load instructions is perhaps the most important type of 
reordering, because load instructions take longer to execute than most other 
instructions, especially if there is a cache miss. That is, it is desirable to reorder 
a load instruction higher up in the instruction stream so that it executes earlier 
and can therefore eliminate or reduce the wait time of subsequent dependent 
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instructions. For example, consider the code in Figure 7.19a, which contains 
two loads and two stores with an add instruction that consumes the two loaded 
values. It would be desirable to move the load instructions higher in the code 
sequence, as is shown in Figure 7.19b. Then there are other intervening instruc- 
tions that can overlap with the execution time of the loads. Consequently, the 
time the add instruction might have to wait for its input operands is reduced, 
especially if one or both of the load instructions should miss in the data cache. 
However, moving the load instructions up may be unsafe, because the store 

Figure 7.19 
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Safe Reordering of Memory Operations with Load-and-Protect and Store-under-Alias-Mask 
Instructions. (a) Original code sequence; (b) unsafe reordering (due to unknown addresses); 
(c) reordering with protection from 7 dp and stare instructions. 
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instructions may be to the same memory address. For example, if the store 
to 0 ( r l )  happens to be to the same address as the load from 0(r4),  then in 
the reordered code the load will return the wrong data. Because the register 
values are often not known until run time and they may change over the course 
of the program's execution, the binary translator is not able to guarantee that 
the load and store addresses are never the same, so, to be safe, such a code 
reordering should be inhibited. 

A codesign approach for detecting such memory conflicts is very well suited 
to this problem (Gallagher et al. 1994), and the Transmeta designers took such 
an approach by adding a pair of special instructions. The load-and-protect 
instruction (]dp) performs a load operation and records the address and size 
of the loaded data in an architected table. The store-under-alias-mask (stare) 
instruction performs a store and also contains a mask that identifies certain 
table entries ~ the ones set by preceding ]dp instructions. For each stare 
instruction, the masked ] dp instructions are illustrated in Figure 7.19c with 
arrows from the stare to the ]dp; the table itself is not shown. The second 
stare in the example identifies only the second load, because the first load 
was already ordered ahead of it. If a table entry indicated by the mask of a 
stare instruction detects an overlap between the ] dp's memory address and the 
stain's memory address, then there is a trap to the VMM. At that point, the 
VMM can handle the situation like it does most other traps: It can go back to 
the previous checkpoint and begin interpreting the original code in order to 
get the correct result. If a particular translation block repeatedly traps, then 
the VMM can reorder the code more conservatively, taking care to leave the 
overlapping load and store in their original sequence. 

The 1alp/stare pair is an excellent example that illustrates the interplay 
between the codesigned hardware and software in a codesigned VM. In this 
case, where a VLIW is used, the ability to reorder code is very important, and 
the ] dp/stam instructions, in conjunction with the dynamic optimization code, 
facilitate code reordering. 

Case Study: IBM AS/400 

The architecture of the IBM AS/400 (derived from the earlier System/38) is 
perhaps not as widely known as other "textbook" computer architectures, 
but it is both highly innovative and commercially successful (Soltis 1996). 
The AS/400 includes a codesigned VM ~ in fact, the whole system, including 
system software, was designed from scratch using a fully integrated approach, 
so one could say the entire system was codesigned from top to bottom. Unlike 
the other codesigned VMs discussed in this chapter, however, the System/38 
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AS/400 Architectures. (a) The original System~38 and early-generation AS~400 systems were based on a 
proprietary ISA (IMPI) and hardware platform. (b) More recent AS/400 systems are based on an extended 
PowerPC ISA and platform. 

was not designed to support an existing, conventional ISA. Rather, the original 
System/38 designers invented a new, high-level ISA with the goals of software 
simplicity and machine (hardware) independence. 

The high-level instruction set is referred to as the technology- independent  

machine  interface, or just MI for short. Supplementing the MI is a set of 
standard libraries, the Licensed Internal Code (LIC), which deals with the 
implementation-dependent aspects of resource management. The MI and 
LIC together from an ABI layer upon which all implementation-independent 
software runs. 

In the original design, the underlying implementation architecture was 
based on a proprietary CISC ISA called the internal microprogrammed interface 

(IMPI) 1 (see Figure 7.20a). In developing a high-level ISA that is imple- 
mentation independent, the objective was to provide for future changes in 
the underlying implementation, including the lower-level ISA. This feature 
has been exploited as the AS/400 evolved, first by extending the IMPI in 
a transparent way and then by a complete shift to an extended PowerPC 
ISA (Figure 7.20b). 

Because the MI is at a higher level than a conventional ISA and was devel- 
oped with the goal of hardware independence, the AS/400 architecture is 

1. Calling the codesigned software micro-code indicates that it was considered to be part of the 
hardware design, as opposed to being considered conventional software. 
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similar in philosophy to the HLL VMs described in Chapter 5 and follows 
the model illustrated in Figure 5.1. That is, the MI compiler is analogous 
to a conventional compiler frontend, and the MI translator is analogous to 
a conventional compiler backend. However, like other codesigned VMs, the 
AS/400 is a system VM. It supports not only language aspects of program 
execution but also a full system environment. The philosophy of dividing 
the implementation-independent and implementation-dependent software 
extends to the OS functions; for example, device drivers and memory manage- 
ment algorithms are in the implementation-dependent part of the OS. These 
functions are embodied in the licensed internal code, which uses the host ISA 
(IMPI or PowerPC). 

The AS/400 uses an object-based ISA (the MI). So in this way it also follows 
a similar philosophy to the Java VM and the CLI (Chapter 5). However, in 
the AS/400, the MI itself is object based, in the sense that there are architected 
object types and type-specific instructions built into the MI. The programs 
that run above the MI do not necessarily have to be object based, however. 
In contrast, with Java and the CLI systems, the V-ISA includes architected 
primitives that are then capable of supporting the object-oriented programs 
that run above the V-ISA level; the only architected objects with their own 
instructions are arrays. 

7.8.1 Memory Architecture 

The MI has a memory architecture composed of objects. The objects are 
completely isolated from one another and can only be accessed via pointers; 
see Figure 7.21. There are a number of object types supported and used by MI 
instructions. The simplest type of object is simply called a space, which, as the 
name suggests, consists of a space for data. Other objects contain object-specific 
information, i.e., a "functional part" as well as space for constants and other 
object-related data. An object can be accessed only through a pointer created 
specifically for that object. To access a location inside a space, a space pointer 
or data pointer (for typed data) must be used. The functional part of an object 
is implementation dependent and is manipulated only by MI instructions spe- 
cific to that type of object; the contents of the functional part are not otherwise 
visible above the MI. The MI-supported objects can be created, destroyed, and 
modified by programs. 

Actual address values contained in pointers are not made visible to software 
above the MI level. Pointers can be used only for accessing data, and pointers 
cannot be modified with ordinary instructions. If an attempt is made to write to 
a memory location containing a pointer, then its ability to be used as a pointer 
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is immediately destroyed. The implementation of this feature is described 
shortly. 

Protecting the integrity of pointers is an essential part of any object-based 
system. It is interesting to contrast this method of pointer protection with the 
one used in the ava VM, where references are protected by carefully track- 
ing their type so that illegal operations on references simply never occur in a 
properly verified program. 

Although the MI object-based memory architecture is reminiscent of the 
heap used in Java and MSIL, a fundamental difference is that the AS/400 
implements a system VM, so objects must persist over the lifetime of the sys- 
tem rather than just the lifetime of a process. There are no conventional files, 
from the perspective of the OS and applications. All storage, both in DRAM 
and disk, is one large object-based memory managed beneath the MI level. 
All long-term storage is done via permanent objects. Each of these permanent 
objects has a name that is contained in an MI object called a context (or a library 
in the operating system, OS/400). To get a pointer to an object, a program can 
specify a context and an object name; if the program is authorized to access the 
object, it is then given the correct pointer. This is similar to opening a file in 
a conventional system. Permanent objects persist in the system until they are 
explicitly destroyed. 

In addition to permanent objects, a process can create temporary objects 
for its use as it runs. These temporary objects do not necessarily have a 
pointer held in a context, and they remain in the system until the system is 
rebooted. This ensures that there are no active programs that have a pointer to 
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a temporary object at the time it is removed. There is no garbage collection in 
the AS/400, so this is the mechanism by which temporary space is returned to 
the system. 

The implementation of the object-based memory, including all of memory 
management, is done entirely below the MI level. Main memory is based 
on the conventional PowerPC segment/page-mapping structure, as described 
in Appendix Section A.8.1. The object pointers are encoded in 128 bits, but 
the upper 64 bits contain type information and in some cases authorization 
information, and the lower 64 bits are essentially a 64-bit PowerPC virtual 
address. 

The only significant extension to the PowerPC memory architecture is the 
adding of protection for object pointers, i.e., to prevent a program from over- 
writing a pointer in memory with an arbitrary value, and then later using it 
for an unauthorized memory access. This is accomplished by adding special 
instructions for loading and storing pointers and adding a "65th" bit to each 
memory doubleword. This 65th bit indicates whether the location contains a 
pointer (actually half of a 128-bit pointer). A load-pointer instruction checks 
this pointer bit; if set, it sets a condition flag that can be checked to verify that 
a valid pointer was loaded. A store-pointer instruction stores a pointer and 
sets the pointer bit(s). Every conventional (nonpointer) store always clears the 
pointer bit. Hence, any attempt to overwrite a pointer with a regular store 
results in what will be recognized as a nonpointer if it is ever accessed via a 
load-pointer instruction. 

7.8.2 Instruction Set 

The MI instructions are not intended to be executed directly, nor are they 
intended to be interpreted (although, in theory, they could be). They are 
essentially in a form that must be further compiled (translated) to the host 
platform's ISA before they can be directly executed. In the original System/38 
this was the IMPI; in the more recent systems, it is an extended PowerPC 
ISA. The MI ISA performs fairly conventional operations that can operate on 
normal data types held in a space. It also has instructions that operate on 
MI-defined objects. 

The MI instruction format, shown in Figure 7.22a, consists of an opcode 
and operand fields. The opcode is two bytes; the opcode extender (described 
shortly) is also two bytes. There are zero to n operand fields, each three 
bytes long (in the original System/38, two bytes). For basic arithmetic and 
logical instructions there is a long format and a short format. The long 
format is operandl 6-- operand2 op operand3, where "op" is the operation 
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Figure 7.22 AS/400 Instructions. (a) The general instruction format; (b) an example instruction that performs an 
addition and a multiway conditional branch. 

being performed. The short form is operandl e-- operandl op operand2, i.e., the 
first operand is both a source and a destination. 

An interesting feature of the MI is that every instruction can include a 
four-way conditional branch or can evaluate up to four predicate values (called 
indicators in AS/400). These are implemented via the extended opcodes. If 
there is an opcode extender, then the instruction also has up to four branch 
destinations (or addresses for indicator values). The 16-bit extended opcode 
is divided into four 4-bit fields. Each of the 4-bit fields encodes a condition, 
such as greater than zero, equal to zero, less than or equal to zero, etc. If the 
opcode extension is for a branch and the result of the instruction matches the 
first test condition, then there is a branch to the first branch destination; if it 
matches the second condition, it branches to the second destination, etc. A 
condition of zero indicates no test (and no destination is given). Similarly, for 
an indicator-setting instruction, the four destination fields correspond to up 
to four locations in memory where true/false predicate flags are stored. 

For example, the instruction in Figure 7.22b does the following ~ it per- 
forms an addition on addend1 and addend2, and the result is placed in sum. 
Then if the sum is zero, it branches to destination1; if the sum is greater 
than zero, it branches to destination2; otherwise, there is no branch, and the 
next instruction is executed. This instruction takes a total of 19 bytes, but it 
is important to keep in mind that this is the architected representation for the 
instruction. Before it is actually executed, it is translated to an implementation- 
dependent form that will be more compact, and it does the work of multiple 
RISC instructions. This instruction, for example, would likely compile to three 
PowerPC instructions, an add followed by two conditional branches. 

The next matter is the way the operands are specified. The operand fields 
point into a two-level table that contains descriptors of the operands; this 
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is called the object definition table, or ODT. As used here, the term object is 
being overloaded; these so-called objects are different from the true architected 
objects to be discussed later. The ODT, along with an instruction referencing 
it, is illustrated in Figure 7.23. The first-level table is the ODT direction vector 
(or ODV). This table consists of up to 16 million fixed-length fields that are 
directly addressed by the 3-byte instruction operand fields. The entries in 
the ODV contain a description of an operand type along with an optional 
pointer to the second-level table, the ODT entry string (OES). The OES is 
used for those operand descriptors that don't fit in the fixed-length ODV 
entry. 

In the example shown in Figure 7.23, two instructions in a program are 
shown along the top. The first instruction is an addn (add numeric). Its first 
operand is specified in ODT entry 32 and the other is in ODT entry 31. These 
operands are 2-byte binary (two's complement) numbers. The second operand 
is a constant (x4A23), and the pointer in ODT entry 31 points to the OES entry 
that holds the constant value. The result is also a 2-byte number (as indicated by 
entry 34). The second instruction takes the result ofthe first as one operand and 
a second constant (xl3DF) as the second and multiplies them to form a 4-byte 
binary result. In these arithmetic instructions the opcodes, add numeric and 
multiply numeric, are generic; the actual type of operation (two's complement, 
decimal, or floating point) is determined from the types of the operands given 
in the ODT. 

Note that the entries in the ODT indicate the types of operands and the 
data flow (e.g., that the result of the addn is an input to the mu] n). The actual 
storage locations for operands are assigned only after the MI is translated 
to the implementation instructions. At that time the specified operands may 
be assigned to registers, to a VMM-managed region of memory, or both. 



364 Chapter 7~Codesigned Virtual Machines 

The constant operands would likely be translated into immediate fields of 
implementation instructions. This is very much like the register assignment 
process ordinarily performed in a compiler backend; here, it is deferred to the 
VMM translator. 

As pointed out earlier, all logical memory resides within objects; therefore 
accessing operands in memory must be done through pointers. Pointers are 
another operand type that can appear in the ODT. A pointer is returned when 
an object is created or when a symbolic pointer (e.g., as would be held in a 
context) is resolved. 

As noted earlier, some instructions are object specific. The list of MI- 
supported objects is given below. Note that because the AS/400 was targeted 
at commercial applications, it has a number of objects intended to sup- 
port databases. The operating system can use these objects directly for its 
purposes (the OS is also object based), or it can use these objects as primitives 
to build OS-defined objects. 

Access group, Context~ objects used for object management 

Authorization list, User p r o f i l e ~  objects used for supporting security 

Byte string space, Data space, Dump space, S p a c e ~  objects whose primary 
use is to hold data 

Commit block, Cursor, Data space index, Dictionary, Index, Journal 
port, Journal space ~ objects whose primary use is to support database 
operations 

Class-of-service description, Mode descriptor, Process control space, 
Queue, User profile ~ objects for process management, used by the OS 

Controller description, Logical unit descriptor, Network description 
objects used to support I/O 

Module, Program ~ objects that contain translated code 

7.8.3 Input/Output 

Because of the focus on commercial applications, the I/O system in the 
AS/400 is a very elaborate one, based on I/O processors (IOPs), separate from 
the central processor. Consistent with the overall AS/400 philosophy, I/O is 
divided into implementation-independent and implementation-dependent 
parts, with the MI separating the two. The presence of IOPs simplifies the 
task of pushing the device-dependent aspects out of the central processor (and 
well below the MI layer). 
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At the level of the MI there is no secondary (disk) storage; rather, it is part of 
the unified memory architecture. In other words, disks are not considered to be 
part of the I/O system, and they have no presence above the MI level. All disk 
management software, drivers, etc. exist in the implementation-dependent 
part of the system. It should be pointed out that taking this approach is simpli- 
fied in an environment where a single company is designing the entire system, 
i.e., where there is a high degree of vertical integration. The I/O devices visible 
above the MI layer are divided into generic types, for example, printers, key- 
boards, graphics displays. The logical characteristics of each of these general 
types are characterized by MI-level system objects called logical unit descriptors. 
Similarly, device controllers that may be present in the system can each control 
multiple devices. Two other MI-level objects, the controller descriptor object 
and network descriptor object, contain the logical characteristics of device con- 
trollers and network interfaces. The operating system interacts with software 
below the MI level (and, in effect, with the I/O devices) through instructions 
that operate on the MI-level objects. 

7.8.4 The Processor Resource 

Above the MI level, the operating system establishes overall usage policies, 
for example, what the priorities the processes should be and what quotas of 
various resources should be. The actual implementation of the policy is below 
the MI layer. That is, the implementation-dependent part of the system actually 
manages the scheduling queues. 

Overall, many conventional operating system functions are done below the 
MI. This again reflects the overall integrated structure of the AS/400 design 
environment. When both the platform designers and the OS designers work at 
the same company (and largely at the same company site), it is easier to divide 
the OS functions in this manner. 

7.8.5 Code Translation and Concealment 

One of the more interesting aspects of the AS/400 is the way that it manages 
programs while concealing the implementation-dependent details. The process 
of compiling and translating a program is illustrated in Figure 7.24. First, 
a high-level language program is compiled, with the resulting MI code and 
object descriptor table being placed into a space object. Here, it is referred to as 
a template for an object yet to be created. Then a crea te  program instruction 
is executed. One of its source operands is a pointer to the space object holding 
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Figure 7.24 Compiling and Translating a Program on the AS/400. The steps of compiling an HLL program 
and translating it into an implementation-dependent form. 

the program template. This instruction is "executed," which in fact results 
in the complete translation of the template contents into a program object 
containing the implementation-dependent executable file, e.g., PowerPC code. 
The c rea t e  program instruction returns a result operand, which is a pointer 
to the program object containing the translated code. After being created, a 
program can be executed, and it can be maintained persistently or temporarily, 
just as any other object. 
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The contents of the program object cannot be directly observed above the 
MI level; i.e., the contents are concealed, just as with any other object. However, 
there are times when it may be desirable to look at the program code, for 
example, when debugging. To accomplish this, the original program template 
is also kept as part of the program object. Then the original program can be 
materialized, that is, given back to the user in its original, machine-independent 
form. 

This feature yields another interesting capability. Say that a program has 
been compiled on a given hardware platform and is stored as a persistent object. 
Then the hardware platform is changed, as when IBM changed the AS/400 plat- 
form to PowerPC. Because the original template is stored in the program object, 
the platform switch is transparent to the user; in particular, the user does not 
have to recreate the program object for the new host platform. Rather, when 
the user attempts to execute the program object on the new platform, the soft- 
ware below the MI layer will recognize that the translated code is for a different 
platform and use the original program template to produce a translation for 
the new host platform and place it in the program object. 

Finally, it is interesting to compare this overall approach to 
implementation-dependent concealment with that used by the other code- 
signed VMs discussed in this chapter. The other codesigned VMs perform both 
translation and caching of translated code in a concealed manner. This means 
that each time a program is executed, it must be translated from scratch and 
then held in a code cache until the program terminates, at which time the code 
cache contents are discarded. In the AS/400, the fact that programs must be 
translated is not concealed, yet the actual translated code is concealed (within 
an object). Because the translation process is not concealed, the system can 
maintain translated programs in a persistent way, by treating them like any 
other persistent objects. 

To some extent, modern codesigned VMs, as exemplified by the Transmeta 
Crusoe, should still be considered a somewhat experimental approach to com- 
puter design. This approach is based heavily on dynamic translation to a 
concealed code cache. Translations do not persist between successive program 
runs, so translation overhead is a major concern. On the other hand, it takes 
tens of milliseconds to access the disk when loading a conventional program 
or when performing other loading and linking tasks, possibly including addi- 
tional dynamic loading and linking, as the program runs. When viewed from 
this perspective, the time required for dynamic translation does not appear 
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so great, and, in a sense, it could be considered part of the loading process. 
Furthermore, the shift to just-in-time compilation for HLL VMs will tend to 
make this approach appear more conventional as time passes. 

The earlier AS/400 object-based approach, although successful and still 
used in the IBM iSeries machines, has not been copied in other commercial 
products. It is based on an unconventional separation of hardware and software 
functionality that probably works best in a completely vertically integrated sys- 
tem development environment. This design environment is much less common 
today than it was when the AS/400 (System/38) was first developed. A recent 
research project at the University of Illinois (Adve et al. 2003) advocates a new 
V-ISA that is in some respects similar to the AS/400 MI; it uses object-based 
memory architecture and a register-intensive instruction set. A primary goal is 
passing performance-critical information down to the hardware, where it can 
be more readily used. In other related work, the DELI project (Desoli 2002), 
builds on the earlier HP Dynamo project, and provides a callable interface into 
the emulation layer, thereby allowing application or system software the ability 
to interact with the emulation process. 

Thus far the only real example of a modern codesigned VM is the Transmeta 
Crusoe, although the IBM Daisy/BOA project was carried far into software 
development and simulation. Both of these systems use a target ISA based on 
VLIW, and the suitability of VLIW for general-purpose computing remains a 
topic for debate. The Transmeta processors are targeted at power efficiency; 
their performance is not at the same level as the high-end superscalar processors 
that dynamically reorder instructions. Because most contemporary processors 
use out-of-order superscalar designs, when evaluating performance it is dif- 
ficult to separate the codesigned aspect from the VLIW aspect to reach any 
conclusions regarding the overall suitability of the codesigned VM approach. 
The bottom line is that the codesigned VM approach remains a very interesting 
technology whose full potential remains to be fully determined. 

Finally, an interesting future application of codesigned VMs is to target 
multiple source ISAs with the same platform. That is, to develop a single 
processor capable of executing software from multiple, different ISAs, depend- 
ing on the emulation software that has been loaded into concealed memory. 
These convergence architectures (Gschwind et al. 2000) would, among other 
things, allow computers in server farms to be dynamically customized to fit the 
software they are called upon to execute. 



~ t was observed very early that many of the hardware resources in a typical 
computer system are underutilized. The concept of time sharing was devel- 

oped to improve resource utilization by allowing multiple users to access a 
single computer system simultaneously, with each user being given the illusion 
of having access to a full set of system resources. In order to create this illusion, 
a multiprogramming operating system essentially implements a process virtual 
machine for each application-level program and switches resources among the 
programs on a time-shared basis. 

System virtual machines take this concept one step further by providing 
a similar illusion for complete systems. A system VM environment is capable 
of supporting multiple system images simultaneously, each running its own 
operating system and associated application programs. Each operating system 
controls and manages a set of virtualized hardware resources, as illustrated in 
Figure 8.1. The virtual resources include a processor (or processors), storage 
resources, and peripheral devices needed to perform input and output (I/O) 
for the system. 

In a system VM environment, real resources of the host platform are 
shared among the guest system VMs, with a layer of software, the virtual 
machine monitor (VMM), managing the allocation of, and access to, the hard- 
ware resources of the host platform. The VMM owns the real system resources 
and makes them available to one or more guest operating systems that alter- 
nately execute on the same hardware. Thus, a guest operating system in a 
virtual machine environment is given the illusion of owning the resources it 
subsequently allocates to its various user programs. 

Each virtual resource may or may not have a corresponding physi- 
cal resource. When a corresponding physical resource is available, the 
VMM decides how access will be provided to virtual machines requiring its 
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Figure 8.1 Example System VM Environment. In this example, the Intel IA-32 platform is capable of 
simultaneously running the Linux, Windows, and Solaris operating systems, along with their 
applications. 

use; e.g., the resource may be partitioned or may be time shared. When a virtual 
resource does not have a matching physical resource, the VMM may emulate 
the action of the desired resource, typically via a combination of software and 
other resources that are physically available on the host platform. 

System virtual machines have a number of useful applications, some his- 
torical, some relevant today, and many that are likely to be important in the 
future. Some of these applications are described next. 

[] Implementing multiprogramming: Using multiple single-user virtual 
machines is a simple way of providing multiprogramming and time shar- 
ing without requiring a complete multiprogramming OS. Each user in a 
multiuser environment is given the illusion of having an entire machine, 
including the CPU, memory, and peripherals. Many of the users of VMs 
on early mainframe computers, such as the IBM System/370 and its succes- 
sors, used virtualization as an alternative to a time-sharing system. These 
users ran a simple, compact, and efficient single-user operating system 
called the conversational monitor system (CMS), instead of the monolithic 
time-sharing operating systems available at the time. 

�9 Multiple single-application virtual machines: This is an extension of the 
multiple single-user virtual machine concept. Running each application 
in its own virtual machine increases the robustness of the system. Erratic 
behavior of one application and its associated OS on a conventional system 
could bring down the machine. Ifthis happens on a virtual machine, it is less 
likely to affect the operation of another application running on a different 
virtual machine. This may be useful in situations where a new application 
might corrupt the entire system because of either bugs or viruses. 

a Multiple secure environments: A system VM provides a sandbox that iso- 
lates one system environment from other environments, thus ensuring a 
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level of security that may not be provided by a single operating system. For 
example, a user accustomed to running applications on a private machine 
may be reluctant to transfer the applications to a Web server unless there is 
some guarantee that the user's resources and activity cannot be accessed or 
monitored by other users of the same server. In such a situation, a virtual 
machine can be used to provide an environment that, for all practical pur- 
poses, is isolated from the others and through which it is not possible for 
one user to observe or change another's data and activity. 

�9 Managed application environments: In an organization that provides a 
core set of supported applications to users who also want to install their 
own applications, VM technology allows the core set of applications to be 
placed on one virtual machine, protected from other virtual machines on 
which users install new applications or develop their own programs. 

�9 Mixed-OS environments: A single hardware platform can support two 
different operating systems concurrently. A user may prefer office pro- 
ductivity tools that run on one operating system, for example, but prefer 
another operating system for application development. The user can do 
both by installing two virtual machines on a single hardware platform, one 
for each operating system. 

�9 Legacy applications: When a new version of an OS is released, it is 
not uncommon for OS developers to support seldom-used features with 
degraded performance while supporting new features that allow most new 
applications to run with improved performance. In this situation, users 
who need to run old applications without degraded performance can use 
one virtual machine to run the "legacy" application under the old OS while 
using another VM to take advantage of the presumably improved features 
in the newer version of the OS. 

�9 Multiplatform application development: Software developers often need 
to implement and support software that works on multiple operating sys- 
tems. Virtual machine technology allows software developers to test their 
software using multiple virtual machines on the same hardware platform. 
This is both more convenient and more cost effective than having multiple 
sets of hardware, one for each OS. 

�9 New system transition: A system virtual machine allows a user to migrate 
to a new operating system in a gradual way. The user can try out a new oper- 
ating system on one virtual machine even while the old operating system 
is running applications on a different virtual machine. The old operating 
system can be removed from the system after it has been ascertained that 
all relevant applications work correctly on the new operating system. 
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System software development: In large systems, it is sometimes necessary 
to develop (or test) new system software while the same system is being 
used for running important applications. In this situation it could be very 
costly ifa bug in the code under development were to bring down the entire 
system. This situation can be avoided by encapsulating the development 
environment on a virtual machine separate from the virtual machine where 
the production-level applications are running. 

Operating system training: It is often necessary to demonstrate techniques 
and effects of changing parameters or policies when training system man- 
agement personnel. Such training is better done on a copy of the operating 
system running on a virtual machine than on the operating system running 
on the real machine so that other users of the operating system do not suffer 
from unexpected effects. 

Help desk support: Help desk service personnel can bring up a virtual 
machine that emulates the hardware configuration of a client in order to 
determine the nature and cause ofproblems the client may be encountering. 
It is not necessary to have all possible configurations of hardware physically 
available ~ virtual machine technology allows a single hardware platform 
to be set to any of several different configurations. 

Operating system instrumentation: Running the operating system on a 
virtual machine allows the virtual machine monitor to instrument accesses 
to hardware resources selectively. Not only can all events of a particular 
type, e.g., page faults, be counted, they can also be logged with detailed 
information about their nature, their origin, and how the requests were 
satisfied. Moreover, the programming for all such instrumentation and 
measurements can be encapsulated outside the operating system, com- 
municating solely with the virtual machine monitor. Today, it is quite 
common for operating system researchers to conduct most of their experi- 
ments using virtual machines rather than directly on the hardware platform. 
Keefe (1968) describes early work on IBM mainframes on system evalua- 
tion using a virtual machine. The User Mode Linux system (UMLinux 
2003) also uses virtual machine technology to test the fault tolerance of a 
Linux system. 

Event monitoring: Some virtual machines provide capabilities that cannot 
be performed on a native system. For example, virtual machines lend them- 
selves better to providing traces of execution or dumps of the machine state 
at points of interest. Similarly, the ability of virtual machines to replay a 
system execution from some saved state is useful for analyzing the behavior 
of a system to understand unexpected behavior. 
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System encapsulation: System virtual machines provide a convenient way 
of encapsulating the state of the entire machine. This is useful for check- 
pointing machine state, with a view to resuming execution at a different 
time or even on a different host machine. 

We are nearly ready to describe system VMs in more detail. Before doing 
so, however, we first point out that this chapter considers a very important 
class of system VMs but not all system VMs. In particular, as described in the 
taxonomy given in Section 1.5, this chapter will focus on system VMs where the 
ISA of the host and guest are the same. Furthermore, most of the attention will 
be given to uniprocessor systems. Important aspects of VM implementation 
related to other types of system VMs can be found elsewhere in this book, as 
summarized shortly. 

Multiprocessor virtualization is a simple extension of uniprocessor virtual- 
ization. However, there are some special considerations when a multiprocessor 
is being virtualized. One consideration is that with a single processor, virtu- 
alization must be done by time sharing the single processor resource. With 
multiprocessors, however, virtualization can be achieved by partitioning the 
multiple hardware processors among the virtual systems. The choice between 
time-sharing processors and partitioning (or using both) opens up a number 
of additional design alternatives when multiprocessors are being virtualized. 

Another important consideration for shared-memory multiprocessors, 
particularly when the host and guest ISAs are different, is the memory models 
supported by the guest and host platforms. The two aspects of memory models 
that are crucial are memory coherence and memory consistency. Both of these 
involve the way in which memory operations performed by one processor are 
observed by other processors in the systems. If the host system does not support 
the same coherence and/or consistency models as the guest assumes, then the 
virtualization process may need to take special steps to ensure compatibility. 
We discuss considerations that are specific to multiprocessor virtualization in 
Chapter 9. 

When the guest and host ISAs are different, software in the VMM can 
emulate the virtual ISA using the techniques described in Chapters 2-4. 
Chapter 9 will address some of the system VM issues that arise where the 
ISA of the guest is different from that of the host. 

In this section we provide an introduction to the various parts of a hardware 
platform, with a view to understanding how virtualization can be achieved. 
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Figure 8.2 Hardware Replication for a Two-User Virtual Machine System. The terminal controller collects and tags 
the requests from multiple users. If such a piece of hardware is not available, the computer backplane must 
have enough slots to accommodate the adapters for both sets of personal devices. 

8.1.1 Outward Appearance 

The illusion of multiple machines is an important part of many VM sys- 
tems. This illusion can be accomplished purely by software means or, in some 
cases, through a replication of a subset of the hardware resources. For example, 
there may be cases where the physical resources used directly by individual 
users ~ namely, the keyboard, display, and personal peripheral devices, such 
as a CD ROM drive ~ are replicated, with one dedicated set for each user, while 
the rest of the hardware is shared via virtualization software. This situation is 
shown in Figure 8.2. 

Alternatively, when a single user wishes to run two operating systems on 
the same hardware, there is no need to replicate any of the physical devices. Yet 
the user can be provided with the illusion of running both operating systems 
simultaneously. By using a hardware switch or, more typically, by entering a 
special key sequence on the keyboard, all the personal devices can be switched 
from one virtual machine to the other. 

In some system VM environments, one of the operating systems may be 
considered more important than the other. The user interface of the first 
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provides a window displaying the full user interface of the second. Interac- 
tions with applications running on the second operating system take place 
within this window. In a hosted virtual machine, for example, if the host oper- 
ating system were Windows, a graphical window could be established on the 
desktop interface to interact with a virtual machine on the same platform. This 
solution is similar to the DOS window that may be brought up within the 
Windows desktop interface to run legacy DOS applications. 

8.1.2 State Management 

The architected state of a computer is contained in and maintained by the 
hardware resources ofthe machine. From a performance point ofview, all state- 
holding hardware resources are not equivalent. There is usually an architected 
hierarchy of state resources, ranging from registers at the top of the hierarchy 
to secondary storage (e.g., disks) at the lower end of the hierarchy. In a VM 
system, each virtual machine has its own architected state information, and 
there may or may not be adequate resources in a host hardware platform to 
map each element of a guest's state to its natural level in the host's memory 
hierarchy. For example, a guest's register state may actually be held in the main 
memory of the host platform as part of a register context block. 

In normal operation, the VMM periodically switches control among the 
guest VMs. Regardless of where the state is actually held, as operations on the 
guest's state are performed (e.g., via instruction execution), the state main- 
tained on the host machine should be modified just as it would be on the 
guest's native platform. This is essentially the VM isomorphism discussed in 
the book's introduction and illustrated in Figure 1.2. There are two basic ways 
of managing guest state so that this is accomplished. 

One way is to employ a level of indirection, by holding the state for each 
guest in fixed locations in the host's memory hierarchy with a VMM-managed 
pointer indicating the guest state that is currently active. As the VMM switches 
among guest systems, it changes the pointer to match the current guest. This 
is illustrated in Figure 8.3a, where the pointer actually points to the register 
context block of the currently active guest virtual machine. This is analogous 
to the situation in virtual memory systems, where the page table pointer is used 
by the operating system to point to the address space of the currently active 
process. 

The approach of using indirection can be relatively inefficient if the 
memory resource that holds state in the guest VM has characteristics that are 
different from those on the native platform, as in the example of Figure 8.3a, 
where the register state is actually held in memory. In such a case, in order to 
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Figure 8.3 Methods of Maintaining Virtual State Illustrated for a Register File. (a) Using indirection, (b) by copying. 
The boxes at the right indicate the actions taken when activating a virtual machine and copying a register 
value. In the first case, the value corresponding to a register is loaded from a table in memory and copied back 
to another location in the table. In the second case, the registers are used directly to accomplish the move. 
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perform a copy operation from register A ofvirtual machine 2 to register B ofthe 
same virtual machine, the VMM would have to perform a memory-to-memory 
copy by loading the value in the memory location representing register A into 
some temporary register and then storing the value in the memory location 
corresponding to register B. Such a copy takes two memory-access instructions 
and could take more instructions if an address register must be loaded with a 
pointer to the location of the register file in memory. 

To avoid this inefficiency, a second approach for managing guest state is to 
copy a guest's state information to its natural level in the memory hierarchy 
whenever it is activated by the VMM and to copy it back when a different guest 
is activated. For example, in Figure 8.3b, the VMM copies the entire guest 
register contents into the host's register file at the time virtual machine 2 is 
activated by the VMM (after saving the registers of the previous guest). With 
this approach, the operation of moving a value from register A to register B 
is achieved by directly executing a native register-move instruction. In many 
system VM implementations, the goal is to execute guest code natively (i.e., 
without emulation) on the host platform. Thus, in the register example, after 
the one-time overhead of switching out the old virtual machine registers and 
switching in the registers of virtual machine 2, execution can proceed at the 
same rate as on a machine running the guest natively. 

The choice between indirection and copying depends on the frequency of 
use and whether the guest state being managed by the VMM is held in a different 
type of hardware resource than on a native platform. For frequently used state 
information, such as the general-purpose registers, it is usually preferable to 
swap the state of the virtual machine to the corresponding real resource each 
time the virtual machine is activated. 

8.1.3 Resource Control 

Within a system VM environment, hardware resources, including the pro- 
cessor resource, are assigned to a VM at the time it is created according to 
configuration specifications. Once resources are given to a guest VM, it is 
important that there be a way for the VMM to get them back so that they can 
be assigned to a different VM. Thus, the VMM must maintain overall control 
of all the hardware resources, even though they are temporarily being used by 
the guest VM currently running. This section examines ways in which this can 
be achieved. 

First note that a similar issue arises in the case of conventional time-sharing 
systems ~ multiple jobs are concurrently being executed on the machine, with 
each job having full access to its resources at any given instant. However, there 
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are some resources in the machine that are not directly accessible to the user 
application but accessible only to the operating system. One such resource is 
the interval timer, which, after being loaded with a value by the operating 
system, counts down clock ticks and triggers an interrupt when the value it 
holds becomes zero. Before passing control to a user process, the operating 
system initializes the timer with the maximum period of time it will allow the 
user process to run. The timer interrupt will then guarantee that control is 
transferred back to the operating system within the maximum time interval. 
Thus, the operating system uses the timer to keep control of the processor by 
ensuring that no user application can run for an indefinite length of time. And, 
because the OS has control of the processor, it can then control all the other 
resources. This control issue is similar to the one discussed in connection with 
runtime control of emulation frameworks in Chapter 3. 

The situation is similar in a system VM environment. Here, the principal 
issue is that of time sharing resources among the different virtual machines. 
We will see in Section 8.2.1 that a convenient way to provide the VMM with 
overall control is for the VMM to intercept all accesses to so-called privileged 
resources, such as the interval timer. These privileged resources, therefore, 
are not used directly by the individual virtual machines ~ rather, the VMM 
emulates the operation of these resources at all times. Instead of allowing 
the operating system in a virtual machine to field the timer interrupt, for 
example, the VMM first handles the interrupt itself. The handler for the timer 
interrupt includes code that saves the state of the current guest virtual machine, 
determines the next virtual machine that should be activated, and loads the 
state for the next virtual machine to be run. It accomplishes this, as mentioned 
earlier, either by changing pointers, by copying state into hardware resources, 
or by doing both. Figure 8.4 depicts scheduling actions taken by the VMM. 

There may be additional opportunities for the VMM to get control of 
the system other than through interval timer interrupts. For example, since 
privileged instructions encountered in the user mode must, as noted earlier, 

Figure 8.4 Actions Taken by the VMM in Retiring One Virtual Machine and Activating the Next Virtual Machine. 
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be intercepted and emulated by the VMM, the VMM gains control whenever 
the guest operating system issues privileged instructions (the mechanism for 
doing so is described in Section 8.2). 

A fair scheme for allocating hardware resources to virtual machines is 
one in which the virtual machines get ownership of the resources in turn for 
roughly equal amounts of time. The issues here are similar to the issues that 
arise in multiprogrammed operating systems. If the time allocated to each vir- 
tual machine is large, there is the possibility that the resources are not optimally 
utilized. On the other hand, if the time allocated is small, the overhead incurred 
in switching between the virtual machines begins to degrade performance. 

For a fair scheme to work, the guest operating system on a virtual machine 
must be denied direct access to the interval timer facility so that it cannot 
reschedule the next timer interrupt. Furthermore, in order to make operation 
under a virtual machine completely transparent, the guest operating system 
should not be allowed to read the real timer value set by the VMM. (This 
transparency is needed to prevent the operating system from behaving in a 
different manner when running under a VMM than it would on a real machine.) 
However, as we will see later in the chapter, the VMM can supply the guest 
with an emulated virtual interval timer. 

Strict VMM emulation of a guest's timer interval could potentially lead 
some user code to run for too long a time, however, starving other virtual 
machines from using the hardware resources. Hence, the VMM must examine 
every guest setting of the timer interrupt and override the requested value if it 
has the potential of being unfair to other virtual machines that may be running 
on the system. This is an instance where the emulation of privileged resources 
must be done by the VMM with a view to efficient and fair operation of the 
entire virtual machine system rather than for the performance of an individual 
guest. 

8.1.4 Native and Hosted Virtual Machines 

It should be clear by now that the VMM is the key component in any system 
VM environment. The VMM is responsible for scheduling and managing the 
allocation of hardware resources to the various guest virtual machines. Hence 
it is also the point of control for the shared physical resources in the system. 
Such resources include the registers in the CPU, the real memory in the system, 
and the various I/O devices attached to the system. For efficient operation of 
the system, therefore, at least some part of the VMM implementation should 
have privileges higher than the actual privileges of the guest virtual machines 
it supports. By actual privilege, we mean the privilege the code has on the 
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Figure 8.5 Native and Hosted VM Systems. (a) The operating system of a traditional uniprocessor executes in 
the privileged mode. (b) In a native VM system, the VMM operates in the privileged mode. (c-d) A 
trusted host operating system executes in the privileged mode in a hosted VM system. In both systems, 
the guest operating system resides in the virtual machine and operates at a less privileged level. The 
VMM of a hosted system may work entirely in the user mode (c) or in dual mode (d) when parts of 
the VMM operate in the privileged mode. 

hardware while running in the virtual machine environment. This, as we will 
see shortly, may be different from the privilege that is perceived on the guest. 

As pointed out earlier, the relationship between the VMM and virtual 
machines is analogous to the relationship between an operating system and 
application programs in a conventional time-shared system. In the latter, the 
operating system typically works in a privilege level higher than that of the 
applications, e.g., in system mode versus user mode, as shown in Figure 8.5a. 
A virtual machine system in which the VMM operates in a privilege mode 
higher than the mode of the guest virtual machines is called a native VMsystem. 
In a native VM, the VMM is the only software that executes in the highest 
privilege level defined by the system architecture, as depicted in Figure 8.5b. 
Conceptually, the VMM is first installed on the bare hardware, and the guest 
operating systems are then installed on top of the VMM. The guest operating 
systems and other less privileged applications run in levels of privilege lower 
than that of the VMM. This typically means that the privilege level of the guest 
OS is emulated by the VMM. Native VM systems have been used and studied 
extensively and are discussed in detail in upcoming sections. 

For user convenience and implementation simplicity, it is often advanta- 
geous to install a virtual machine system on a host platform that is already 
running an existing OS. Such a system is called a hosted VM system (in this case 
the term host refers to the underlying OS). In a hosted VM system the VMM 
utilizes the functions already available on the host OS to control and manage 
resources desired by each of the virtual machines. Modifying a proprietary 
commercial operating system is often not possible, either because the source 
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code is unavailable or because of licensing agreements. In these cases, the VMM 
may be implemented at the user level, a privilege level below that of the host 
operating system, as shown in Figure 8.5c. Such a system is commonly referred 
to as a user-mode hosted VM system. For efficiency reasons, however, it is 
desirable to have at least part of the VMM work in the most privileged mode. 
This can often be achieved by modifying the host operating system through 
mechanisms commonly provided to extend the functionality of an operating 
system, such as kernel extensions or device drivers. Such a system that has parts 
of the VMM operating in a privileged mode and other parts in nonprivileged 
mode, as depicted in Figure 8.5d, is referred to as a dual-mode hosted VM 
system. We will examine features of such systems further in Section 8.4.3. 

8.1.5 IBM VM/370 

The first virtual machine environment was the IBM System/360 Model 40 VM 
(circa 1965) (Adair et al. 1966; Creasy 1981). The intention of the developers 
was to build a time-sharing system that extended the then-novel concept of 
virtual memory to other parts of the computer system. After debating the 
alternatives, the design team decided that the most appropriate interface to 
provide to the user would be the full System/360 architecture interface (the 
ISA) rather than just the user-level architectural interface enhanced by system 
library functions (the ABI). The perceived advantage was that this would be 
the best way to protect users from one another while preserving compatibility 
as the System/360 architecture evolved. It was not until much later, with a 
model of the System/370, that VM became mainstream. We will refer to the 
IBM virtual machine in the rest of the chapter as the IBM VM/370 ~ many 
of the principles are still in use today in the z/VM running on the IBM zSeries 
mainframes. An informative account of the development of VM on the IBM 
platforms is provided in Varian (1997), while a survey of virtual machine 
research at that time appears in Goldberg (1974). 

The virtual machine monitor of VM/370 was called the control program 
(CP). The CP design team also developed a single-user operating system called 
the conversational monitor system (CMS), mainly to demonstrate the advantages 
of modularization for system evolution. The CP/CMS design separated the 
function of resource management from the function of providing services to 
the user. The success of the project was in large measure due to the design of the 
System/370 architecture, which allowed an elegantly simple implementation of 
the virtual machine concept. 

Even though CP and CMS are often referred to as a pair, one can exist 
without the other. In fact, CMS was developed on the bare machine before 



382  �9 Chapter 8~System Virtual Machines 

CP existed, and CP has hosted many operating systems in its life, including, 
most recently, Linux. As its importance and popularity grew, special hard- 
ware features were added to the System/370, primarily to reduce virtualization 
overhead. Some of these enhancements will be discussed in Section 8.5. 

The key aspect of virtualizing a processor lies in the execution of the guest 
instructions, including both system-level and user-level instructions. There 
are two ways this can be done. The first is through emulation. As described 
in Chapter 2, emulation can be performed through either interpretation or 
binary translation. Emulation involves examining each guest instruction in 
turn, either repeatedly when interpreting or once when performing binary 
translation, and emulating on virtualized resources the exact actions that would 
have been performed on real resources. Emulation is the only processor virtu- 
alization mechanism available when the ISA of the guest is different from the 
ISA of the host. As we shall see presently, however, an emulation-like process 
may be necessary at times even when the two ISAs are identical. Such a situ- 
ation occurs when instructions that interact with hardware resources need to 
operate differently on a virtualized processor than on a real processor. 

The second processor virtualization method uses direct native execution on 
the host machine. This method is possible only if the ISA of the host is identical 
to the ISA of the guest, and even then only under certain conditions. It is 
always possible to build a virtual machine by using emulation. However, even 
with sophisticated techniques such as binary translation, the performance of 
a program on the virtual machine will rarely be as good as its performance on 
native hardware. Therefore, a basic design goal for system VMs with identical 
guest and host ISAs is that a significant fraction of the instructions execute 
directly on the native hardware. If this is possible, a program will often run 
on a virtual machine at about the same speed as on native hardware, unless 
there are memory or I/O resource limitations. The overhead of emulating 
any remaining instructions depends on several factors, including the actual 
number of instructions that must be emulated, the complexity of discovering 
these instructions, and the data structures and algorithms used for emulation. 

The following three subsections characterize those instructions in an ISA 
that must be emulated in order for a VMM to be successfully constructed. The 
techniques used for emulating the special instructions depend on the charac- 
teristics of the ISA. We will see that for a well-behaved, efficiently virtualizable 
ISA, a trap occurs naturally when an instruction needs to be emulated, the 
trap handler jumps to an appropriate interpreter routine, interprets the single 
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instruction, and returns control back to the original program. In other, less 
well-behaved ISAs, the difficulty of isolating the instructions that need to be 
emulated may force a larger number of other instructions to be emulated. 
Section 8.2.4 addresses the problem of discovering such instructions. In these 
cases, emulation performance can be improved by translating a group consist- 
ing of several instructions at a time using techniques similar to those described 
in Chapter 2. 

8.2.1 Conditions for ISA Virtualizability 

In a classic paper (Popek and Goldberg 1974) inspired by Goldberg's doctoral 
dissertation (Goldberg 1972), Popek and Goldberg formally derived sufficient 
conditions under which an ISA can efficiently support virtual machines. We 
summarize in this subsection the valuable insight regarding the construction 
and understanding of system VMs provided by this work. 

In Section 8.1.4 we characterized both native and hosted system VMs. There 
tends to be an inherent inefficiency in purely hosted VMs because, as we will 
see in Section 8.4.3, the VMM needs to rely heavily on services of the host 
operating system. Therefore, we restrict the discussion here to native system 
VMs. In a native system VM, the VMM runs in system mode, and all other 
software runs in user mode. Note that this "other" software includes some 
software originally intended to run in the system mode, a guest operating 
system being the prime example. The VMM keeps track of the intended (i.e., 
virtual) mode of operation of a guest virtual machine but sets the actual native 
hardware mode to u s e r  mode whenever executing instructions from the guest 
virtual machine, regardless of whether it is user or system software. 

The original analysis by Popek and Goldberg was for "third-generation" 
machines, such as the IBM System/370, the Honeywell 6000, and the Digital 
PDP-10, but it still holds for present-day machines (one could argue that from 
an ISA perspective, we are still in the third generation!). The assumptions made 
in the analysis are as follows: (a) The hardware consists of a processor and a 
uniformly addressable memory, (b) the processor can operate in one of two 
modes, the system mode or the user mode, (c) some subset ofthe instruction set 
is available only in the system mode, and (d) memory addressing is done relative 
to the contents of a relocation register (i.e., a fixed value is added to a virtual 
address to arrive at a physical memory address). The analysis could be extended 
to more than two modes and to more complex memory architectures, but the 
fundamental results remain unchanged. Input/Output is not considered, but 
the approach and analysis can also be extended to I/O in a straightforward 
manner. 
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The machine being virtualized is modeled as a 4-tuple, S -- <E, M, P, R>, 
where E refers to the executable storage, M refers to the mode of operation, 
P is the program counter, and R is the memory relocation bounds register. 
The memory of the machine is assumed to be located contiguously in physical 
memory from the location given in the relocation bounds register R. The relo- 
cation bounds register, as the name suggests, is a pair indicating the physical 
location and the size of the virtual memory space. The extension to paged or 
segmented virtual memory systems is straightforward. A memory trap occurs if 
the address accessed by a program falls outside the bounds indicated by R. The 
trap atomically saves the current state of the machine, represented by M, P, and 
R in location 0, and copies the contents of location 0 of another process into 
M, P, and R ~ this essentially has the effect of performing a context switch. 

A privileged instruction is defined as one that traps if the machine is in user 
mode and does not trap if the machine is in system mode. It is not sufficient 
for the instruction's behavior to be different in the two modes, and by definition 
the privileged instruction musttrap when executed in the user mode. Note that 
this strict definition is for the purpose of this particular analysis and may differ 
from definitions used elsewhere when describing specific ISAs. Here are two 
examples of privileged instructions. 

�9 Load PSW (LPSW, IBM System/370): This instruction loads the processor 
status word (PSW) with a doubleword from a location in memory if the 
processor is in system mode. If it is not in system mode, the machine traps. 
The PSW contains bits that determine, among other things, the state of 
the CPU. One of these bits, the P bit, specifies whether the CPU is in user 
or system mode. Another part of the PSW is the instruction address (or 
program counter). If this instruction could be executed in user mode, a 
malicious user program could put itself in system mode and get control of 
the system. 

Set CPU Timer (SPT, IBM System/370): This instruction replaces the CPU 
interval timer with the contents of a location in memory if the CPU is in 
system mode and traps if it is not. Once again, if this instruction could be 
executed in user mode, it would be possible for a user program to change 
the amount of time allocated to it before being swapped out. 

As noted earlier, in a virtual machine environment, an operating system 
running on a guest virtual machine should not be allowed to change hardware 
resources in a way that affects the other virtual machines or the performance 
of programs outside the realm of its own virtual machine. Hence, even the 
operating system on a virtual machine must execute in a mode that disallows 
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Figure 8.6 Types of Instructions. (a) Sensitive and privileged instructions overlap (although not necessarily 
completely). (b) Sensitive instructions and innocuous instructions are complements of each other. 

the direct modification of system resources such as the PSW and the CPU 
interval timer. Consequently, all of the guest operating system software is 
forced to execute in user mode. 

To specify instructions that interact with hardware, two categories of special 
instructions are defined. Control-sensitive instructions are those that attempt to 
change the configuration of resources in the system, for example, the physical 
memory assigned to a program or the mode ofthe system. (IfI/O were included 
in the model, then I/O would also be considered a resource.) Behavior-sensitive 

instructions are those whose behavior or results produced depend on the con- 
figuration of resources ~ in the model, this includes the value in the relocation 
bounds register or on the mode of operation. If an instruction is neither control 
sensitive nor behavior sensitive, it is termed innocuous (see Figure 8.6). 

The LPSW and SPT instructions mentioned earlier are examples of control- 
sensitive instructions. Their use allows an operating system to change some 
basic resource of the system, such as the mode of operation or the CPU timer. 
Examples of behavior-sensitive instructions follow. 

Load Real Address (LRA, System/370): This instruction takes a virtual 
address, translates it, and saves the corresponding real address in a specified 
general-purpose register. The behavior of this instruction (i.e., the result 
value stored in the register) depends on the state (mapping) of the real 
memory resource. 

Pop Stack into Flags Register (POPF, Intel IA-32)" This instruction pops 
the flag registers from a stack held in memory. One ofthe flag registers is the 
interrupt-enable flag, which can be modified only in privileged mode. In 
user mode, this instruction overwrites all flags except the interrupt-enable 
flag. For the interrupt-enable flag, the instruction acts as a no-op when 
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executed in user mode. The behavior of this instruction therefore depends 
on the mode of operation. 

The functions of the VMM can be divided into three parts, a dispatcher, 
an allocator, and a set of interpreter routines. These components of the VMM 
are depicted in Figure 8.7. The dispatcher is the top-level control module of 
the VMM, which decides the next module to be invoked; it is invoked by the 
interrupt handler when the hardware traps. The allocator decides how sys- 
tem resources are to be allocated, e.g., how to allocate memory resources in 
a nonconflicting manner. The allocator is invoked by the dispatcher when- 
ever there is a need to change machine resources associated with some virtual 
machine. 

As we shall see, in a well-constructed VMM, any instructions that attempt 
to change resource assignments or whose behavior is affected by the assign- 
ment of resources will trap to the VMM dispatcher. The trapping instructions 
that attempt to change resource assignments are then directed by the dis- 
patcher to the allocator. The dispatcher directs all remaining traps to the 
interpreter routines. The interpreter routines, one per privileged instruction, 
emulate the effects of the instructions when operating on virtual resources. 
After an interpreter routine finishes, control is passed back to the guest 
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virtual machine at the instruction immediately following the one that caused 
the trap. 

According to Popek and Goldberg, a potential virtual machine monitor 
must satisfy three properties before qualifying as a true virtual machine moni- 
tor: efficiency, resource control, and equivalence. Efficiency implies that all 
instructions that are innocuous must be executed natively on the hardware, 
with no intervention or emulation by the VMM. Resource control implies that 
it should not be possible for guest software to directly change the configuration 
of any system resources available to it, e.g., real memory. The allocator must be 
invoked if the guest software makes any such attempt. Equivalence implies that 
any program executing on a virtual machine must behave in a manner identical 
to the way it would have behaved when running directly on the native hardware, 
with only a few exceptions. The allowed exceptions are that (1) performance 
can be slower due to the emulation (e.g., interpretation) of certain instructions, 
(2) there may be a limitation on the extent of resources available, e.g., disk space, 
because of sharing among virtual machines, and (3) there may be differences 
in performance due to changed timing relationships, e.g., between the I/O and 
the processor. 

Here, the reader should note that this formulation of a VMM is somewhat 
at odds with the common definition and the definition used elsewhere in this 
book. It is intuitively clear that the resource control and equivalence properties 
should hold for a VMM. Furthermore, it should always be possible to construct 
a VMM with these properties, however inefficient, by employing emulation 
techniques whenever necessary. In effect, it is these two properties that we (and 
others) typically assume when defining a VMM. In the Popek and Goldberg 
formulation, a VMM must also be "efficient" in order to be considered a true 
VMM. And it is the efficiency condition that most heavily depends on the 
condition stated shortly ahead in Theorem 1. 

An alternative formulation would define a VMM to have only the properties 
of resource control and equivalence and then to define an efficient VMM to be 
a VMM that also satisfies the efficiency property. With the exception of the 
Popek and Goldberg theorems, we use these alternative definitions of VMMs 
and efficient VMMs in this book. Here, then, is the key theorem regarding 
(efficient) VMMs. 

Theorem 1: For any conventional third-generation computer, a virtual 
machine monitor may be constructed if the set of sensitive instructions for 
that computer is a subset of the set of privileged instructions. 

This is a surprisingly simple theorem, yet it has important implications. 
It says that an efficient virtual machine implementation can be constructed if 
instructions that could interfere with the correct or efficient functioning of the 
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Figure 8.8 Illustrating Popek and Goldberg's Theorem 1. In (a), the sensitive instructions are not a subset of 
the privileged instructions and hence the system may not be efficiently virtualizable. On the other 
hand, the system in (b) satisfies the condition of Theorem 1. 

VMM (i.e., sensitive instructions) always trap in the user mode. All nonprivi- 
leged instructions can be executed natively on the host platform; no emulation 
is needed. The trapping of sensitive instructions, such as ones that attempt to 
reallocate system resources or depend on system resource assignments, force 
control to go back to the VMM. The VMM can then examine the action desired 
by the virtual machine that issued the sensitive instruction and reformulate the 
request in the context of the virtual machine system as a whole. Figure 8.8 
illustrates the sufficient condition contained in the theorem. 

The VMM interprets a sensitive instruction according to the prevailing 
status of the virtual system resources and the state of the virtual machine. Take, 
for example, the sensitive instructions LPSW and SPT described earlier in this 
section. These System/370 instructions are also privileged and hence satisfy the 
condition indicated in Theorem 1. Let's assume that a particular instance of 
an LPSW instruction has the net effect of going from one privileged state to 
another state with the same set of privileges. The LPSW interpreter routine in 
the VMM determines that this particular transfer is harmless by examining and 
comparing the contents of the location being loaded with the contents of the 
virtual copy of the PSW it maintains for that virtual machine. It then transfers 
control appropriately by modifying the contents of the hardware PSW, using 
an LPSW of its own. This LPSW does not trap because the VMM operates in 
system mode. Figure 8.9 illustrates this process. 

On the other hand, if the LPSW instruction were executed by a user applica- 
tion running on the virtual machine, the trap handler would generate a virtual 
trap that is then passed to the virtual machine. The guest operating system 
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Figure 8.9 Handling of a Privileged Instruction in a Guest OS. The privileged instruction causes a trap because 
the guest OS is operating in user mode. The trap goes to the dispatcher in the VMM, from where it 
is directed to the special interpreter routine for the specific instruction. 

handles this trap in exactly the same way as a native machine would when an 
attempt is made to execute a privileged instruction in user mode. 

When interpreting the SPT instruction, the VMM examines the contents 
of the location to be loaded into the CPU timer. It will allow this value to be 
loaded if the value (say, t) is less than the time remaining from the allocated 
time for the virtual machine itself (t < T). Otherwise it will load the timer 
with the time remaining for the virtual machine (T). Meanwhile, it keeps the 
time difference (t - T) in an internal table so that this time can be restored 
when the guest VM is again activated. In this manner, the VMM ensures that 
it always remains in control, even in the presence of attempts by some virtual 
machine to monopolize the system resources. If the guest OS should attempt to 
read the timer value, the VMM will reconstruct the correct virtual timer value 
and return it to the guest. 

There are several simplifying assumptions made concerning the types of 
architectures under consideration in developing Theorem 1, and some practical 
aspects such as I/O and asynchronous interrupts have been ignored. Yet the 
theorem is useful because it suggests a convenient way of testing an ISA to 
determine the feasibility of an efficient virtual machine monitor. The theorem 
also provides clear guidelines for computer architects wishing to ensure that a 
new ISA lends itself to efficient virtualization. 
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8.2.2 Recursive Virtualization 

It may sometimes be desirable to run a virtual machine system as one of the 
virtual machines. This implies that the VMM itself would be running in the 
user mode under the control of a copy of itself running in the privileged mode. 
The concept of running the virtual machine system on a copy of itself is called 
recursive virtualization (Figure 8.10). 

There are two effects that usually restrict the ability to create an efficient 
recursively virtualizable system. First, if the VMM itself has timing depen- 
dences, then its performance could be affected adversely when it runs in user 
mode within another virtual machine. In fact, the presence of timing depen- 
dences in a program could end up violating one of the conditions of Popek 
and Goldberg ~ the equivalence property. Thus a strong requirement for a 
recursively virtualizable system is that a VMM without any timing dependences 
be constructible for the system. 

The second effect comes from the fact that each VMM layer uses up its own 
resources, particularly system memory resources needed to keep the state of 
the various virtual machines running on the system. If recursive virtualization 
is repeatedly performed, then these resources keep shrinking to a point where 
little is left for allocation to the virtual machines. As a result, the number of 
programs that run with identical effect on the real and virtual machines shrinks 
as the number of levels of virtualization increases. 

Neither of these is a problem, in practice, however. Seldom does the 
required number of levels of virtualization go beyond two. At this level of 
recursion, the overhead is still contained; moreover, the user is usually willing 
to accept the drop in performance resulting from the recursive virtualization. 

Popek and Goldberg formalized the conditions for recursive virtualizability 
in a second theorem. 
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Theorem 2: A conventional third-generation computer is recursively virtu- 
alizable if (a) it is virtualizable and (b) a VMM without any timing dependences 
can be constructed for it. 

8.2.3 Handling Problem Instructions 

Observe that, as described earlier, the POPF instruction in the Intel IA-32 ISA is 
sensitive but not p r iv i l eged-  it does not generate a trap in user mode. Hence 
it violates the virtualizability condition of Theorem 1. The Intel IA-32 has 
several other instructions that similarly are sensitive but not privileged (Robin 
and Irvine 2000). In reality, there are very few ISAs that are virtualizable in 
the sense of the Popek-Goldberg theorem (or efficiently virtualizable in the 
terminology we use). However, if an ISA is not efficiently virtualizable, all 
is not lost. It simply means that an additional set of steps must be taken 
in order to implement a system virtual machine (with possible loss of some 
efficiency). 

The POPF instruction mentioned earlier is a problem instruction because 
it inhibits the creation of an (efficient) virtual machine monitor in the sense 
of Theorem 1. For convenience, let us refer to instructions that are sensitive 
but not privileged as critical instructions. It would be possible for a VMM to 
intercept POPF and other critical instructions if all guest software were inter- 
preted instruction by instruction. The use of interpretation clearly leads to 
inefficiency (both as formally defined by Popek and Goldberg and in reality). 
Fortunately, techniques related to those described in Chapters 2 and 3 can 
be used to reduce the inefficiency considerably. For example, the VMM can 
scan the guest code stream before execution, as done during binary transla- 
tion, and in the process discover all critical instructions, replacing them with 
a trap or a jump to the VMM, as shown in Figure 8.11. This replacement 
process is known as patching (Section 4.7.1). Only the code running on the 
guest virtual machines needs to be scanned ~ the VMM code is in privileged 
state and will work correctly without modification. The problem of scan- 
ning and patching critical instructions is discussed in more detail in the next 
subsection. 

In a strictly efficient virtualizable machine, as defined by Popek and Gold- 
berg, all nonprivileged instructions are executed natively. We refer to a virtual 
machine system in which some of the nonprivileged instructions must be emu- 
lated as a hybrid virtual machine system. Scanning and patching is a pragmatic 
attempt by a hybrid virtual machine system to execute most nonprivileged 
instructions natively. Guest VM software containing few critical instructions 
should not see a significant degradation in performance. 
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Scanning and Patching Code in a Hybrid Virtual Machine System. 

8.2.4 Patching of Critical Instructions 

As noted earlier, the problem of discovering critical instructions has a lot in 
common with the general problem of dynamic binary translation discussed in 
Chapter 2. The basic idea in both cases is to locate sections of code about to be 
executed and perform transformations on them. A major difference is that in 
binary translation, both the target code and the runtime execute in user mode, 
and hence a switch between them can be done via a jump. In the VM context, 
there is an actual change of privilege mode, which means that the jumps to the 
runtime are replaced with system calls (traps) to the VMM. 

One way to discover critical instructions is for the VMM to take control 
at the head of each guest basic block and scan instructions in sequence until 
the end of the basic block is reached. If a critical instruction is found during 
this scan, it is replaced with a trap (system call) to the VMM, and the critical 
instruction at the location is saved in a VMM side table, along with its original 
address. Another trap back to the VMM is placed at the end ofthe basic block in 
order to allow the VMM to regain control when the block completes execution 
so that it can scan and patch the next basic block to be executed. If the next 
block has already been patched, the VMM simply jumps to the next block. This 
method ensures that every basic block to be executed is patched first. 
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To reduce overhead, the trap at the end of a scanned basic block can be 
replaced by the original branch or jump instruction after all possible successor 
basic blocks have been patched; this is analogous to chaining basic blocks 
in a code cache (Section 2.7.1). For example, if the basic block ends with a 
conditional branch that has been replaced with a trap, the basic blocks located 
at both the taken and the fall-through addresses can be scanned the first time 
the trap is encountered. After patching any critical instructions contained in the 
successor blocks, the trap is replaced with the original conditional branch. This 
technique is relatively simple with direct branches, i.e., branches that have a 
target specified as an offset relative to the address of the branch instruction 
itself. For indirect jumps and branches where the destination address is located 
in a register, the trap typically cannot be replaced, because of the difficulty in 
predicting all possible target addresses. 

In order to further reduce overhead, instead of scanning single basic blocks 
at a time, the VMM can scan through all branches that allow target computa- 
tion. Thus for a conditional branch, both the fall-through as well as the taken 
branch paths are followed during the initial scan, and this process is repeated 
until a control-transfer instruction is encountered for which it is not possible 
to determine all targets. In order to avoid memory paging caused by scanning 
possibly unused paths, the scanning should be limited to those code pages 
already in physical memory. 

Observe that a critical instruction appearing in a guest application program 
(i.e., in the VM's user mode) needs to be patched only if it causes some action 
to be taken when performed in user mode. For example, if a critical instruc- 
tion behaves like a no-op in user mode, and if it can be determined that the 
instruction is to be executed by its VM in user mode, it is not necessary to 
patch the instruction with a trap. Thus, some of the overhead of trapping can 
be reduced in the virtual user mode. Unfortunately, as long as the instruction 
set contains even one critical instruction that, in user mode, performs either 
a read or a write action on some resource, the instruction must be emulated 
and the overhead of code scanning and patching must be incurred. Finally, 
the process of scanning and patching critical instructions is often sensitive to 
the characteristics of the underlying ISA and is fertile ground for engineering 
optimizations beyond those described here. 

8.2.5 Caching Emulation Code 

The overhead of VMM interpretation can become a problem when the fre- 
quency of sensitive instructions requiring interpretation is relatively high. One 
way to reduce this overhead is to cache the actions taken during the first 
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Figure 8.12 Code Caching to Improve Performance of Emulating Critical Instructions. 

interpretation, with a view to avoiding many of the interpretation steps when 
the same instruction is encountered in the future. This is similar to code caching 
as described in connection with process virtual machines in Chapter 3. 

Ideally, code caching is done on a block of instructions surrounding the 
sensitive instruction, since larger blocks lend themselves better to optimization. 
In contrast to what was shown in Figure 8.11, a system call trap may be inserted 
at an instruction earlier than the critical instruction. As depicted in Figure 8.12, 
the trap causes control to be transferred to the VMM, which then locates the 
cached emulation code via a table lookup using the address of the trapping 
instruction. This cached code is an emulation of an entire block of the original 
code, including the critical instruction, and hence is specific to the location 
of the trapping instruction. When the VMM returns control to the virtual 
machine, it restores the program counter to the point immediately after the 
block that was emulated rather than to the instruction following the trap. 

Unlike the simple interpretation case, where there is only one copy of the 
code that emulates all instances of a specific type of instruction, each instance of 
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the critical instruction in the application will be associated with a distinct piece 
of cached code. The advantage here is that the cached code can be made specific 
to the instance and hence can be optimized, often in a way that eliminates a 
significant fraction of the overhead. 

In contrast to process virtual machines, the management of this code cache 
is somewhat simpler, because code in the cache is executed after the trap, when 
the machine is already in system mode. The user code can never corrupt or read 
the contents of the code cache, which is therefore always protected from the 
user application. On the other hand, self-modifying code remains a problem, 
and mechanisms are needed to intercept modifications of the original c o d e -  
such modifications may necessitate invalidations of parts of the code cache. 

8.2.6 Efficient Virtualizability of Common Instruction Sets 

The System/370 architecture provides two modes of operation, a user mode 
and a privileged mode (what we have been referring to generally as system 
mode). The operating system is expected to run in the privileged mode. Some 
of the instructions in the instruction set are privileged; they perform the speci- 
fied action only when the processor is in privileged mode. These privileged 
instructions typically manage protected resources in the processors. In order 
to prevent either malicious or accidental modification of these resources, the 
privileged instructions trap when executed in the user state. 

The VMM for System/370 (called the control program, or CP) has to run in 
the privileged mode in order to be able to allocate resources to different virtual 
machines at different times. The virtual machine is created in the privileged 
mode, but it executes in the user mode. This ensures that each virtual machine 
is isolated from other virtual machines and from the CP itself. 

All sensitive instructions on the System/370, in the Popek-Goldberg sense, 
are also privileged. VM/370 is an example of a virtual machine employing direct 
native execution. 

As noted earlier, an interesting aspect of the System/370 VM project was 
the development of a single-user operating system that proceeded in paral- 
lel with CP development. This operating system, called the Conversational 
Monitor System (CMS), took advantage of the CP environment by allowing 
all applications to run in the "pseudo-supervisor," state with the user being 
allowed to use any instruction, whether privileged or not. This is safe because 
CMS and applications execute on a virtual machine protected by the CP from 
wantonly affecting the real resources of the computer. The ability to use privi- 
leged instructions in their code allows users to experiment in many ways, e.g., 
to add input/output devices not allowed by the standard system. Figure 8.13 
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(c) the CP/CMS system. 

shows a comparison of the handling of privileged instructions at various lev- 
els in various schemes. This feature of the CP/CMS system is highlighted in 
Figure 8.13c. 

Despite the fact that most of the concepts in this chapter have been known 
for at least 30 years, many ISAs developed during those 30 years do not satisfy 
the sufficient conditions of Theorem 1. For example, the most commonly used 
ISA today is the Intel IA-32, and the IA-32 contains 17 critical instructions 
(Robin and Irvine 2000). The likely reason for this is that system VMs have 
not been considered important because of the tremendous decrease in the cost 
of computer systems, which makes it easier for each user to have his/her own 
machine. However, in recent years there has been resurgence of interest in 
VMs because of the importance of security in a networked environment and 
the desire to provide cross-platform compatibility of major software packages. 
Furthermore, large, expensive server systems are shared among many groups 
of users, and so several of the original VM motivations remain. 

In some respects, a virtual machine can be considered a generalization of 
the concept of virtual memory that preceded it. Virtual memory makes a 
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distinction between the logical view of memory as seen by an application 
programmer and the actual hardware memory resource as managed by the 
operating system. Appendix A presents a discussion of the basic concepts 
underlying virtual memory. Also included is a discussion of the structures, 
e.g., page tables, needed to support virtual memory. It turns out that this hard- 
ware support is also sufficient for providing each guest virtual machine in a 
virtual machine system, with the view of having (and managing) its own "real" 
memory, which, in fact, is an illusion created by the underlying VMM. 

8.3.1 Virtual Memory Support in a System Virtual Machine Environment 

In a system VM environment, each of the guest VMs has its own set of vir- 
tual memory tables. Address translation in each of the guest VMs transforms 
addresses in its virtual address space to locations in real memory ~ this real 
memory would correspond to the physical memory on a native platform; in 
a VM platform, however, this is not the case. Rather, in a system VM envi- 
ronment, a guest's real memory address must undergo a further mapping 
to determine the address in physical memory of the host hardware. Note 
that here we are drawing a clear distinction between real memory and physi- 
cal memory ~ terms often used interchangeably in other contexts. Physical 
memory is the hardware memory. Real memory is a guest VM's illusion of 
physical memory; an illusion supported by the VMM when it maps a guest's 
real memory to physical memory. It is this real-to-physical mapping that 
implements the virtualization of memory in a VM system. 

The addition of another level in the memory hierarchy necessitates addi- 
tional mechanisms for memory management. Note that the combined total 
size of the real memory of all the guests could be (and often is) bigger than 
the actual physical memory on the system. Hence the VMM maintains a swap 
space, distinct from the swap spaces of each of the guests. The VMM manages 
physical memory by swapping guest real pages into and out of its own swap 
space. 

Figure 8.14 shows a set of page table maps belonging to two different guest 
VMs in a virtual machine system. Each entry in a page table maps a location 
in the virtual memory of an application to a location in the guest VM's real 
memory. In order to convert a real page address to a physical address, the 
VMM maintains a real map table mapping the real pages to physical pages. 
In the figure, the physical page frames numbered 500, 1000, and 3000 are 
assigned to two real pages of VM1 and one real page of VM2. The remaining 
physical pages may be allocated either to other virtual machines or to the VMM 
itself. 
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Figure 8.14 Memory Mapping of Guest VMs. Virtual pages are mapped to real pages by page tables maintained by 
each virtual machine. Real pages are mapped to physical pages, using tables maintained by the VMM 
(at the bottom of the figure). Observe that the real memory of each VM can be larger than the physical 
memory ~ the real memory of VM1, for example, is as large as its virtual memory. 
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On contemporary platforms, page translation is supported by a combina- 
tion of a page table and a translation lookaside buffer (TLB); see Appendix 
Section A3.4. Depending on the ISA, either the page table or the TLB is archi- 
tected. If the page table is architected, then its structure is defined by the ISA, 
and the operating system and hardware cooperate in maintaining and using 
it. In this case, the TLB is maintained and used only by the hardware; it is 
not visible to the operating system. When there is a TLB miss, the hardware 
"walks" the architected page table to find the appropriate entry to place in the 
TLB; if the entry is not mapped to physical memory, there is a page fault and 
the operating system takes over. 

On the other hand, if the TLB is architected, then its structure and special 
instructions to manipulate it are part of the ISA; the page tables are part of 
the operating system implementation. Hardware is unaware of the page table 
structure. With this approach, when a TLB miss occurs, there is immediately 
a trap to the operating system; the operating system then uses its page table 
information to perform the appropriate action. 

Most of the older ISAs, including the Intel IA-32 and IBM System/370, 
use architected page tables; some of the more recent RISC ISAs use architected 
TLBs. Memory resource virtualization in a VM environment is done somewhat 
differently, depending on whether the page table or the TLB is architected. 
Because the most common system VMs in use today run on the Intel IA-32 or 
the IBM zSeries that evolved from System/370, we first consider virtualization 
with an architected page table. More information about virtual storage concepts 
in IBM VMs can be found in Parmalee et al. (1972). 

8.3.2 Virtualizing Architected Page Tables 

The OS in each guest VM maintains its own page tables. These tables reflect the 
virtual-to-real memory mapping that the guest OS manages. As opposed to this 
virtual-to-real mapping, the virtual-to-physical mapping is kept by the VMM 
in shadow page tables, one for each of the guest VMs. Figure 8.15 illustrates the 
shadow page tables for the example of Figure 8.14. These tables are the ones 
actually used by hardware to translate virtual addresses and to keep the TLB 
up-to-date. The entries in these shadow page tables essentially eliminate one 
level of indirection in the virtual-to-real-to-physical mapping. 

To make this method work, the page table pointer register is virtualized. 
The VMM manages the real page table pointer and has access to the virtual 
version of the register associated with each guest VM. At the time the VMM 
activates a guest VM, it updates the page table pointer so that it indicates the 
correct shadow version of the guest's current page table. If a guest attempts 



4 0 0  �9 Chapter 8~System Virtual Machines 

Program 1 on VM1 is 
currently a c t i v ~  

Page Table Pointer / [ 

Shadow Page Tables 
Maintained by VMM 

Virtual Page Physical Page 

1000 1000 

2000 500 

Shadow Page Table for 
Program 1 on VM1 

i 

Virtual Page Physical Page 

1000 Not mapped 

4000 Not mapped 

Shadow Page Table for 
Program 2 on VM1 

Figure 8.15 

Virtual Page Physical Page 

1000 3000 
. . . . . .  

4000 Not mapped 

Shadow Page Table for 
Program 3 on VM2 

Shadow Page Tables for Memory Mapping Illustrated in Figure 8.14. The shadow tables are 
used by hardware in performing address translation. The VMM manages the shadow tables and is 
responsible for setting the page table pointer register. 

to access the page table pointer, either to read it or write it, the read or write 
instruction traps to the VMM. The trap occurs either automatically because 
these instructions are privileged, or because code patching has replaced them 
with a trap. If the attempt to access the page table pointer by the guest is a read 
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attempt, the VMM returns the guest's virtual page table pointer; whereas if it 
is a write attempt, the VMM updates the virtual version and then updates the 
real page table pointer to point to the corresponding shadow table. 

The true mapping of virtual to physical pages may differ from the virtual to 
real view that the guest operating systems have, and page fault handling must 
take this into account. First note that the VMM should not have a virtual-to- 
physical page mapping in a shadow table if the guest OS does not have the 
same virtual page mapped to real memory in its corresponding virtual table. 
Otherwise, an access that should page fault from the guest's perspective will not 
cause a page fault in the VM environment, thereby breaking the equivalence 
property (compatibility). Therefore, when a page fault does occur, the page 
may or may not be mapped in the virtual table of the guest OS. If it is mapped, 
this page fault should be handled entirely by the VMM. This is a case where the 
VMM has moved the accessed real page to its own swap space. Consequently, 
the VMM brings the real page back into physical memory and then updates 
the real map table and the affected shadow table(s) appropriately to reflect the 
new mapping. The guest OS is not informed of the page fault because such a 
page fault would not have occurred if the guest OS were running natively. 

On the other hand, if the page is not mapped in the guest, the VMM 
transfers control to the trap handler of the guest, indicating a page fault. The 
guest OS then issues I/O requests to effect a page-in operation (possibly with a 
swap out of a dirty page). The guest OS then issues instructions to modify its 
page table. These requests are intercepted by the VMM, either because they are 
privileged instructions or because the VMM write-protects the area of memory 
holding the page table of the guest. At that point the VMM updates the page 
table and also updates the mapping in the appropriate shadow page table before 
returning control back to the guest virtual machine. 

As we indicated earlier, the real map table contains a mapping of the 
real pages of each virtual machine to the physical pages of the system. When 
performing I/O with real addresses (as many systems do, particularly for pag- 
ing operations), the VMM converts the real addresses presented by a virtual 
machine to physical addresses using the real map table. Input/output address 
mapping turns out to be somewhat tricky because contiguous real pages may 
not be contiguous in physical memory. Thus, the VMM may need to convert an 
I/O request that spans multiple pages into multiple I/O requests, each referring 
to a contiguous block of physical memory. It may also be the case that I/O is to 
a real address that the VMM has swapped out of physical memory into its own 
swap space. In this case, the VMM must read it back into physical memory 
before the I/O operation can proceed. 

The simultaneous operation of several virtual machines, along with the 
operation of the VMM itself, can degrade the performance of the system. 
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In practice, therefore, additional considerations apply in order to enhance the 
performance of a program running on a virtual machine. An example of this 
is a policy in the VM/370 CP, which, when ready to activate a new VM, gives 
priority to the virtual machine likely to have most of its active pages already 
mapped to physical pages. Another example, used when the same OS is shared 
by several guest machines, is to employ a common mapping of the OS read- 
only pages. As VM/370 became popular, hardware features were added that 
allowed the performance of virtual machines to be comparable to that of native 
hardware. These will be described in more detail in Section 8.5. 

8.3.3 Virtualizing an Architected TLB 

When an ISA provides a software-managed TLB, then it is the TLB that must 
be virtualized by the VMM. To virtualize the TLB, the VMM maintains a copy 
of each guest's TLB contents and also manages the real TLB. Any instructions 
that modify the architected TLB are sensitive and are intercepted by the VMM 
so that it can keep the virtual copies up-to-date. 

A simple way to manage the real TLB is for the VMM to rewrite the TLB 
whenever a guest VM is activated. That is, the VMM copies the VM's vir- 
tual TLB entries into the physical TLB, after appropriately translating the 
real addresses in the virtual TLB to physical addresses in the physical TLB. 
This is essentially the same as the shadow mapping in architected page tables. 
A problem with this scheme is that all the TLB entries must be rewritten each 
time control transfers from one guest VM to another (or to the VMM). This 
TLB rewrite incurs a fairly high overhead, especially for large TLBs. 

An alternative method is to leverage the address space identifiers (ASIDs) 
that are normally included in each entry of an architected, software-managed 
TLB. These are intended to allow multiple processes to have address space 
mappings in the TLB simultaneously. There is an architected ASID register, 
and whenever the TLB is accessed as part of address translation, the current 
ASID register value must match the ASID value in a TLB entry in order for the 
TLB entry to be considered valid for the active process. 

The ASID mechanism can be virtualized to allow the VMM to manage the 
TLB in a globally efficient manner. With this approach, each guest VM has a 
virtual ASID register, and the VMM maintains the real ASID register. At any 
given time, the VMM maps certain guest ASID values to real ASID values for 
entries that are present in the real TLB. Hence, some combination of guest 
address spaces from different guest VMs may be simultaneously present in the 
real TLB, under control and management of the VMM. If the VMM decides to 
put an entry in the TLB and a real ASID has not been assigned to the address 
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space used by the entry, then the VMM must assign a real ASID to the new 
address space. This may involve deassigning the ASID from some other virtual 
address space and invalidating any TLB entries using the ASID. If a guest writes 
to its virtual ASID register, the write is a sensitive instruction that is intercepted 
by the VMM. The VMM can then modify the virtual copy in memory and also 
change the real ASID with a real ASID value that maps to the virtual ASID. 

Figure 8.16 illustrates this method applied to the example given earlier in 
Figure 8.14. The virtual TLBs are shown at the left. These correspond to the 
virtual-to-real page mappings for each of the guest VMs. The two programs 
both have entries in VM l's virtual TLB, distinguished by two different ASIDs. 
The VMM maintains the same real-to-physical map tables as are shown in 
Figure 8.14. The real TLB is shown on the right in Figure 8.16. There is one 
real TLB, and translations from the two VMs are simultaneously present. The 
ASID map table, maintained by the VMM, maps the virtual ASIDs to real 
ASIDs present in the real TLB. Note that program 1 in VM1 and program 2 
in VM2 have the same virtual ASID (3) in their respective virtual machines. 

Virtual TLBs ASID Map Table Real TLB 

Virtual Real 
ASlD mapping: ASID Page Page 
prog. 1 - ASlD 3 
prog. 2 - ASlD 7 . . . . . . . . .  

3 1000 5OOO 

3 2000 1500 

7 4000 3000 

Virtual TLB of VM1 

Virtual Real Virtual Physical 
ASID ASID ASID Page Page 

VM1:3 9 9 1000 1000 
4 1000 3000 
9 2000 500 

VMI:7 --- 

VM2:3 4 . . . . . . . . .  

ASID mapping: Virtual Real 
prog. 1 - ASID 3 ASID Page Page 

. . . . . . . . .  

3 1000 3000 

Figure 8.16 

Virtual TLB of VM2 

Virtualizing TLBs in a System That Implements Architected TLBs. The system uses the same page 
mappings as given in Figure 8.14. The VMM maintains the virtual TLBs of the guest VMs (shown at left) 
and manages the real TLB by remapping virtual to real ASIDs. The ASID map table keeps track of the 
correspondence between virtual and real ASIDs. 
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However, the VMM maps these ASIDs to two different ASIDs (4 and 9) so that 
they can be distinguished in the real TLB. 

Virtualization of the input/output subsystem is one of the more difficult parts 
of implementing a system virtual machine environment. Each I/O device type 
has its own characteristics and needs to be controlled in its own special way. 
The difficulty of virtualizing I/O devices is compounded by the fact that the 
number of devices of a given type is often very large and continues to grow. 
Moreover, the number of I/O device types is also increasing. Virtualization of 
such a large number of devices is a challenge for any new VMM. 

On the other hand, techniques to share I/O devices have been developed 
since the early days of time sharing. The proliferation of I/O devices is also a 
problem for conventional operating systems, which have developed abstrac- 
tions to support a wide variety of devices and device types. It is possible to 
adapt many of these abstraction techniques for use in virtual machine systems. 

The virtualization strategy for a given I/O device type consists of construct- 
ing a virtual version of the device and then virtualizing the I/O activity directed 
at the device. A virtual device given to a guest VM is typically (but not neces- 
sarily) supported by a similar, underlying physical device. When a guest VM 
makes a request to use the virtual device, the request is intercepted by the 
VMM. The VMM converts the request to the equivalent request for the under- 
lying physical device and it is carried out. The next two subsections discuss 
techniques for virtualizing devices and carrying out virtual I/O activity. 

8.4.1 Virtualizing Devices 

A number of techniques can be used for virtualizing I/O devices, and the 
specific technique for virtualizing a given device depends on whether it is 
shared and, if so, the ways in which it can be shared. Following are the common 
categories of devices. 

Dedicated Devices 

Some I/O devices, by their very nature, must be dedicated to a particular guest 
VM or at least are switched from one guest to another on a very long time 
scale. Examples of dedicated I/O devices are the display, keyboard, mouse, and 
speakers of a virtual machine user, as shown in Figure 8.2. In this case, the 
device itself does not necessarily have to be virtualized. Requests to and from 
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the device could theoretically bypass the VMM and go directly to the guest 
operating system. However, in practice, the requests are usually routed through 
the VMM because the guest OS is running in the nonprivileged user mode. 
Interrupts from the device are first handled by the VMM, which determines 
that it came from a device dedicated to a particular guest VM and queues up 
the interrupt to be handled by the VM when it is activated by the VMM. 

Partitioned Devices 

For some devices, such as the disk, it is convenient to partition the available 
resources among the virtual machines. A very large disk, for example, can be 
partitioned into several smaller virtual disks that are then made available to 
the virtual machine as dedicated devices. A virtual disk is treated by a virtual 
machine exactly as a physical disk, except with a smaller capacity. 

To emulate an I/O request for the virtual device such as a disk, the VMM 
must translate the parameters (e.g., the track and sector locations) into cor- 
responding parameters for the underlying physical device(s), using a map 
maintained for this purpose, and then reissue the request to the physical device 
(e.g., the disk controller). Similarly, status information coming back from 
the physical device is used to update status information in the map and is 
transformed into appropriate parameters for the virtual device before being 
delivered to the guest VM. 

Shared Devices 

Some devices, such as a network adapter, can be shared among a number 
of guest VMs at a fine time granularity. Each guest may have its own virtual 
state related to usage of the device, e.g., a virtual network address. This state 
information is maintained by the VMM for each guest VM. A request by a 
guest VM to use the device is translated by the VMM to a request for the 
physical device through a virtual device driver. For a network, the VMM's 
virtualization routine will translate a request from some virtual machine to a 
request on a network port using its own physical network address. Similarly, 
the incoming requests through various ports will be translated into requests 
for virtual network addresses associated with the different virtual machines. 

Spooled Devices 

A spooled device is shared, but at a much higher granularity than a device such 
as a network adapter. An example of a device that is often spooled is a printer. 
Conceptually, the printer is solely under the control of the program that is 
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printing until the completion of the printing task. This must be the case even 
if the program is swapped in and out several times during the printing process. 
Spool ing  allows this to be accomplished (Madnick and Donovan 1974). In the 
case of a printer, spooling involves the buffering of the lines to be printed from 
each program in an area of memory dedicated to that program. A buffer is 
closed only when the program that owns it sends a special signal to the printer. 
The operating system schedules the printing of the spool buffers as they close, 
ensuring that the output of each program is printed completely before the 
printer is allocated to the next program. 

Virtualization of spooled devices can be performed by using a two-level 
spool table approach, as depicted in Figure 8.17. The first level is within the 
operating system, with one table for each process active on the system, while 

Figure 8.17 Spooling in a Virtual Machine System. As programs are "completed," their spool areas are copied over 
to the VMM spool area. The corresponding entry in the VMM spool table is set to "waiting." At the end 
of printing, this status is changed in both tables to "printed." The spool area for the printed jobs can be 
recovered and reused. 
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the second level is in the virtual machine monitor, with one table for each 
guest virtual machine. An operating system's request to print a spool buffer is 
intercepted by the VMM, which copies the buffer contents into one of its own 
spool buffers. This allows the VMM to schedule requests from different virtual 
machines on the same printer. 

Various techniques could be employed to optimize the movement of large 
spool data between the virtual machine and the VMM. For example, the VMM 
could simply record the location of the spool data and its size, delaying the 
completion signal to the guest operating system until after the buffer has 
actually been printed. Another possibility is to have a single physical pool 
of buffers owned by the VMM, with each virtual machine having a virtual set 
of spool buffers allocated by the VMM. The practicality of this latter scheme 
depends on the ability of the VMM to detect such allocation of buffers, and 
on the ability of the guest operating system(s) to invoke services provided by 
the VMM. 

The virtualization of printers of this kind was more appropriate to the older 
line printers, which were generally expensive and attached closely to the main 
computer. Today it is more common to find multiple printers accessible over a 
network. These printers already have the software to buffer and spool jobs from 
various nodes in the network. Virtualization of the printer is simple in such an 
environment as long as the virtual machine is connected to the network and has 
it own distinct network ID. The printer software in this case is unable to distin- 
guish between requests from real machines and requests from virtual machines. 

Nonexistent Physical Devices 

Virtualization makes it possible to provide support for virtual devices 
"attached" to a virtual machine for which there is no corresponding physical 
device. For example, each virtual machine could be associated with a network 
adapter that is used for communicating with other virtual machines on the 
same platform, without requiring an actual network adapter to be available 
on the platform. In such a situation the virtual machine monitor can simply 
intercept the I/O requests coming from the device drivers and emulate the 
transmission of the network packet, buffering the packet at the device driver 
of the appropriate destination virtual machine and causing an interrupt to be 
handled by that virtual machine. 

8.4.2 Virtualizing I /0 Activity 

The overall I/O process is illustrated in Figure 8.18. As discussed in Appendix 
Section A.4.3, an operating system abstracts most of the peculiarities of 
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Figure 8.18 Major Interfaces in Performing an Input/Output Action. 

hardware devices and makes these I /0 devices accessible through the system 
call interface and the device driver interface. Then at a level even lower is the 
actual operation-level interface, where individual instructions interact with the 
I/O system, typically by placing device-specific addresses and data on an I/O 
bus. An application program makes device-independent I/O requests such as 
open() and read() through the system call interface. The operating system 
converts the device-independent requests into calls to device driver routines. 
A device driver operates in system mode and takes care of device-specific aspects 
of performing an I/O transaction. For example, when a file system uses a 
block device interface to write to a disk, the device driver converts a device- 
independent request to operations specific to the type of disk controller chip 
physically attached to the system. 

When an I/O action is to be performed, part of the action is carried out 
by guest software and part by the VMM. In general, the VMM can intercept a 
guest's I/O action and convert it from a virtual device action to a real device 
action at any of the three interfaces: the system call interface, the device driver 
interface, or the operation-level interface. We will discuss all three possibilities, 
in reverse order, beginning with the operation-level interface. Note that it is 
the VMM that finally interacts directly with the hardware device. Hence it is 
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the VMM that either invokes the device driver or controls access to the device 
driver. 

Virtualizing at the I /0 Operation Level 

Appendix Section A.3.5 contains a discussion of various types of I/O devices 
differentiated by the way the processor communicates with each device. With 
memory-mapped I/O, common in many RISC processors, the effect of sending 
a command to an I/O controller occurs by writing to or reading from special 
locations in the memory address space. These memory locations are protected 
by the operating system by making them inaccessible in user mode. On the 
other hand, processors such as the IBM System/360 and its successors as well as 
the Intel IA-32 provide special I/O instructions to signal the device controllers. 
User programs do not utilize these instructions directly; they invoke system 
routines that use privileged I/O instructions to complete the request. 

The privileged (or protected) nature of the I/O operations makes them 
easy for the VMM to intercept because they trap in user mode. However, 
once intercepted, it may be difficult for the VMM to determine exactly what 
I/O action is being requested. A complete I/O action (e.g., a disk read) usually 
involves the device driver's issuing several I/O instructions or memory-mapped 
loads and stores of small granularity. These individual I/O operations work 
in c o n c e r t -  for the VMM to determine the higher-level I/O action to be 
performed, it must be able to "reverse engineer" the individual operations and 
deduce the complete I/O action. This could be extremely difficult in practice. 

Virtualizing at the Device Driver Level 

In a typical I/O request, as shown in Figure 8.18, a system call such as read() 
is converted by the OS into another call (or calls) to the device driver interface. 
If the VMM can intercept the call to the virtual device driver, it can convert the 
virtual device information to the corresponding physical device and redirect the 
call to a driver program for the physical device. This scheme is straightforward 
and allows virtualization at a natural point, but it requires that the VMM 
developer have some knowledge of the guest operating system and its internal 
device driver interfaces. This would be difficult if the VMM is called on to 
virtualize an arbitrary OS, with no knowledge of its internals. 

In many practical situations, however, the VMM developer may be targeting 
specific guest operating systems. Today, for example, these might be Windows 
and Linux. In this case, special virtual device drivers (one per device type) can 
be developed for each of the guest operating systems. These drivers are part 
of the overall VMM package distributed to users. Then when a guest OS is 
installed, the virtualized drivers are installed at the same time. 
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This approach, when applied to a native VM system (see Figure 8.5), also 
requires that the VMM have real device drivers for each of the devices attached 
to the system. This problem can be simplified by "borrowing" the drivers (and 
the driver interface) from an existing operating system. For example, one could 
use the Linux drivers. In a hosted VM environment, the drivers in the host OS 
are used; such an approach is described in the next section. 

Virtualizing at the System Call Level 

In theory, the virtualization process could be made more efficient by inter- 
cepting the initial I/O request at the OS interface, the ABI. Then the entire I/O 
action could be done by the VMM. To accomplish this, however, the VMM 
would need ABI routines that shadow the ABI routines available to the user. 
These routines would be different for each type of guest OS. Writing the ABI 
emulation routines would have to be part of the VMM development task and 
would require much broader knowledge of the guest OS internals than writing 
drivers (as in the previous subsection). Furthermore, all interactions between 
the ABI emulation routines and other parts of the guest OS would have to 
be faithfully emulated. In general, this rather daunting task could be done 
only if the guest OS is well structured and understood intimately by the VMM 
developer. 

Example: Network Virtualization 

Figure 8.19 presents an example ofthe overall virtualization process on a system 
having a host network adapter, with the virtual machines themselves imple- 
menting virtual network adapters similar to what was described in Sugerman, 
Venkitachalam, and Lim (2001). Two cases are shown. In the first case, we 
assume that the virtual network interface card (NIC) is of the same type as 
the physical NIC in the host system. A request to send a message to an exter- 
nal computer system typically consists of a number of I/O operations, here 
assumed to be OUT or OUTS instructions in the IA-32 ISA. Associated with 
an OUT or OUTS instruction is a port number, say, 0xf0, which is a number 
in the range of lDs designated for the NIC in the guest system. Also associated 
with each port is a state bit that indicates whether the system should trap in 
response to an I/O request for that port. 

As part of the state of the virtual machine, the VMM saves the permission 
map for all ports of the guest machine. The OUTS instruction is a privileged 
instruction, so when an OUTS instruction is executed, the system traps to 
the VMM, which examines the permission bitmap of the current guest. If the 
permission is set, the VMM converts the request to a new OUTS instruction for 
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port 0x280, corresponding to the NIC port on the real machine. It also converts 
the virtual address pointing to the string of data to be moved to a virtual address 
in the VMM space pointing to the same string of data or a copy. The VMM 
ensures that port 0x280 is enabled in its own permission map and issues the 
new OUTS instruction. When executed, now in the VMM's privileged mode, 
this OUTS instruction traps to the device driver installed on the VMM for the 
NIC, which then performs the desired transfer. 

The second case is where the VMM takes the original request and converts it 
into a different form, either because the physical NIC available on the system is 
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different from the real NIC or because there is possibly a more efficient means 
of satisfying the request. When the physical NIC is not of the same type as 
the virtual NIC, the VMM implements a device driver for the virtual NIC that 
translates I/O operations directed to it (e.g., OUTS instructions) into other 
I/O operations directed toward the physical NIC. It is not always possible to 
perform such translations on the original sequence of I/O operations one at a 
time. In these cases, it is necessary for the VMM to incorporate a device model 
of the virtual NIC, which first gathers enough information from a sequence 
of incoming I/O operations to generate the correct sequence of outgoing I/O 
instructions for the physical NIC. 

In some cases, it is easier to modify the device driver for the physical NIC 
in order to handle the I/O operations directly. The second half of Figure 8.19 
shows a case where the desired communication is between two virtual machines 
on the same platform. In this case, the host device driver, invoked due to the 
trap of a translated OUTS instruction as described earlier, determines that 
the destination address of the message is another virtual machine running 
on the same platform and does not transmit the message on the physical 
wires connected to the NIC. Rather, it internally reroutes the message as a 
received message destined for the receiver's virtual machine and schedules an 
I/O interrupt for the destination guest. 

It would also have been possible to do the rerouting in the kernel of the 
VMM without involving the device driver; such a solution is more efficient 
when implementable. This is the case with the minidisk cache (MDC) facil- 
ity implemented on the z/VM, the current incarnation of the VM/370. The 
minidisk cache attempts to reduce disk I/O by caching data in processor stor- 
age. In many cases, especially those where the data is referenced by several 
virtual machines, the decrease in disk I/O more than makes up for the possible 
increase in the paging I/O. The VMM invokes a routine in the MDC layer that 
determines whether a disk request can be satisfied from the cache. If so, then 
the call to the physical device driver is completely avoided. 

8.4.3 Input/Output Virtualization and Hosted Virtual Machines 

As described in Section 8.1.4, a hosted virtual machine system is one that works 
in conjunction with a host operating system running natively on the underlying 
hardware. In a dual-mode hosted virtual machine system, part of the virtual 
machine monitor runs natively on the hardware; another part of the VMM 
operates as a user application on the host operating system in order to invoke 
resource allocation services provided by the host. An I/O request from a guest 
virtual machine is converted by the native-mode portion of the VMM into a 
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user application request made to the host. For example, if the driver on a guest 
virtual machine attempts to fetch sectors from a disk, eventually the user-mode 
portion of the VMM will issue a read () to the host operating system for the 
corresponding data. The host operating system satisfies the read() request by 
performing its own I/O, but the guest machine and the VMM remain oblivious 
to the physical details of satisfying the request. Similarly, if an I/O interrupt 
is received by the VMM, the interrupt gets thrown over to the host operating 
system and its device drivers before being received by a guest operating system. 

An important advantage of a hosted virtual machine is that it is not necessary 
to provide device drivers in the VMM; the device drivers already present on the 
host operating system are used indirectly by the virtual machine system. This 
is particularly convenient in situations where the large number and variety of 
devices supported make it difficult to provide all device drivers for the VMM. 
The PC desktop environment is the prime example of such a situation. 

In addition to the host OS, there are three additional components that form 
a dual-mode hosted virtual machine system. 

VMM-n (native): This component runs natively on the hardware and has 
characteristics similar to the VMM on a native virtual machine system. 
It is the component that intercepts traps due to privileged instructions 
or patched critical instructions encountered in a virtual machine. It may 
provide device drivers for a small set of devices that are either performance 
critical, or that do not have drivers already available in the host operating 
system. 

VMM-u (user): This component runs as a user-mode process on the host 
operating system. As mentioned earlier, this component makes resource 
requests to the host OS, in particular, memory and I/O requests, on behalfof 
the native mode VMM. VMM-u makes these requests using system library 
functions supplied with the host operating system. 

VMM-d (driver): This component provides a means for communication 
between the other two components. This is done by making the VMM-n 
appear to the VMM-u as a device attached to the host operating system. The 
VMM-d is essentially a special device driver installed on the host operating 
system, and it provides the link from VMM-u to VMM-n. The only user 
program on the host system allowed to access the VMM-n "device" is the 
VMM-u component. 

As stated earlier, the biggest advantages of a hosted VM are the conve- 
nience of installing a virtual machine system on a platform already running 
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a commercially available operating system and the fact that the actual device 
drivers do not have to be incorporated as part of the VMM. 

The dual-mode hosted virtual machine system has some disadvantages also. 
First, the VMM-n operates in privileged mode alongside the host OS; conse- 
quently, the VMM-n and host OS are capable of accidentally (or maliciously) 
affecting each other. This vulnerability is worsened because the host OS is typ- 
ically not developed and debugged with the VMM-n in the system. Second, the 
allocation of resources is completely under the control of the host operating sys- 
tem. The effects of allocation policies in the VMM are less predictable because 
the VMM has insufficient knowledge and control over the use of resources. 

There is also a performance disadvantage compared to a native virtual 
machine system because ofthe need to go back and forth between two "worlds," 
the VMM-n world and the host OS world. When such a "world switch" 
occurs, sufficient state of one world must be saved before handing control 
over to the other world. The performance degradation is more significant in 
an I/O-intensive workload than in a user-mode CPU-intensive workload. 

8.4.4 Input/Output Virtualization in VM/370 

The I/O organization on the System/370 uses an IOP-based model, as shown in 
Appendix Figure A.5d. The IOP gets commands from the processor, initiates 
I/O requests on behalf of the processor, controls the transfer of data directly 
between the I/O device and memory, and informs the processor by means of an 
interrupt when the I/O is completed. The System/370 IOPs are called channels, 
and communication between the OS and the channels occurs through a pro- 
gram built from special instructions called channel command words (CCWs). 
Each CCW includes an address in memory, the length of data to be transferred, 
and a command to an I/O device. The process of making a request to the 
channel involves building in memory a sequence of CCWs and then issuing a 
privileged start I/O (SIO) command that includes a pointer to the CCW. As 
far as the processor is concerned, execution of the SIO is completed once the 
device is detected and the I/O operation is actually started. On completion of 
the I/O operation, the issuing processor is served with an I/O interrupt. 

In a virtual machine, an I/O request to a device takes a similar path, provided 
the device is physically implemented. The virtual machine sets up the CCW in 
its virtual address space. The SIO instruction is privileged and hence trapped. 
The CP (VMM) refers to the shadow page table to map the virtual address 
of the CCW to a physical address. Based on this CCW it builds a new CCW, 
translating the device address specified by the virtual machine to the address of 
the physical device to which it is mapped. The CP also indicates the translated 



8.5 Performance Enhancement of System Virtual Machines �9 415  

physical storage location for the data to be interchanged with the I/O device 
and ensures that these pages are physically in memory. The use of paging 
complicates this translation process, because I/O commands that span more 
than a page may need to be broken up into multiple CCWs. The CP then sends 
an SIO command targeting the real I/O device. Since the CP works in privileged 
mode, this SIO gets transmitted to the channel and does not generate a trap. 

Only when the CP returns from its SIO instruction does it unblock the SIO 
instruction generated by the virtual machine. If there are delays in accepting 
the command due to, say, an I/O device's being busy, the CP could still sched- 
ule other virtual machines to run on the processor. When the I/O operation 
completes, the IOP generates an I/O interrupt. The CP intercepts this inter- 
rupt, reports the relevant information in the status table of the processor that 
generated the request, and reflects the interrupt to the operating system on 
the appropriate virtual machine, which then handles the interrupt in the usual 
manner. 

A different scheme is adopted for slower I/O devices, such as printers and 
card readers. In these cases, the CP emulates these devices and generates soft- 
ware interrupts to the virtual machine while buffering the information on a 
disk. This spooling technique (discussed in Section 8.4.1) allows more efficient 
utilization of the resources when several virtual machines attempt to access 
them simultaneously. 

Finally, VM/370 provides for I/O devices for which there are no physical 
counterparts. The representative device of this type was the minidisk, which 
allowed for virtual disks with far fewer than the 203 cylinders that disks pro- 
vided in those days. This enabled an economical pooling of what was then an 
expensive resource among multiple virtual machine users. 

8~ Performance Enhancement of System Virtual Machines 

Virtual machines can improve the utilization of hardware by sharing resources 
among multiple users, each provided with the illusion of owning all the 
resources in the machine. Unfortunately, this also raises the expectations of 
users, who now want performance on their workload similar to that provided 
by a complete machine. Performance measurements on early virtual machine 
systems indicated that even in the absence of other users on the machine, it 
was difficult to get a performance that was better than 21% of its performance 
on native hardware on some benchmarks (MacKinnon 1979). In the follow- 
ing sections we examine the sources of performance degradation in virtual 
machines and examine hardware assists aimed at closing the performance gap. 
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8.5.1 Reasons for Performance Degradation 

Performance on a virtual machine differs from that on the native hardware for 
several reasons. 

�9 Setup: Before a virtual machine can be activated, there is overhead involved 
in initializing the state of the machine. Such initialization includes setting 
up the timing facilities, the registers, and the program counter. 

�9 Emulation: As discussed in previous sections, not all guest instructions can 
be natively executed. Some guest instructions need to be emulated (usually 
via interpretation) by the VMM. Often such emulation is not restricted 
to just the sensitive instruction; it is sometimes convenient to emulate 
instructions around a sensitive instruction to reduce transitions between 
executing in emulation mode and in native mode. 

�9 Interrupt handling: Interrupts generated by a program running on a virtual 
machine first have to be handled by the VMM, even though they may 
eventually be handled by the guest operating system. 

�9 State saving: There is overhead involved in saving the state of a virtual 
machine when control needs to be transferred to the VMM. 

�9 Bookkeeping: Often, the VMM has to perform special operations to reflect 
behavior equivalent to that of a real machine. For example, the accounting 
of time charged to a user would be different in a virtual machine compared 
with a real machine, where user-mode activity typically is charged to the 
user and system-mode activity is charged to the system. 

�9 Time elongation: Some instructions require more processing than they 
would have needed in the native mode. For example, instead of accessing 
just the page tables, it may be necessary in some situations to access both 
shadow tables and the local page tables. This has the effect of making the 
average time taken for some memory references considerably longer than 
on a real machine. 

Hardware extensions may be used to reduce one or more of these effects. 
VM assist is the name given to a piece of hardware that improves the perfor- 
mance of an application when running in the virtual machine mode. One effect 
of a VM assist is to reduce the number of situations where a user application 
must enter system mode for some action to be taken by the VMM. Thus not all 
virtual machine environments benefit from VM assists. In particular, operating 
systems designed specifically for virtual machine execution, such as the CMS 
in the VM/370 systems, do not invoke privileged instructions as often as other 
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operating systems. As another example, simple operating systems such as DOS 
do not access virtual address translation facilities and hence may not benefit 
from special hardware designed to improve the translation performance. 

In the following subsections we discuss various hardware techniques that 
help improve the performance of virtual machines. Section 8.5.2 discusses 
techniques to improve instruction emulation performance, while Section 8.5.3 
discusses hardware to specifically help the performance of other aspects of the 
virtual machine monitor. Section 8.5.4 then looks at ways of improving the 
performance of the system when running in user mode as a guest. Section 8.5.5 
examines some specialized techniques to enhance the performance of specific 
types of guest systems. Finally, in Section 8.5.6 we describe an interesting 
approach implemented in System/370 that uses hardware essentially to take 
over a number of VMM functions. 

8.5.2 Instruction Emulation Assists 

This class of assists improves the performance of virtual machine applications 
in the areas that are the cause of fundamental overheads, namely, those sit- 
uations that need emulation under VMM control. Recall that in most such 
situations, the execution of a privileged instruction causes an interrupt that is 
first handled by the VMM. The VMM emulates the instruction using a routine 
whose operation depends on whether the virtual machine is supposed to be 
executing in system mode or in user mode. 

An example on the System/370 is the assist for the load PSW (LPSW) 
instruction. As mentioned in Section 8.2.1, this instruction traps in user 
mode in order to prevent the manipulation of privileged resources such as 
the problem state bit by the user. With the assist, the hardware (via microcode) 
performs the entire action of checking the state of the virtual machine, deter- 
mining which action to take and performing either the full action if the 
virtual machine is in system mode or the restricted action if in user mode. 
The physical resources in the machine are modified by a hardware-assisted 
instruction if they hold the corresponding virtual machine resource, as in the 
case of the general-purpose registers. Otherwise, the corresponding location 
in the state table held in memory is modified. These actions are identical to 
those that would have been performed by emulation of the instruction in the 
VMM. Hence the hardware assist depends on knowledge of the implemen- 
tation of the virtual machine system. In fact, the VM assist implementation 
provides an additional bit, bit 1 of control register 6, to supply information 
on whether the guest virtual machine is operating in privileged mode or user 
mode. 
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The LPSW still remains a privileged instruction, and because the virtual 
machine is running in user mode, the overhead due to the trap itself is not 
eliminated. However, the LPSW hardware assist not only reduces the time taken 
in emulating the instruction, but also eliminates the overhead due to switching 
context from the virtual machine to the VMM and back again. Hardware 
assists of this kind improve the total performance of the system by reducing 
the number of instructions actually emulated by the VMM. 

8.5.3 Virtual Machine Monitor Assists 

Another way of improving the performance of a virtual machine environment 
is to use assists for improving performance of the VMM. Here are some of the 
assists of this nature that have been used on the System/370. 

�9 Context switch: Using hardware to save and restore registers and other 
machine states when switching context from a virtual machine to the 
VMM and back. 

�9 Decoding of privileged instructions: Recall that all privileged instructions 
trap when running in the virtual machine mode, whereas they trap only 
in the user mode in a native environment. Since privileged instructions 
are seldom used in user-mode code, the trapping of these instructions on 
a native machine is not a significant source of overhead. On the other 
hand, in a virtual machine mode, even occasional privileged instructions 
encountered during the execution ofthe guest operating system could cause 
a significant overhead in performance. Hardware assists, such as decoding 
these instructions, normally performed in VMM software, go a long way 
toward alleviating this overhead. Note that unlike the instruction emulation 
assists mentioned earlier, this assist only helps with certain critical parts of 
the emulation, with the rest of the emulation still being carried out in 
software. 

�9 Virtual interval timer: Most operating systems depend on the interval 
timer to schedule jobs. A guest operating system cannot emulate this func- 
tion in exactly the same way as in a native mode. The best that can be 
done is to decrement the virtual counter by some amount estimated by 
the VMM from the amount that the real timer decrements. More accurate 
timer functionality needs hardware support. The VM/370 system requires 
that the virtual timer for each virtual machine be located in location 80 of 
page 0. Hardware ensures that while the guest VM is running, this location 
is decremented every time the real timer is decremented. In addition, the 



8.5 Performance Enhancement of System Virtual Machines �9 4 1 9  

hardware assist presents a timer interrupt to the virtual machine when the 
virtual interval timer turns negative. 

Adding to the instruction set: In order to improve the performance of 
the VMM, the System/370 also introduced a number of new instructions 
that are not a part of the ISA of the machine. The nature of operations 
performed by these new instructions is specific to VM/370, because their 
inclusion was guided by an analysis of its commonly executed parts. Here 
are some examples of these instructions. 

�9 Obtain free space from flee storage area 

�9 Return space to free storage 

�9 Page lock 

�9 Page unlock 

�9 Translate virtual address and test for shared page 

�9 Invalidate segment/page table 

The VMM can detect the presence of these instructions in an implemen- 
tation by examining the contents of control register 6. Various bits of this 
register denote which assists are available on the machine. If some specific 
assist instruction is not present, the machine ignores the instruction and exe- 
cutes the normal software routine it would have executed in the absence of 
such assists. 

8.5.4 Improving Performance of the Guest System 

The classical concept of virtualization postulates that a guest system in the vir- 
tual machine environment should not be aware of the fact that it is working 
in such an environment. It is the job of the VMM to ensure that privileged 
instructions and interrupts are handled in the same way as in a native environ- 
ment. This is a requirement if nothing can be changed in software running on 
a real machine in order to make it operate on a virtual machine. 

On the other hand, it is possible to get an improvement in performance 
if a guest OS knows whether it is currently executing natively or in a virtual 
machine environment. When there is a choice, an OS executing fewer privi- 
leged instructions will observe a smaller degradation in performance when 
executed on a virtual machine. Alternatively, an OS aware of the presence 
of a VMM could enjoy a performance benefit by relegating some functions 
to the VMM or by providing the VMM with additional information to carry 
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out its actions. Such an exchange of information is referred to as handshaking 
(MacKinnon 1979). Handshaking is a programming technique that works in 
conjunction with hardware assists. A key feature of the System/370 that makes 
handshaking effective is the ability of the guest operating system to send a 
message to the VMM. The principal technique to achieve this is by the use of 
the DIAGNOSE instruction. Different forms of the instruction are defined 
to send different types of messages between the operating system and the 
VMM. Variants of the DIAGNOSE instruction are generally nonarchitected 

they are implementation-dependent features rather than extensions to 
the ISA. 

Many of the improvements that have resulted from handshaking involve 
eliminating the duplication of function between the guest operating systems 
and the VMM. We list a few examples here. 

�9 Nonpaged mode: The guest operating system disables dynamic address 
translation and defines its real address space to be as large as the largest 
virtual address space it needs. Thus, page frames are mapped to fixed 
real pages. Translation still occurs from these real pages to the physical 
pages on the native system. Hence the system as a whole still runs with 
dynamic address translation turned on. However, improvement in perfor- 
mance results from not having to deal with the bookkeeping of two levels 
of translation. Further, the guest operating system no longer has to exercise 
demand paging. The working set of the system as a whole is managed by 
the VMM, which continues to perform demand paging. Thus, not only 
is double paging eliminated by this scheme, the effects of potential con- 
flicts in paging decisions by the guest operating system and the VMM are 
eliminated. 

Pseudo-page-fault handling: As discussed earlier in this chapter, a page 
fault in a virtual machine system can occur not only because of a page 
fault in some virtual machine but also because of the replacement of 
a page by the VMM to accommodate a page of a different virtual machine. 
In a conventional virtual machine system, on the occurrence of the lat- 
ter type of page fault, the VMM would make the current virtual machine 
inactive and activate another virtual machine. Control is given back to the 
original virtual machine when the page fault has been handled. In pseudo- 
page-fault handling, when the page fault is caused by a missing entry in the 
VMM page table, the VMM attempts to improve fairness by giving control 
back to the same virtual machine, along with a special page-fault indica- 
tor, allowing the virtual machine to schedule an alternative process itself. 
This is useful in situations where the guest operating system is equipped to 
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handle multiprogramming effectively and has enough threads that it can 
use to hide the latency of the page fault. The operating system can disable 
the feature when the level of multiprogramming is low. Pseudo-page-fault 
handling is enabled by a special Set Pagex CP command. 

Spool files: In the absence of any special mechanisms, the guest operating 
system in the virtual machine closes a spool file and puts it in its spool 
buffer. It issues I/O commands to dispatch each file in the buffer in turn 
to the I/O device, e.g., a printer. In order for this to work when multiple 
virtual machines are using the same I/O device, it is necessary for the VMM 
to intercept the I/O commands, spool these files in its own buffer along 
with requests from other virtual machines, and schedule them for printing. 
Rather than intercept the I/O commands and decipher that the virtual 
machine is attempting to send a job to the printer, handshaking allows 
the virtual machine to signal the VMM that a file is ready. In response, 
the VMM picks up the spool file (or, better still, a pointer to the file) and 
continues as before to merge this file into its own buffer. 

Inter-virtual-machine communication: The objective here is to send data 
between two virtual machines. Typically, communication between two 
physical machines involves the processing of message packets through sev- 
eral layers at the sender's side before the message gets physically sent on 
wires to the receiving machine, once again after being processed through 
several layers. This process can be streamlined, simplified, and made con- 
siderably faster if the two machines are virtual machines on the same host 
platform. On the System/370, this was achieved by supporting a special vir- 
tual machine running a special operating system called the Remote Spooling 
Communications System (RSCS). The RSCS uses the spool buffer belong- 
ing to the VMM either to manage data that may need to be transferred to 
another virtual machine on the same platform or to stage the data before 
sending it through network adapters to some remote machine. The RSCS 
later gave way to more efficient ways of performing inter-virtual-machine 
communication. In one case a virtual device called a channel-to-channel 
adapter (CTCA) was used to move data from one virtual machine to another 
using inexpensive move operations, rather than I/O operations. In another, 
called Virtual Machine Communications Facility (VMCF), it was possible 
for data to be communicated from one virtual machine to several virtual 
machines simultaneously simply by the use of storage-to-storage transfers. 
The interesting aspect of many of these solutions is that they have the 
potential not only of reducing the overhead due to virtual machine opera- 
tion but also of actually improving communication performance between 
distinct machines. 
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The notion that the performance of a virtual machine system can be 
improved by making modifications to the guest operating system has received 
renewed interest through what is being called paravirtualization (Whitaker, 
Shaw, and Gribble 2002). Paravirtualization presents a virtual machine inter- 
face to a system that is similar but not identical to the underlying native 
hardware. As embodied in the Xen system (Barham et al. 2003), the para- 
virtualization interface is specifically designed to work around features that 
make it difficult to virtualize the underlying ISA. Xen specifically targets the 
IA-32 ISA, which, as we have seen earlier, has critical instructions that make 
it difficult to design an efficient virtual machine. The Xen system takes an 
existing operating system, such as Linux or Windows XP, and makes modifi- 
cations to the machine-dependent parts of the system to eliminate the need to 
perform complex virtualization tasks such as code detection and patching or 
the maintenance of shadow page tables. As an example, Xen takes advantage 
of the fact that popular operating systems today use only rings 0 and 3 of the 
IA-32 privilege levels by modifying the guest operating system to run in ring 1. 
Privileged instructions present in the operating system code are paravirtual- 
ized by requiring them to be validated and executed within the virtual machine 
monitor, which runs in ring 0. Xen aims to restrict changes to just the operating 
system ~ an application binary works unchanged in Xen. The Xen researchers 
report that the number of lines of the Linux IA-32 code base that needed to be 
changed in order to paravirtualize it was less than 3000, or 1.36% of the total. 
The result is a virtual machine system that performs at a level of 90+% across 
all benchmarks, compared to a native Linux implementation. 

8.5.5 Specialized Systems 

Further optimization of a virtual machine system is possible if the VMM has 
some knowledge about, or access to, the internals of the guest operating system. 
This is the case when the guest operating system is not a proprietary closed box. 
Following are some examples of this type of performance enhancing hardware 
(Gum 1983). 

�9 Virtual-equals-real (V = R) virtual machine: In this mode, the host 
address space representing the guest real memory is mapped one-to-one to 
the host real memory address space. One advantage of such a mapping is the 
improvement of performance of channel programs accessing large, data- 
spanning multiple pages. Normally, contiguous real pages of the virtual 
machine need not be mapped to contiguous locations in physical memory. 
Hence such a channel program must be retranslated into multiple chan- 
nel programs, each accessing a contiguous region of the physical memory. 
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The V = R mapping eliminates the need to perform such retranslation, thus 
reducing the overhead experienced by channel programs. 

�9 Shadow-table bypass assist: As described in Section 8.3, the shadow page 
tables for a guest differ from the actual guest page tables only in that the 
real addresses in the former point to host physical addresses rather than 
real addresses in the guest machine. The maintenance and update of these 
tables constitute a fair amount of overhead in a virtual memory system. 
These shadow page tables can be dispensed with ~ the guest page tables 
can point directly to physical addresses if the dynamic address translation 
hardware is allowed to manipulate the guest page tables. On System/370, 
however, it is necessary to treat accesses to page 0 in a special way because 
this page is mapped distinctly for each virtual machine. The shadow-table 
bypass assist takes this into account in hardware. 

�9 Preferred-machine assist: The idea ofthis assist is to allow a guest operating 
system to operate in system mode rather than user mode. This eliminates 
the special treatment required to execute most of the privileged instructions 
in the guest operating system. Special hardware is needed to support this 
capability because even though the VMM operates in the same mode as the 
guest operating system, it has to be protected from unintentional or mali- 
cious tampering by a guest operating system. Certain events may still need 
to be examined to determine whether they are actually meant for the virtual 
machine currently executing, for the VMM, or for some other guest virtual 
machine. For example, external I/O interrupts may not be destined for the 
current guest virtual machine and may need to be handled by the VMM. 

�9 Segment sharing: When multiple virtual machines loaded with the same 
guest operating system are running on a system, it is possible to improve 
performance by sharing the code segments of the operating system among 
the virtual machines, provided the operating system code is written in a 
reentrant manner. In particular, ifthe code segments contain only read-only 
information, sharing a single copy can alleviate TLB pressure on the system. 
While most programs today satisfy the reentrant property, older operating 
systems often did not ~ they modified code segments, usually for storing 
small pieces of data but sometimes to modify code behavior. Sharing in such 
cases would require the VMM to perform expensive checks to ensure that 
a virtual machine does not use code modified by another virtual machine. 
The System/370 provided hardware to perform such segment protection, 
eliminating the need for software checks. 

Hardware assists that enhance the performance of specific guest sys- 
tems inherently take advantage of knowledge of system details. Often on 
the System/370, a particular hardware assist may work only for a specific 
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guest operating system; in fact there may be multiple versions of the same 
assist, depending on characteristics of the virtual machine. Some specialized 
hardware assists can leave information in guest OS-accessible data structures 
revealing to the guest OS that it is running in a virtualized mode rather than 
natively. This, in itself, is usually not a cause for concern, but it does com- 
promise the original principle that any software running on a virtual machine 
should not know, and hence should not exploit the fact, that it is not running 
natively. 

8.5.6 Generalized Support for Virtual Machines 

With the success of the virtual machine philosophy, IBM looked into ways to 
formally include features in the ISA that improved the performance of virtual 
machine systems in general. This led to the idea of an interpretive execution 
facility (IEF), which provides a way for the processor to directly execute most 
of the functions of the virtual machine in hardware. Thus, in a sense, interpre- 
tive execution is an extreme case of a VM assist, where almost all instructions 
are assisted. Besides further improving the performance of the virtual machine, 
interpretive execution benefits virtual machines running all types of guest oper- 
ating systems and also makes the behavior of virtual machine programs more 
predictable across a range of architectures and implementations. 

An IEF can be viewed as a transparent integration of the various techniques 
used to assist the performance of virtual machines. The function of the VMM 
is distributed more cleanly over hardware and software. In fact, the traditional 
software part of the VMM gives up control to the hardware IEF part through 
an instruction called start interpretive execution (SIE). Before it does so, it 
takes care of any pending interrupts, determines the virtual machine to be 
dispatched next, sets a pointer to a table containing the architected state of the 
virtual machine, and loads some of the resources (such as the general-purpose 
registers) with corresponding values from the table. 

In the IEF mode, most privileged instructions are executed directly in hard- 
ware. The notable exceptions are I/O instructions and some of the more 
complex, though infrequent, instructions. Once the IEF gets control, it 
starts executing the instruction stream from the virtual machine, directly 
executing many of the instructions and interpreting others in hardware. As 
shown in Figure 8.20 there are two ways in which the hardware interpretation 
of instructions may be suspended and control returned to the software part. 

1. An interrupt may be generated that is determined by the IEF hardware to 
be meant for either the VMM or another virtual machine. A return from 
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Figure 8.20 Interpretive Execution Entry and Exit. Execution of an SIE instruction causes the processor to enter 
the interpretive execution mode. Exit from this mode can occur either because an interrupt needs to 
be handled by the host or due to one of several conditions that require servicing by the VMM. In the 
former case, the machine returns back to the interpretive execution mode. In the latter it proceeds to 
the next instruction after the SIE. 

such an interrupt points to the SIE instruction that was executed by the 
VMM. 

2. Control can pass to the instruction following the SIE instruction. This is 
referred to as interception.  Interception occurs because of the following 
reasons. 

a. An instruction is encountered whose interpretation is not supported 
in hardware. 

b. An exception occurs during the execution of an interpreted instruction. 

c. An instruction is encountered in a mode that forces it to be handled in 
software, as in a traditional virtual machine system. 

d. An externally set interception condition is detected. 

e. Some special case is detected; e.g., a guest operating system has entered 
the wait state. 

Before control returns to the software part of the VMM, the IEF hardware 
must update the table containing the state description of the virtual machine 
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Table 8.1 Improvement in Performance of Virtual Machines Resulting from the Introduction of Hardware VM 
Assists on the IBM System/370 (MacKinnon 1979) 

Elapsed time (seconds) 

Relative Batch Throughput 

Native 
Virtual Machine 
Virtual Machine with VM Assist 
without VM Assist 
with VM Assist 

Reduction in supervisor state time through VM Assist 
Reduction in elapsed time throu~lh VM Assist 
Reduction in total number of instructions simulated by VM/370 
through VM Assist 

Model 135 
DOS/VS VSl 

2788 3035 

8172  11598 

4226 4063 

0.34 0.26 

0.66 0.75 
74% 89% 

48% 65% 

87% 95% 

Model 145 
DOS/VS VS1 

2150 1418 

4520 4089 

2723 2024 

0.48 0.35 

0.79 0.7 

73% 86% 

40% 51% 

86% 94% 

Model 158 
VSl VS2 

1386 572 

3769 2696 

2004 1149 

0.37 0.21 

0.69 0.5 

82% 69% 
47% 57% 

91% 74% 

so that it can resume operation at a later time. It must also store some informa- 
tion about the reason for giving control back to software, including parameters 
that would be needed for software emulation. 

For good performance, the IEF relies on many ofthe hardware assist features 
described earlier in this section. By having special hardware assists for the timer 
and for the time-of-day clock and by using bypass techniques to reduce the 
overhead of memory address translation, the IEF comes closer to its goal of 
making the behavior of a program on a virtual machine very similar, only 
slightly slower, compared to its performance on a native platform. This is 
evident from Table 8.1 (MacKinnon 1979), which shows the improvement in 
performance through the use of assists for three different implementations of 
the System/370 architecture and for three different guest operating systems: 
DOS/VS, OS/VS1, and OS/VS2 SVS. It can be observed that the difference 
in performance of a program running natively versus in a virtual machine 
decreases significantly through the addition of special hardware features that 
support virtualization. 

The interpretive execution facility has evolved considerably since its origi- 
nal introduction. In essence, more and more function was added in hardware 
to eliminate most of the overhead involved in supporting virtual machines. 
A comprehensive discussion ofthe various new features can be found in Osisek, 
Jackson, and Gum (1991). 

A popular virtual machine infrastructure for IA-32-based PCs and servers 
is the VMware Virtual Platform (VMware 2000). As mentioned earlier, the 
VMware system is an example of a hosted virtual machine system. More 
recently, VMware has included a native virtualization architecture embodied 
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in a product called the VMware ESX Server, which is claimed to provide bet- 
ter resource control, scalability, and performance, but at the expense of full 
support for all types of hardware. Our discussion here is limited to the hosted 
system, which has been renamed the VMware GSX Server (VMware 2001). We 
outline next the various reasons that motivated this development of a hosted 
system rather than a native system. 

In comparison to a native VM infrastructure for a large mainframe, such as 
the VM/370, the development of a VM infrastructure for a commodity IA-32 
environment faces several challenges. 

�9 The IA-32 grew up as an inexpensive microprocessor, never intended to 
be used in large systems supporting multiple users. Among other things 
this led to an ISA that includes a number of features difficult to virtualize 
efficiently. On the other hand, the IBM VM systems have existed almost 
from the beginning of the System/370 line. The IBM architecture team 
had close interactions with the team developing the VMM (because they 
worked at the same company), and therefore they avoided features that 
could hamper the development of virtual machines on its platforms. 

�9 The other difference between the current commodity IA-32 environment 
and the IBM System/370 environment is the openness of the system archi- 
tecture, which has led to a proliferation of different configurations of PCs. 
Thus, while the VM/370 developers had only to understand the system 
configurations that IBM shipped to its customers, IA-32 VMM developers 
must anticipate any of the myriad configurations that a multitude of PC 
system vendors may ship. The situation is made even more daunting by the 
proliferation of different I/O devices that are available for users to add to 
their systems. 

�9 VMware, as a separate company from either a hardware developer, such 
as Intel, or an operating system company, such as Microsoft, faced an 
additional challenge. It had to ensure that its VMM software can be easily 
installed and used. In particular it cannot expect its users to wipe out an 
existing operating system to install VMware software and then reinstall the 
old operating system over the VMM. This, in fact, directly influenced the 
architecture of the VMM developed by VMware. 

The VMware Virtual Platform presents a view to the user depicted in 
Figure 8.21. At this level it looks similar to the VM view presented to an 
IBM System/370 user. However, as opposed to the native nature of the virtual 
machine system of VM/370, the Virtual Platform is a hosted system. It depends 
on the existence of a host operating system, such as Windows or Linux, running 
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on the bare hardware to perform certain critical functions. As we have seen in 
Section 8.4.3, a principal advantage of a hosted system is that the VMM can 
avail itself of any I/O device the host operating system supports with relatively 
little work. 

As discussed in Section 8.4.3, a dual-mode hosted virtual machine sys- 
tem must have three components for its VMM: (a) the VMM-n, which is the 
component working in a privileged native mode, (b) the VMM-u, the com- 
ponent that runs as an application on the host operating system, and (c) the 
VMM-d, the component that enables communication between the VMM-n 
and VMM-u. On the VMware system, these three components are respectively 
named VMMonitor, VMApp, and VMDriver. At any given time, the processor 
executes either in the host operating system environment or in the VMMonitor 
environment. Transfer of control between the two worlds is facilitated by the 
VMDriver and involves saving and restoring all user and system visible state 
information on the processor. As opposed to the view presented to the user 
shown in Figure 8.21, the structural view of the VMware system is as shown in 
Figure 8.22. 

Even though the Intel IA-32 architecture features four levels of protection, 
rings 0 through 3, most operating systems on the IA-32 simply lump the kernel 
and services, including the device drivers, into ring 0. Thus, for all practical 

Figure 8.21 User View of the VMware System. 
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Figure 8.22 Components of the VMware System. VMMonitor runs in privileged mode. VMDriver is a device driver 
installed in the host operating system and hence also has system privileges. VMApp runs as a user-mode 
application on the host operating system. 

purposes, it is adequate to consider the architecture as having a privileged level, 
largely consisting of code running in ring 0, and a user level, consisting of code 
running in ring 3. 

VMMonitor operates in privileged mode, but VMApp, which is simply an 
application that requests services from the host operating system, operates in 
the user mode. In a sense, VMMonitor can change its personality from being 
a privileged controller of resources to being just another application on the 
host operating system. It does this efficiently through VMDriver, a special 
device driver installed on the host operating system and hence having the 
same privileges as the host system. 

8.6.1 Processor Virtualization 

The Intel IA-32 architecture is not efficiently virtualizable, i.e., a VMM cannot 
be constructed in the strict sense of Theorem 1 in Section 8.2.1. Researchers 
(Robin and Irvine 2000) have identified 17 IA-32 instructions that are crit- 
ical, i.e., sensitive but not privileged. Hence, a virtual machine system for 
the IA-32 architecture must be a hybrid virtual machine system. VMware 
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presumably includes mechanisms for discovering these critical instructions 
and for patching (or caching) them, as described in Sections 8.2.3 and 8.2.4. 

The 17 critical instructions fall into two broad categories. 

Protection system references: These instructions reference the storage pro- 
tection system, memory system, or address relocation system. The hazard 
here is the possibility of some virtual machine accessing locations not in its 
virtual memory. An example of this is the MOVE instruction, which moves 
a value from a general-purpose register to the CS register, the control regis- 
ter that specifies the current privilege ring number in bits 0 and 1. In order 
to offer some protection, an instruction such as mov ax, cs executed in the 
user mode disallows the CS register to be loaded but does not generate a 
trap. Instead of trapping, the instruction generates a no-op and hence is 
not efficiently virtualizable. 

Sensitive register instructions: These instructions attempt to read or 
change resource-related registers and memory locations, such as a clock 
register or interrupt registers. An example is the POPF instruction men- 
tioned in Section 8.2.1. This instruction pops a word from the top of a 
stack in memory, increments the stack pointer by 2, and stores the value 
in the lower 16 bits of the EFLAGS register. One of the bits in the EFLAGS 
register is IF, the interrupt-enable flag, which, in the user mode, is not 
modified when POPF is executed. To understand why this is a sensitive 
instruction, consider the case where a guest operating system executes a 
POPF instruction. The operating system may require that the IF bit be 
changed; but if it is running in the user mode under the virtual machine, 
the IF bit is not changed. The guest operating system could later take erro- 
neous actions because the flag bit had not been set as expected. In a hybrid 
virtual machine implementation, such an instruction would be discovered 
by the VMM and patched to generate a trap. The trap handler in the VMM 
would then emulate the instruction and achieve the result expected by a 
guest operating system. 

Let us now examine what happens when a guest operating system in a virtual 
machine attempts to use a critical instruction. The piece of IA-32 code shown 
in Figure 8.23 is an example of real code (Rosenblum 2000). In this code, the 
flags are saved on stack using a pushfd instruction before a small piece of code 
is executed that could potentially change them. When they are restored, the 
expectation is that the flags will be exactly the same as before being pushed on 
the stack. In the privileged mode, the popfd would adequately restore the flags 
to their original state. However, when the code is executed in user mode, as it 
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pushfd 
c l i  
mov cax, (0x824) 
cmp cax, 1 
j c  5 
mov (Ox900), cdx 
popfd 
add cdx, cax 

Figure 8.23 Sample Intel IA-32 Code Using the popfd Instruction. 

would be on a virtual machine, not all flags will be properly restored, unless 
the instruction is emulated. 

In order to perform this emulation, VMMonitor scans the instruction 
stream being executed and detects the presence of the popfd instruction in 
the stream. The monitor then substitutes this instruction with another set of 
instructions that takes the processor into the privileged state and emulates the 
action ofthe original code. The emulation would include a check for the current 
mode of operation and execute one of two actions for popfd, depending on 
the mode. Specifically, if the virtual machine itself was supposed to be execut- 
ing in the system mode, the emulation of the popfd instruction must include 
the loading of the EFLAGS register or, more accurately, the virtual EFLAGS 
register belonging to the executing virtual machine. On the other hand, if the 
virtual machine is not in system mode, the emulation must ensure that certain 
bits, such as the IF bit, are not modified in the virtual EFLAGS. 

The setting of the IF should always be in control of the VMM, so that 
when a virtual machine is swapped out and another one brought in, the IF 
is not swapped. For each virtual machine there is a location in memory that 
corresponds to the EFLAGS register, and the emulation of activity on the 
EFLAGS register is carried out through instructions operating on the virtual 
flags in memory, rather than by loading the EFLAGS register and performing 
the action directly. Emulation of the IF in the EFLAGS register implies that 
any instruction that reads or modifies this bit must also be emulated. The 
cl i instruction in the example of Figure 8.23, which clears the interrupt flag, 
therefore, is also emulated by VMMonitor. 

8.6.2 Input/Output Virtualization 

The difficulty of virtualizing I/O in popular IA-32-based platforms was a pri- 
mary reason that VMware developers chose to implement the monitor in a 
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Figure 8.24 

Virtual Device Interface, 
e.g., IDE 

I/0 Device Simulator in 
VMMonitor 

Hardware Device 
Interface, e.g., IDE, SCSl 

Mapping a Virtual Device Interface to a Hardware Device Interface in the VMware Virtual 

Platform. 

dual-mode hosted VM style. The PC platform supports many more devices 
and many more different types of devices than any other platform. This has 
resulted in a massive number of device drivers written by all segments of the 
industry, including device hardware vendors, operating system developers, 
software developers, and even users. VMware takes a multifaceted approach 
to solving the I/O virtualization problem (Sugerman, Venkitachalam, and 
Lim 2001). 

Emulation in VMMonitor 

The first way to virtualize an I/O device is to emulate the device in the 
VMMonitor. If the device to be virtualized already has a physical counterpart 
on the host, the job of emulating it is simply one of converting the parameters 
in some virtual device interface (VDI) into parameters of the actual hardware 
device interface (HDI). Thus, the i n and out I/O instructions are intercepted by 
the VMMonitor and converted to appropriate i n and out instructions for some 
actual physical device (Figure 8.24). A situation where such a scheme would 
be used is that of converting a command to read a block from an IDE drive 
to one that reads a block from a SCSI drive. Unfortunately, such conversion 
requires some knowledge of the ports and memory map locations associated 
not only with the SCSI drive, but also with the IDE drive supported in the guest 
operating system. 

Using the Services of the Host Operating System 

The VMware developers discovered that while some interfaces, such as the 
IDE interface, appear to be well standardized across the industry, there is a 
noticeable variation in devices following the SCSI, LAN, or graphics standards. 
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This called for a different approach to emulating these interfaces. Instead of 
converting the i n and out I/O instructions to new i n and out instructions, 
they are converted into a set of library service requests for the host operating 
system, which invariably already supports the needed device drivers. 

This technique is illustrated in Figure 8.25. The method relies on the dual 
personalities of the Virtual Platform. The VMMonitor contains device mod- 
els for each of the virtual devices supported. When a guest I/O instruction 
is encountered, it traps to the VMMonitor code that alters the state of the 
device model corresponding to the requested device. If the requested device 
is not natively supported by VMMonitor but is supported by the host OS, 
the request is converted into a host OS call. For example, if the host oper- 
ating system is Windows NT, it is converted into a win32 system call. The 
VMMonitor, through VMApp, now acts as a well-behaved application under 
Windows NT. When the application returns from this system call, the control 
gets back to the VMMonitor and then into the application running on the vir- 
tual machine. VMMonitor uses this approach for virtualizing the floppy disk 
drive, the CD-ROM drive, the sound card, the serial port, and the parallel port. 
In measurements taken on a real system, the overhead of switching from one 
mode to the other was determined to be only tens of microseconds. 

The dual personality assumed by the VMMonitor confers advantages 
beyond reducing the complexity of supporting a large variety of I/O devices. 

�9 As long as the operating system provides a reasonable suite of services to 
perform I/O, any operating system can be used as the host. All devices 
supported by that operating system would automatically be available to 
VMMonitor. 

�9 The VMMonitor need not limit its access of the host operating system to its 
I/O features. All services available on the host operating system can be taken 
advantage of because VMMonitor installs on the host operating system just 
like any other application. In particular, it can use the file system services 
of the host, say, to emulate disks. 

�9 When making a transition from an old operating system to a newer one, it 
may be beneficial to use the old operating system as the host, with the new 
one working in a virtual machine. Performance-critical applications can be 
run on the host directly during the transition period. 

New Capability for Devices Through Abstraction Layer 

VMApp has the ability to insert a layer of abstraction above the physical device. 
This allows the incorporation of new functionality on the device that may not 
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Figure 8.25 
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Use of the Operating System Library Function Interface to Map a Virtual Device Interface to a 
Hardware Device Interface. 

have been possible or convenient with the original device. For example, the 
disk on a virtual machine in VMware can be treated either as a raw disk or as a 
file on the host operating system. In the latter case, it then becomes possible to 
have "undoable" disks, where recent actions taken on the disk can be undone. 
This also makes it possible to save or discard entire sessions by providing a 
commit feature that performs explicit commits of disk writes at the end of the 
session. Such a capability is particularly useful, for example, for a test session 
or if one needs to discard a session because of an insecure access. 

This abstraction layer can also provide a way to reduce performance losses 
due to virtualization. For example, a virtual Ethernet switch is provided in 
VMware between a virtual NIC (network interface controller) and a physical 
NIC to allow multiple virtual machines to share a physical NIC, similar to what 
was described in connection with Figure 8.19. Different IP addresses can be 
given to each of the virtual machines. The virtual machines sharing the physical 
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NIC can communicate with each other through this virtual LAN, exactly in the 
manner of a more traditional LAN interconnection between physical machines. 
The latency of communication between these virtual machines can actually be 
made lower than that encountered in a physical system because the LAN is 
emulated using special communication paths that are local and more efficient 
than the standard Ethernet path. 

A different type of abstraction is exemplified by the provision in VMware 
for an alternative user interface. In general, user interface controls such as the 
video card, the keyboard, and the mouse are physical resources that are virtu- 
alized in a manner similar to other physical resources, such as general-purpose 
registers. A user on a virtual machine takes direct control of these devices just 
as he/she would on a real machine. Thus the entire screen of the monitor can 
be under the control of the virtual machine. In addition, VMware also pro- 
vides the capability to make the user-interface display appear as a window on 
the user interface of the host operating system, e.g., as one of the windows 
of a Windows desktop. This capability allows the user to access applications 
on both platforms in a convenient way. Using special communication paths 
between VMMonitor and the host operating system, it is even possible to 
cut and paste between a window on the host and an application on a virtual 
machine. 

8.6.3 Memory Virtualization 

VMMonitor virtualizes the physical memory of a virtual machine by using 
the host operating system to allocate or release the real machine's physical 
memory. The guest operating system does standard demand paging, though 
physical memory pages for the virtual machine are assigned by the host oper- 
ating system. Paging requests are not directly intercepted by the VMM. They 
are converted into disk read/writes by the guest OS exactly as they would be 
on a real machine. These disk read/writes are translated by VMMonitor to 
requests on the host operating system through VMApp. The requests are actu- 
ally made to appear by VMDriver as large DMA requests on the host operating 
system. The activity of applications on the host determines whether or not such 
a DMA request is satisfied from the memory of the host or results in paging on 
the host. The standard replacement policies of the host could end up replacing 
critical pages, thereby degrading performance of the virtual machine system 
in the presence of other host applications. In order to alleviate this problem, 
VMDriver pins some of the critical pages of the virtual memory system in 
physical memory, especially those pages belonging to the VMMonitor's active 
working set. 
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In describing the VMware Virtual Platform in Section 8.6, we indicated several 
of the problems in virtualizing the Intel IA-32 architecture. We also saw how 
the VMware GSX server tackled the virtualizability problem to provide virtual 
machine capability on this popular platform using a hosted VM system. How- 
ever, the various techniques used to finally achieve virtualization come at a cost 

complexity of code and performance overhead. Some of the overhead, par- 
ticularly that of scanning and patching the code to get around the presence of 
critical instructions in the instruction set, will also be present in native virtual 
machine implementations like the VMware ESX server. This was the motiva- 
tion behind the current trend towards paravirtualization, where the interface 
presented by the virtual machine is not identical to that of the architecture of 
the underlying processor, but rather simplified to eliminate the effect of critical 
instructions as much as possible. 

The performance overhead of handling the sensitive instructions in the 
VMM still remains, even with paravirtualization. In Section 8.5 we described 
various ways to speed up virtualization through hardware enhancements of 
the processor. VM Assists and the Interpretive Execution (IE) capability went a 
long way in improving the performance of the z/VM system on the IBM zSeries 
mainframes. Intel recently developed a capability, the VT-x, or Vanderpool, 
technology for IA-32 processors, that is conceptually similar to the IBM's IE 
capability, and promises to enhance the performance of IA-32 virtual machine 
implementations. 

The main feature of VT-x is the inclusion of the new VMX mode of opera- 
tion. When in VMX mode, the processor can be in either VMX root operation 
or VMX non-root operation. In both cases, all four IA-32 privilege levels (rings) 
are available for use by software. VT-x, in effect, provides four new less priv- 
ileged rings of protection for execution of guest software, in addition to the 
usual four rings for use by the VMM. The behavior of the processor in VMX 
root operation is largely similar to its function in a normal processor not incor- 
porating the VT-x technology, the main difference being the inclusion of a set 
of new instructions called the VMX instructions. The behavior of the processor 
in non-root operation is limited in some respects from its behavior on a normal 
processor in order to support virtualization. The limitations are such that crit- 
ical shared resources are kept under the control of a monitor running in VMX 
root operation. This limitation of control of resources extends also to non-root 
operation in ring 0, which, in normal processors, is the most privileged level. 
Thus the intention is for the VMM of a virtual machine system to work in VMX 
root operation, while the virtual machine itself, including the guest operating 
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system and applications, works in VMX non-root operation. Because VMX 
non-root operation includes all four IA-32 privilege levels (rings), guest soft- 
ware can run in the rings in which it was originally intended to be run (i.e., the 
guest operating system kernel can run in ring 0 and guest applications can run 
in ring 3). 

8.7.1 Technology Overview 

The typical sequence of operations in a virtual machine system is shown in 
Figure 8.26. A processor which has been turned on in a normal mode can be 
made to enter VMX root operation by issuing a vmxon instruction. The virtual 
machine monitor running in root operation sets up the environment for each 
virtual machine and initiates the virtual machine by issuing a special instruc- 
tion, vml aunch. Various situations, especially attempts to reconfigure critical 
resources shared with other virtual machines or with the VMM, cause the 
processor to relinquish control to the VMM in root operation. The processor 
may also exit from the virtual machine explicitly through a vmcal 1 instruction. 
Re-entering a previously launched virtual machine is accomplished through the 
lower-cost vmresume instruction, which puts the processor back in non-root 
operation. Thus, in the steady state, the processor should be working largely 
in VMX non-root operation with occasional short excursions to the VMM. 
Finally, when the processor wishes to leave VMX operation, it will bring down 
each of the virtual machines in turn and return to the normal mode by issuing 
a vmxoff instruction. 

This is a high-level view of how a virtual machine system can be created on a 
VT-x enabled IA-32 processor. There are many aspects which need to be taken 

Figure 8.26 Transition Between Operation Phases with the Intel VT-x Technology. White areas represent the 
operation in root mode of the virtual machine monitor (VMM). The cross-hatched and dotted areas 
represent the regions in time when the two active virtual machines are executing. 
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care of in launching and exiting from a virtual machine; the interested reader 
is referred to Intel's Preliminary Specification document (Inte12005) for more 
details on this topic. We limit our discussion below to the concepts underlying 
the technology. 

8.7.2 Capabilities of the Technology 

A key aspect of the VT-x technology that allows faster virtual machine systems 
to be built is the elimination of the need to run all guest code in the user mode, 
essentially by providing a new mode of operation specifically for hypervisors 
and VMMs. For code regions that do not contain instructions that affect any 
critical shared resources, the hardware executes as efficiently as it would have 
on a normal machine. Since hardware keeps track of the virtual machines that 
are active, even larger regions can be executed at full speed by temporarily 
mapping the shared resources to the corresponding resources in the virtual 
machine. It is only in the few cases where this is not possible that a certain 
degree of emulation must be performed by the VMM. Thus, once in the virtual 
machine, the exits back to the monitor are far less frequent in the hardware 
case than in software virtualization. 

The other major source of overhead in a software-based solution is the 
maintenance of state information. Various tricks in the software, especially 
mapping the frequently used registers to hardware register elements, reduce the 
overhead of maintaining and changing state. VT-x technology provides hard- 
ware that allows almost all of the state-holding data elements to be mapped 
directly to their native structures during virtual machine execution. More- 
over, the technology provides a formal data structure called the VMCS (virtual 
machine control structure) that encapsulates all the information needed to 
capture the state of a virtual machine or to resume a virtual machine. The 
hardware implementation can take over the tasks of loading and unloading 
the state from their physical locations, without requiring the VMM to perform 
expensive load and store operations on large quantities of data. 

The VT-x hardware is thus able to reduce the overhead in a classic native 
VM system considerably. It also eliminates the need for paravirtualization, 
thereby allowing more standard versions of operating systems to be used in 
virtual machine systems. The vmca] ] instruction, which can be used by a VMX 
non-root guest to communicate with the root mode VMM, can be used as a 
mechanism to pass hints and data that can help the VMM to perform more 
intelligent allocation of resources. 

VT-x can be adapted also to construct a hosted VM system. Since VMX root 
operation has been designed to be as close as possible to the normal operation 
of a processor, it is possible to take a standard implementation of a host OS 
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and make it run in VMX root operation. The VMM, also running in VMX root 
operation, is then in the same environment as the host OS, and has the same 
privileges as the host OS, just as in a typical hosted-VM implementation like 
VMware's. 

An important reason for the choice of a hosted system for the VMware 
GSX server was the need to virtualize the large number of existing devices 
and device drivers that exist in the IA-32 PC world. This need still remains; 
the VT-x technology does not address I/O virtualization. It must be noted 
also that the VMX root operation is not exactly identical to normal operation 
of the processor. There are restrictions imposed in VMX operation, such as 
the inability to reset the CR0.PE and CR0.PG bits to 0, which prevent a host 
OS in VMX operation from running in unpaged protected mode or in real- 
address mode. Modern applications will not suffer because of this limitation; 
however, on legacy systems these modes may have to be supported either 
through emulation in the VMM, or by executing in the normal mode after 
leaving VMX operation through a vmxoff instruction. 

8.7.3 Maintenance of State Information 

We now turn our attention to the mechanics of state maintenance in the VT-x 
technology. As mentioned before, the state of a virtual machine is maintained 
in the VMCS data structure. This structure is fully specified, with the various 
fields precisely defined. The VMCS can be manipulated only by hardware, 
or by software running in root operation. The VMCS corresponding to the 
currently executing VM is identified by a pointer, the VMPTR, which contains 
the 4KB-aligned physical address of the VMCS. Multiple VMCS structures 
corresponding to different virtual machines can be active, though only one can 
be executing at a time on a given logical processor. (There may be more than one 
"logical" processor in a multithreaded system.) The VMPTR can be modified 
using the vmptr] d instruction in root operation. Similarly, the contents of the 
VMCS can be accessed only in root operation, and only through vmread and 
vmwri te instructions. Regular memory load and store operations may not be 
used to access data in the VMCS because the format used to store the VMCS is 
not architected, and may change from one implementation to the next. 

The different types of information stored in the VMCS are shown in Table 
8.2. The state information that is stored for the guest and the host goes beyond 
the conventional architected state and includes items like the architecturally 
hidden part of each segment register. This is needed to maintain a behavior 
of a virtual machine similar to its behavior on a normal machine. The various 
control fields determine the conditions under which control leaves the virtual 
machine (VM exit) and returns to the VMM, and define the actions that need to 
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Table 8.2 Information Stored in the Virtual Machine Control Structure (VMCS) 

State Area 

Control Area 

VM Exit 
Information 

Guest State 

Host State 

VM Execution Controls 

VM Exit Controls 

VM Entry Controls 

Basic Information 

Other Exit Information 

Register State 
Interruptibility State 

Register State 
Pin-based Execution Controls 

Processor-based Execution Controls 
Bitmap Fields 

etc. 
Control Bitmap 
MSR Controls 
Control Bitmap 
MSR Controls 

Controls for Event Injection 
VM-Exit Information 

Vectoring Event Information 
Due to Event Delivery 

Due to Instruction Execution 

be performed during VM entry and VM exit. For example, since the MSRs on a 
processor are implementation-dependent, one of the control fields determines 
how many model-specific registers (MSRs) must be saved on VM exit, and 
another field determines the physical address where these registers must be 
saved. 

An important part of the VMCS area is the VM-exit information area. This 
area contains fields that inform the VMM the reason for an exit, as well as 
other information needed to service the event that caused the exit. 

Instructions may cause exits, either unconditionally, e.g., instructions dis- 
allowed in non-root mode, or conditionally, e.g., a rdtsc  instruction, which 
causes an exit only if a special control bit "RDTSC Exiting" has been set. There 
are several such control bits described in the specification document (Intel 
2005), that essentially allow the VMM to set up virtual machines with different 
kinds of behaviors. 

8.7.4 An Example: The rdtsc Instruction 

We conclude this section by demonstrating how the hardware supports a vir- 
tual machine executing the "Read Time-Stamp Counter" instruction, rdtsc.  
According to the IA-32 architecture, the time-stamp counter is maintained in 
an MSR called the IA32_TIME_STAMP_COUNTER. Execution of the rdtsc  
instruction causes the 64-bit value in this counter to be transferred to a spec- 
ified pair of general-purpose registers. However, if the TSD (Time-Stamp 
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Disable) bit of control register CR4 is set and the privilege level is not 0, a 
protection-mode exception will result and the counter will not be read. 

A flow chart showing the various conditions that arise is shown in 
Figure 8.27. The first thing the hardware checks is the TSD bit in the 

rdtsc 
instruction 

encountered 

Perform 
normal 

operation 

Yes 

No 

Yes 
v 

No ~ No 

Protection exception. 
Check exception 

bitmap in VM execution 
controls area 

Save exit Add TSC offset 
No / information, to time-stamp 

l Exit VM. counter value. 

No 

Deliver exception Return control Return sum Return time- 
to guest to VMM stamp counter 

value 

Figure 8.27 Actions Taken by Hardware When a Read Time-Stamp Counter (rdtsc) Instruction Is Encountered. 
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physical CR4 register that is mapped to the CR4 of the currently active VM. 
If the TSD bit in this register is set and the privilege level is not level 0, 
the operation must cause a protection-mode exception in the guest. The 
hardware directly examines a bitmap, called the Exception Bitmap, in the 
Processor-Based VM-Execution Controls area of the VMCS for the currently 
executing VM. This bitmap is a 32-bit vector that contains one bit for each 
IA-32 exception. If the bit corresponding to the mentioned protection-mode 
exception is set, the hardware forces a VM exit to allow the VMM to take 
appropriate action. Otherwise, the exception is directly delivered to the guest 
as in a processor operating in the normal mode. Thus the hardware avoids the 
need for the VMM to intercept the exception, inspect it, and reflect it back to 
the guest OS, as typically done in software VM implementations. 

If the TSD bit is not set or if the privilege level is 0, the hardware checks 
the "RDTSC Exiting" bit in another field of the Processor-based VM-Execution 
Control area ofthe VMCS. Ifthis bit is set, a VM-exit occurs and control returns 
to the VMM, which can then emulate the desired behavior of the instruction. 

If the "RDTSC exiting" bit is 0, the processor checks another bit, the 
"Use TSC Offsetting" bit, in the same area of the VMCS. If this bit is 0, 
the value returned is the actual value contained in the physical IA32_ 
TIME_STAMP_COUNTER. When this bit is 1, it is not directly the physi- 
cal counter value that is returned, but rather the value obtained by performing 
a signed addition of this value with a value contained in the "TSC Offset" field 
of the Processor-based VM-Execution Control area of the VMCS. This mode 
allows the VMM to approximate different behaviors for a virtual machine. For 
example, the VMM could use the value in the physical counter at VM-entry 
and VM-exit to store a TSC offset value such that the processor reports to a 
virtual machine only the number of cycles elapsed while the virtual machine 
was active. 

This example demonstrates the flexibility provided by the control bits that 
allows virtual machines with different behavior to be instantiated without 
incurring a software penalty. And yet, if a more elaborate behavior is needed, 
a VM-exit can be forced and the desired behavior implemented in the VMM. 

System virtual machines enjoyed a fair amount of popularity in the 1970s 
and 1980s, but they appeared to go out of favor in the 1990s as single-user 
computer systems became affordable. Recently there has been a resurgence of 
interest in system virtual machines, especially in the Web services area, with 
the need for massive numbers of simple single-thread systems that seldom 
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have to communicate with each other but that share storage resources. For 
these applications, virtual machines tend to utilize processor resources better 
than large clusters of uniprocessors. They also reduce administrative costs by 
making the process of starting up or shutting down a virtual machine trivial, 
compared to what would be needed to install or remove a real machine. 

While the original popularity of virtual machines was due to the ability for 
multiple users to use a sophisticated system as though it were their own, the 
future pervasiveness of virtual machines is likely to arise from other factors. 
As we will see in Chapter 10, there are emerging issues, such as security and 
system encapsulation, and emerging models, such as the Grid, that are likely 
to increase the use of virtual machine technology. 



M any systems today, particularly servers and high-end desktop systems, 
contain multiple processors. Server systems typically incorporate many 

processors that share large amounts of memory and I/O devices. Web servers 
manage huge databases and need to service a multitude of simultaneous 
requests coming from large numbers of network ports. Computational servers 
used for large scientific calculations have thousands of processors connected 
to terabytes of memory and petabytes of disk capacity. Moreover, as levels of 
integration continue to increase, multiprocessor architectures will soon find 
their way into laptops and inexpensive desktop systems. 

The increasing availability of multiprocessor systems has led to the exam- 
ination of techniques that can help utilize them more effectively. Often there 
is a mismatch between the ideal number of processors an application needs 
and the actual number of physical processors available. With increases in the 
sizes of multiprocessor systems, it is more often the case that applications can- 
not exploit more than a fraction of the processors actually available. This may 
be caused by limitations in the parallelism available in the programs or by 
limitations in the scalability of applications due to the overhead of communi- 
cation between processors. This has led to the development of ways in which 
the multiprocessor system can be partitioned so that multiple applications can 
simultaneously exploit the available resources of the system. 

Partitioning of Multiprocessor Systems 

In this chapter, we discuss general techniques to virtualize multiprocessor sys- 
tems. As with other virtualization methods, a virtualized multiprocessor gives 
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the appearance of a system that may or may not reflect the exact configuration 
of the underlying physical system. The term partitioning suggests that each 
virtual multiprocessor system is given a subset of the resources available on the 
system. The system virtual machine techniques described in Chapter 8 essen- 
tially perform partitioning, in time, of the processor resource. Multiprocessor 
systems provide a new dimension, that of partitioning of processors in space. 
Moreover, as we will see, the two can be combined so that a virtual system may 
have even more processors than the physical number of processors available 
on the system. 

Multiprocessor systems can be configured in a variety of ways, as discussed 
in Appendix Section A.7. One way is as a cluster system, typically consisting of a 
number of single-processor (or small multiprocessor) systems communicating 
with each other through high-speed network interfaces. Another way is as a 
large shared-memory processing (SMP) platform providing a large number 
of processors that communicate through shared memory. While there may 
be reasons to virtualize any of the multiprocessor architectures on any of the 
platforms, our discussion here will be largely restricted to construction of 
virtual clustered multiprocessor systems on a host SMP platform, with each 
node in the cluster being an SMP system. Typically the number of processors 
needed by a guest SMP system node is small. This is important, because many 
of the partitioning techniques we discuss assume that the number of processors 
needed in the guest is not more than the number of available processors on 
the host. Partitioning therefore provides an illusion of several virtual shared- 
memory systems operating simultaneously on a single shared-memory host 
system, as shown in Figure 9.1. 

9.1.1 Motivation 

Beyond efficiency, there are a number of reasons for virtualizing multipro- 
cessor systems. Some are extensions of the traditional reasons outlined in 
Chapter 8. However, with multiprocessors becoming more common, users 
are finding additional ways to take advantage of the capabilities offered by 
virtualization. We outline next the expanded benefits typically provided by 
virtualizing multiprocessor systems. 

Workload Consolidation 

The shared-memory multiprocessing paradigm has been used for several 
years in high-end database servers. This paradigm combines the technolog- 
ical advances made in supporting cache coherence across a large number of 
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Figure 9.1 Large Shared-Memory System Partitioned into Smaller Shared-Memory Systems. 

processors with the ease of programming afforded by a single namespace. 
Today, large database servers almost exclusively use shared-memory multi- 
processors. The large amounts of memory, the large number of disks, the 
requirement for high reliability, and the need for special environments driven 
primarily by cooling and security make these systems very expensive. Yet, for 
every unit of computation consumed by these large database servers, several 
more are consumed in other computational layers commonly used in large 
enterprises. In a three-tier model, for example, there are large numbers of 
workstations or PCs that feed requests to a first level of servers, commonly 
referred to as application servers, as shown in Figure 9.2. The application servers 
are responsible for running the business process logic but also make accesses 
to large database servers. 

Administrative costs of computer centers are dependent, to a large extent, 
on the number of systems that need to be supported. These costs are lowered 
by reducing the different types of systems in the center. Organizations that 
already need large servers for their databases find it attractive if there is a way 
to shift the application server workload to the large servers, as depicted in 
Figure 9.2. 

Another important scenario is the consolidation of multiple workstation 
users on a large remote server. Users of these small systems may be reluctant to 
migrate to the large system unless they have assurances regarding the privacy 
of their data and their environment. Moreover, users differ in their preferred 
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Consolidation of Database and Application Servers on a Single Platform. (a) Typical three-tier 
server model. (b) Consolidation of the application server with the database server. 

operating system and system configuration. Virtualization of large servers 
through partitioning of physical resources addresses both these concerns 
the isolation provided through partitioning satisfies the privacy requirement, 
while the ability to form variable partitions provides greater freedom to the 
user compared to a multiprogrammed solution. 
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Cluster-Based Programming Model 

Large SMP servers provide high performance in many scientific and com- 
mercial applications, particularly database applications. On the other hand, 
there has been a recent proliferation of low-cost cluster platforms, including 
blade servers. With the rapid increase in programming tools and applications 
being developed for such platforms, there is increasing pressure to provide the 
ability to run cluster-based applications on high-end shared-memory systems. 
Partitioning provides the user of a large shared-memory system with multi- 
ple operating system images on multiple smaller virtual multiprocessors that 
can run such clustered applications. A program written for a cluster using the 
Message Passing Interface (MPI) (Pacheco 1996), for example, can then work 
unchanged on such a partitioned system. Moreover, the efficiency of execu- 
tion may be improved by tuning the message-passing libraries to exploit the 
shared-memory hardware mechanisms available on such a system. 

System Migration 

Rapid improvements in technology have led to the introduction of new systems 
with new capabilities at a breathtaking pace. To remain competitive, businesses 
are often forced to use the latest technology for their computation and server 
needs. Yet the process of migrating to a new system is arduous. New versions 
of a given application must be thoroughly tested before they can replace older 
versions. Similarly, new versions of the operating system or middleware can 
be used in a production mode only when all applications either have a new 
version that runs on the new system or when these applications are found to 
run without problems on the new system. The introduction of a new system is 
therefore a very disruptive process. 

A partitioned system goes a long way toward reducing the pain of mov- 
ing to a new system, by allowing the testing and verification of the various 
components to proceed in partitions of the system separated from other parti- 
tions that execute production processes. The isolation provided by a partition 
ensures that any problems discovered during testing do not disrupt production 
applications by crashing the entire system. 

Reduction of System Downtime 

Just as with migration to a new system, an upgrade of an existing operating 
system often involves several installation and configuration steps, which usually 
can be done only by bringing the system down, i.e., by purging the system of 
all jobs and users. Having a partitioned system allows system administrators 
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to perform many of the normal downtime activities in a separate partition 
even when the rest of the system is continuing with production jobs. Thus an 
upgraded operating system can be completely checked out on a new partition 
before the rest of the system is brought down and migrated. 

Heterogeneous Systems 

It is not uncommon for enterprises wishing to change to a new operating system 
to be forced to continue running some of their older applications on the old 
operating system. For example, an organization wishing to switch from, say, a 
proprietary Unix environment to a Linux environment may still need to keep 
its old environment to run some critical database applications. A platform that 
supports virtualization would allow both environments to be run on a single 
server by partitioning the server and running the two operating systems in 
different partitions. 

Improving System Utilization 

Most systems are designed to meet peak workloads. Yet the average workload 
on a typical system is only a fraction of the peak for which it is designed. 
The ability to partition the system and run a variable number of operating 
system images allows the system to be configured to changing needs. For peak 
workloads that need the single system image of a large shared-memory system, 
for example, the system can be configured to run as a single partition. At other 
times, the system can be configured for multiple partitions and can be used as 
a cluster of smaller systems running several applications simultaneously, each 
on a separate operating system. Such a solution both improves the utilization 
of the large server and reduces the cost for an enterprise, especially compared 
to the alternative of buying and operating several servers. 

Capacity planning, the process of estimating how much compute power 
is needed by various workloads in an organization, can help in determining 
whether partitioning is viable for the organization. Flexibility in scheduling of 
operations can help in keeping the compute requirements closer to the average 
workload rather than the sum of workload peaks. 

Resources such as tape drives, optical storage, and high-performance com- 
munications adapters are needed by many applications, but typically only 
for short time intervals. A system might provide as many of these devices as 
required by the virtual system running in each partition ~ in fact, this may be a 
requirement imposed by the operating system running in the partitions, espe- 
cially when security is a consideration. However, in a large majority of the cases, 
it is acceptable for the resources to be available only when they are needed by 
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a system ~ these resources can be "loaned" to other partitions at other times. 
Common partitioning techniques allow for the allocation of resources in this 
manner. Dynamic migration of resources from one partition to another goes a 
long way toward improving the utilization of resources in a system and hence 
toward reducing the cost of ownership of the system. 

Multiple Time-Zone Requirements 

It is customary for geographically distributed parts of the same international 
company to run different operating systems for the different geographical 
regions, each with its own date-and-time setting. The main reason for this is the 
need to bring down the system for maintenance or upgrade in each region at a 
convenient local time, for example, at night, when there are few users loading 
the system. Server consolidation often finds all parts of the company using the 
same physical server for their computing needs. By running the workload for 
each region in a partition isolated from that of the other regions, each region 
can make decisions independent of the other regions about scheduling its batch 
workload or its downtime. 

Failure Isolation 

One of the most important reasons partitioning is becoming popular is its 
ability to isolate failures. It is not uncommon for today's systems to be vulner- 
able to either attacks over the network, unintentional software malfunctions 
of programs, or hardware failures in some part of the system. Thus, a process 
in a multiuser system can terminate due to a failure, even if the failure does 
not occur while that process is running or if it occurs in a part of the hardware 
the application never uses. Operating systems are often able to isolate software 
failures within applications. However, as operating systems get larger and more 
complex, there are more situations where the operating system itself is affected 
by a failure and brings down all applications running on it. Partitioning helps 
isolate the effects of failures to the partition where the failure occurs. Thus an 
event that causes a crash in a guest operating system will bring down only that 
operating system and its applications. To restore the system, only the operating 
systems running on the affected partitions need to be rebooted. Other operat- 
ing system images running on the machine continue without being affected by 
the failure. 

Faults may occur in either software or hardware. An example of a software 
fault is a bug in system software that produces a pointer to an invalid memory 
region. Most partitioning techniques isolate software faults. Hardware faults, 
on the other hand, may or may not be local to a partition. If there is a hardware 



452 Chapter 9~Multiprocessor Virtualization 

fault that causes an arithmetic unit to produce wrong results, the effect of the 
fault will depend on the nature of partitioning. In partitioning schemes where 
the same processor is time multiplexed between several partitions, a failure 
can affect more than just the partition that manifests the fault. On the other 
hand, when the system is physically partitioned, a processor is assigned to no 
more than one partition, and hence only that partition will be affected by the 
failure. Physical partitioning, where each partition uses hardware resources 
distinct from other partitions, is the closest one can get to isolating hardware 
faults. 

Of course, the reliability of the partitioned system also depends on the 
reliability of the VMM itself. The VMM typically consists of a program, either 
in software or in microcode, assisted by special hardware. The reliability of 
the VMM depends on the reliability of both these parts, though the hardware 
added is typically small and does not affect reliability in any significant way. 
The software portion either should be verifiably correct or should be kept small 
and simple. Contemporary software VMMs are generally quite small, often a 
couple of orders of magnitude less complex than large operating systems. 

9.1.2 Mechanisms to Support Partitioning 

As shown in Figure 9.1, partitioning needs the help of an additional layer 
between the physical host hardware and the virtual multiprocessors. We con- 
tinue to refer to this layer as the virtual machine monitor (VMM). The functions 
to be performed by the VMM determine the complexity of this layer and how 
it is implemented. 

As we observed in Chapter 8, for many ISAs, there can be an appreciable 
degradation of performance because of the need to execute a guest operat- 
ing system in nonprivileged mode. Commercial partitioning techniques on 
large shared-memory systems often provide hardware features to improve the 
performance of the VMM. In fact, VMMs may be implemented completely 
in hardware, in microcode supported by hardware, or in software supported 
by hardware. Performance is traded off for greater flexibility as more of the 
features of the VMM are implemented in software. 

A key difference between techniques that take advantage of hardware mod- 
ifications and those that do not is the availability of a new privilege mode 
in which the VMM can operate. This avoids the need to run a guest operat- 
ing system in user mode and hence the need to take special care of privileged 
operations executed by a guest OS. One disadvantage of making hardware mod- 
ifications to support virtualization is the inability to virtualize in a recursive 
manner ~ i.e., to run a software VMM on top of the hardware-aided VMM. 
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9.1.3 Types of Partitioning Techniques 

As described earlier, the spectrum of possible implementations for a large 
multiprocessing system with n processors has two extreme points. At one end 
is a simple cluster of n nodes, each consisting of a single processor. The natural 
number of system images (operating systems) in such a system is n, each 
operating system running natively on a dedicated processor node. At the other 
extreme is an n-way shared-memory system with n processors, all sharing the 
same main memory. Here, a single operating system runs across the entire 
system so that any application on the system can use all the processors while 
taking advantage of the large shared memory. 

Figure 9.3 depicts the various partitioning techniques that have been either 
implemented or proposed in the literature. As mentioned in the previous sec- 
tion, the implementation of the VMM plays an important role in partitioning, 
and we have divided the class of partitioning techniques into those that use 
special hardware for the VMM and those that do not. 

On the left-hand side of Figure 9.3 are techniques that take advantage of 
special hardware to provide efficient virtual machines. These fall under two 
categories, physical partitioning and logical partitioning. In physical partition- 
ing, each image uses resources, processors in particular, that are physically 
distinct from the resources used by the other operating system images. Thus, 
the number of partitions that can be supported in such a system is limited to 
the number of processors, though other considerations may limit this to an 
even lower number. 

Partitioning 
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support 
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Partitioning Partitioning 
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Without hardware 
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Figure 9.3 Different Types of Partitioning Techniques. 
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With logical partitioning, images share some of the physical resources, usu- 
ally in a time-multiplexed manner. Logical partitioning thus makes it possible 
to partition an n-way system into a systemwith more than n images if so desired. 
Logical partitioning is more flexible and needs additional mechanisms to pro- 
vide the services needed to share resources in a safe and efficient way. Early 
logical partitioning techniques implemented the VMM in microcode, i.e., in a 
programming layer higher than the hardware but hidden from general users of 
the system (Borden, Hennessy, and Rymarczyk 1989). This layer is considered 
part of the hardware and is sometimes referred to as the firmware. Today, the 
VMM is often implemented as a codesigned firmware-software layer, often 
referred to as the hypervisor. The software component of the hypervisor adds 
flexibility and provides an interface to system programs that configure the 
system. 

The right-hand side of Figure 9.3 shows partitioning techniques that do 
not use any special hardware. We have seen in Chapter 8 that the VMM of 
a system virtual machine provides an elegant way to logically isolate multiple 
operating systems on a single system. This technology can be used to create 
multiple virtual shared-memory multiprocessors also. Extensions to VMM 
methods can achieve many of the major desirable features of partitioning, 
particularly some degree of physical isolation of operating systems. System 
VM-based approaches may impose some more overhead, compared to the 
hardware-supported techniques listed in the left half of Figure 9.3. However, 
they are very flexible and, as the figure shows, may be the only way to provide 
a virtual multiprocessing system whose ISA is different from the ISA of the 
native multiprocessing system. 

It may be argued that partitioning of resources is really a function that 
could be provided by an operating system alone, and indeed there are some 
operating systems that provide ways of partitioning hardware resources among 
the processes. While this may help isolate processes from one another, it does 
not provide a virtual "machine" to the user (or group of users) who may wish 
to run a different operating system. 

This chapter will examine many of the partitioning techniques illustrated 
in Figure 9.3. Physical partitioning isdescribed in Section 9.2, while two 
variations of logical partitioning are described in Sections 9.3 and 9.3.3. 
Section 9.4 describes the system VM-based partitioning, using Stanford Uni- 
versity's Cellular Disco system as a case study. Almost all the work done to 
date on multiprocessor virtualization assumes that the ISA of each processor 
in the guest system is identical to that of the host system. Section 9.5 attempts 
to list the issues involved in virtualizing systems with different guest ISAs 
and, in particular, systems with different memory model characteristics in the 
guest. 
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Of all forms of partitioning, the physical partitioning approach is perhaps 
the simplest to understand and the easiest to implement, and it imposes little 
overhead on an executing application. Different manufacturers allow their 
systems to be physically partitioned in different ways. While they often use 
different terminology, the fundamental feature of these various approaches is 
that they allow a partition to "own" its resources physically, so there is no 
danger that another partition will accidentally or maliciously compromise the 
system security or availability. 

Unlike some of the other partitioning techniques, control of the configura- 
tion of each partition is mostly in hardware. Physical partitioning does not need 
sophisticated algorithms for scheduling and management of resources. There 
is typically a central control unit that receives commands from the console of 
the system administrator and sends out special commands to the various hard- 
ware resources, particularly the system boards, configuring them for use in a 
partition. This may include, for example, information about how the memory 
on a board maps to the real address space of the partition. 

Once a partition is configured, the operating system is loaded. Loading an 
operating system into a partition accomplishes the functions generally associ- 
ated with bootstrapping a system; other partitions on the system are unaffected 
during this operation. Each partition can run an operating system, which 
may be different from the operating system running on the other partitions. 
Figure 9.4 shows a 24-processor system consisting of six physical units (e.g., 
a board), with four processors on each board, some memory, and I/O logic 
connected to a set of disks. The six boards are divided into three partitions, 
with one board dedicated to the first partition, two to the second, and three 
to the third. The disk units are independently partitioned in a similar way, as 
shown. The entire system is controlled through a main console (not shown). 

As mentioned earlier, several vendors offer large shared-memory systems 
that can be physically partitioned. Sun Microsystems markets a large SMP 
server that can be partitioned into several domains (Sun 1999). However, each 
domain must be located in a physical unit that is distinct from that of another 
domain. A physical unit comprises one system board, consisting of up to four 
processors, 4GB of memory, and four I/O buses. A partition can span multiple 
system boards; however, a system board can belong to only one partition ~ it 
is not permissible for two partitions to share the resources of a single system 
board. 

Hewlett-Packard also allows physical partitioning in their large server sys- 
tems (Hewlett-Packard 2000). These partitions are referred to as nPartitions. 
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Figure 9.4 Physical Partitioning of a 24-Processor System. 

Like the Sun systems, each partition is constrained to one or more boards, 
which are also referred to as cells. A cell consists of up to four processors con- 
nected as an SMP, sharing up to 16GB of memory, and up to 12 PCI slots. HP 
imposes further restrictions on its partitions ~ each cell of a partition must 
be identical to other cells in the partition in terms of the number of processors 
and amount of memory. 

Fujitsu's PrimePower systems (Fujitsu 2003), with up to 128 processors, can 
also be physically partitioned. Each of the system boards contains up to eight 
processors, memory, and I/O, connected through a crossbar switch. Partitions 
can span one or more boards. However, PrimePower allows partitions to be 
smaller than one board. Each board of eight processors can contain up to four 
physical partitions. 

Here are the key advantages of physical partitioning over other forms of 
partitioning. 

Failure isolation: The robustness of a system to faults of various kinds is of 
considerable importance in server systems. Physical partitioning attempts 
to guarantee isolation of a partition from events in other partitions. Phys- 
ically partitioned systems ensure that in the event of a software failure in 
a partition, only that part of the physical system that houses the failing 
partition will be affected. The control unit is designed to be able to reset 
the partition and reboot the operating system for that partition without 
the remaining partitions on the system observing any effects of the failure. 
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This isolation also extends to hardware failures. A physical entity such as a 
board or a multichip module is associated with only one partition. Hence 
the system can be designed so that the failure of a processor on a board 
or module need not bring down any of the other partitions on the system. 
This does not eliminate single points of failure, however. (A single point 
of failure in a system is defined as a failure that can bring down the entire 
system.) In most common systems, there are several single points of failure. 
The control unit, for example, is a single point of failure. If the control 
unit fails, the partitions of the system are unable to reset themselves and 
respond to console commands. However, the probability of a hardware 
fault in a given unit is roughly proportional to the amount of hardware in 
the unit; and because the complexity of the central control unit is low and 
its size small, it is less vulnerable as compared to the rest of the hardware. 
The crossbar switch connecting different processors or different boards in a 
system is another single point of failure, and major vendors ensure that this 
switch is built with intrinsically reliable technology, with robust commu- 
nication paths, and with sufficient redundancy to ensure very high mean 
time between failures (MTBF). 

Better security isolation: Each partition is protected from the possibility of 
intentional or unintentional denial-of-service attacks by other partitions. 
Even though each partition can run with its own system administrator, a 
system administrator on one partition cannot take unauthorized action in 
some other partition. 

Better ability to meet system-level objectives: System-level objectives usu- 
ally result from contracts between system owners and users of the system. 
System users pay for specific amounts of computing resources that are guar- 
anteed by the system. Physical partitioning creates partitions more similar 
to hardware systems than other forms of partitioning. Techniques used to 
direct resources to applications in stand-alone systems can be applied more 
readily and predictably in physically partitioned systems as compared to 
logically partitioned systems. 

While physical partitioning has a number of attractive features, it is proba- 
bly not the ideal solution if system utilization is to be optimized. It is often the 
case that each of the physical partitions is underutilized, for example, because 
the system-level objectives force the VMM to allocate resources conservatively. 
Dynamic workload balancing is also difficult in physical partitioning because 
of the physical constraints placed by fault isolation requirements. Logical par- 
titioning sacrifices such physical isolation of partitions in exchange for greater 
flexibility in allocating resources to partitions. 
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Logical partitioning, like physical partitioning, is a way of providing the illusion 
of several shared-memory systems on a single large shared-memory system. 
Unlike physical partitioning, however, the partitioning is "logical," in the sense 
that a partition has no distinct, time-invariant physical boundaries. In logical 
partitioning the state of two virtual machines may be completely intertwined, 
not just in memory, but even in the processors. As we noted at the end of the 
last section, workload balancing is an important goal of logical partitioning, 
and this is often best accomplished by sharing resources, especially processors, 
among the multiple partitions in a time-multiplexed manner. 

Logical partitioning was introduced on mainframe computers by Amdahl 
in 1984, IBM in1988, and Hitachi in 1989. Even though the VM/370 concepts 
were well established and users had been running several operating systems 
simultaneously on a single machine, it was felt that an approach was needed 
that (a) did not require the guest operating system to run in user mode, (b) 
incurred a lower penalty when running an application on a virtual machine as 
compared to the native execution, and (c) did not require a complex virtual 
machine monitor, which, in those days, had almost the same complexity as 
an operating system. These goals were achieved in Amdahl's multiple domain 
facility (MDF) (Doran 1988), in IBM's logical partitioning (LPAR) (Borden, 
Hennessy, and Rymarczyk 1989) using the processor resource/systems manager 
(PR/SM) feature, and in Hitachi's multiple logical partition feature (MLPF). 
All three systems used low-level hardware and microcoded firmware to achieve 
this objective. Firmware provides a level of flexibility that allows extensions to 
be added to a system even after it has been shipped. 

From the point of view of the operating system and the applications that 
run on it, a logical partition behaves in a way similar to a physical partition. In 
most cases, the version of the operating system designed to run on the native 
machine can be loaded unchanged on a partition. The characteristics of the 
partition determine the characteristics of the machine the operating system 
sees. However, unlike on a physical partition, the hardware resources available 
to a logical partition may be shared with other partitions. As with other system- 
level virtual machines, the logical partition only has the illusion of owning the 
resources that are allocated for its use. 

9.3.1 Major Features of Logical Partitioning 

Allocations of physical resources are made in logical partitioning during ini- 
tialization of the partition, as was the case with physical partitioning. The main 
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Figure 9.5 A 24-Processor System Divided into Three Partitions. Partition 1 (shaded with dots) needs eightprocessors 
but only four dedicated processors; partition 2 (shaded light gray) needs ten processors, with six of them 
dedicated; partition 3 (shaded dark gray) needs ten dedicated processors. 

difference is that allocations must observe certain physical constraints in phys- 
ical partitioning but not in logical partitioning. This is illustrated in Figure 9.5. 
It may be observed in the figure that even though the sum of the number of 
processors needed by the three partitions is 28, the partitions can be accom- 
modated in the 24-processor system because four of the processors are shared 
between partitions 1 and 2. 

Some of the major features of logical partitioning using firmware follow. 

�9 Allocation of processors: Either a partition may specify a total amount of 
processing power it needs and leave the allocation of available processors to 
workload management software, or it may specify that specific processors 
in the system be dedicated for its use. A partition can specify that it needs a 
certain number of processors but that it is willing to share these processors 
with other partitions. For example, if a total of four processing units is 
needed by the partition, the partition can specify either that it needs four 
processors dedicated to itself or that it needs eight processors but only 
half the available compute power in each of the processors. 

�9 Allocation of memory: The total shared-memory is allocated to parti- 
tions in chunks of large granularity, e.g., 1MB. Smaller chunks increase the 
bookkeeping to be performed by the firmware monitor, while larger chunks 
restrict the flexibility of partitioning. The conversion of real addresses in 
the address space of a partition to a physical address in the larger memory 
is done in hardware. 
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Allocation ofl/O resources: A partition gets its own I/O subsystem. An I/O 
device that has multiple ports may be shared among various partitions that 
are each allocated a subset of the ports. In the simpler partitioning schemes, 
ports are allocated when the partition is initialized. 

Communication between partitions: In order to allow easy migration 
of cluster systems to partitioned systems, the modes of communication 
commonly implemented on clusters are also supported between partitions. 
Typically such communication uses either shared storage devices or net- 
work commands. A partition looks like a separate machine to the rest of 
the world, including to other partitions. 

In the next section we provide a more detailed description of the IBM 
LPAR system, which implements logical partitioning on mainframe computer 
systems. 

9.3.2 Case Study: The IBM System/390 Logical Partitioning Feature 

IBM mainframes provide a processor resource/systems manager (PR/SM) that 
allows an SMP complex to run multiple operating system images using logical 
partitioning (Borden, Hennessy, and Rymarczyk 1989). The PR/SM consists 
of special hardware and microcode that can be invoked and controlled directly 
by the system administrator through the machine console. The machine mode 
that permits exploitation of the PR/SM feature is termed LPAR (logical parti- 
tioning). In this mode, the system can have several partitions ~ up to six on 
the ES/3090S systems, where it was first introduced. 

Each logical partition is essentially a collection of hardware resources, 
including processors, memory, and I/O, that are needed to support an oper- 
ating system. Each logical partition can support an operating system different 
from those on other partitions. Besides an operating system, a partition can also 
run the VMM of a conventional system virtual machine. Partitions are logi- 
cally independent of other partitions they communicate with each other 
in ways similar to nodes within a cluster. These methods of communica- 
tion include shared storage devices, channel-to-channel communication, and 
network commands. 

Some of the hardware resources of the machine are divided between the 
logical partitions. Each partition sees a portion of the physical memory on the 
system. The I/O elements, such as the channel paths, subchannels, and logical 
control units, are also divided among the partitions. On the other hand, any 
processor in the system can be either dedicated to a partition or shared among 
multiple partitions. Each partition can use one or more logical (or virtual) 



9.3 Logical Partitioning [] 461 

Figure 9.6 The LPAR Mechanism. (a) A snapshot in time of the various active layers on the system. The base 
hardware has additional instructions and microcode as compared to a standard processor. This hardware 
enables switching between differentpartitions. (b) A system view of LPAR. The physical processors may each 
be either dedicated to a single partition or shared among multiple partitions of potentially different sizes. 
Allocation of logical processors of a partition to physical processors is done dynamically using dispatchers 
and job schedulers in the LPAR software. 

processors. Overcommitment of resources is permitted ~ the total number of 
processors used by all the partitions together can exceed the actually available 
number of physical processors. 

Contiguous regions of physical main memory are allocated to each partition 
at 1MB granularity. All references to real memory in a partition are remapped 
to the appropriate region of physical memory. A check is made to ensure that 
references are within the range specified for the partition. 

Each partition is given its own logical I/O subsystem. A given device is 
associated with multiple channel paths to allow the device to be shared among 
different applications. These channel paths are divided among the various 
partitions and hence provide the desired isolation. 

The number of processors used by a single partition cannot exceed the 
number of physical processors available on the system. The user of a partition 
can determine whether a partition should be dedicated or shared. A dedicated 
partition has exclusive use of the physical processors allocated to it and is 
probably the most appropriate choice for a partition that has a steady demand 
for the computing resources it uses. Most workloads tend to have demand 
variations from a peak at certain times to light use at others; in these cases 
it may be more cost effective to use a shared partition and allow the sharing 
of processors with other partitions on the system, as illustrated in Figure 9.6. 
Each processor allocated to a shared partition is associated with a user-defined 
weight  that is an indicator of the partition's priority for use of that processor in 
relation to other partitions that also use the processor. 
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Partitions on the IBM System/390 are defined by the user, who specifies 

�9 The name of the partition 

m The I/O configuration 

�9 The memory configuration 

�9 The processor configuration 

Each machine has an operator console used to perform a range of functions, 
at three different levels of the system hierarchy: to manage either the physical 
configuration of the entire system, the configuration of the LPAR environ- 
ment, including the resources within each partition, and the configuration of 
the operating system running within a partition. 

The LPAR functions are largely controlled through the system console. The 
resources are not dedicated to a partition until the partition is activated and 
it has been determined that the partition has all the resources it needs for its 
execution. When all the resources it needs become available, a ready partition 
is activated. For example, a shared partition is activated only when the number 
of processors it needs is no more than the total number of physical proces- 
sors minus the number of dedicated processors allocated to active partitions. 
Activation is the logical equivalent of the power-on reset performed to boot 
up a system. The system then goes through the sequence of loading the desired 
operating system on the partition. 

While most of the resources allocated to a partition remain with the par- 
tition, there are occasions when it is necessary to move resources between 
partitions. For example, there may be an I/O device, such as a special recording 
unit, that is expensive. Only one such device may be supported on the system, 
but the unit may never be used for long periods of time. In this case, the sys- 
tem administrator can remove the device from one partition and allocate it to 
another partition that requests it. Reconfiguration of channel paths from one 
partition to another on the System/390 is also done through the system console. 

When a processor is shared between partitions, it is desirable to allocate 
the processor resource in a fair manner, consistent with the weight of each of 
the partitions. Scheduling logical processors to run on physical processors is 
done by a software program called the LPAR workload manager, which runs 
in a partition of its own. It makes scheduling decisions based on the expected 
response to I/O operations and on the relative utilization of the available pro- 
cessors. The LPAR dispatcher maintains the state of each of the active partitions 
and loads the hardware registers with the appropriate contents when it sched- 
ules one of the active partitions to run on the processor. Here are some of the 
considerations for dispatching a waiting partition. 
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The weight assigned to the partition: The priority of a waiting partition is 
determined by the weight of a partition relative to the weights of the other 
waiting partitions. 

The activity within a partition: When a logical processor in a partition 
enters a wait state (i.e., the state in which it is waiting for some external 
event, such as I/O, to occur, as opposed to waiting to be scheduled), it is 
usually more productive to unload the partition and load another partition 
to execute on the processor. 

High-priority I/O interrupt: When an I/O interrupt is received for a logical 
processor that is waiting for the interrupt, the logical processor replaces the 
logical processor of another partition that is currently executing, provided 
the priority of the waiting partition is higher than the priority of the current 
partition. 

Interval timeout: The dispatcher allows any partition to execute for a 
predetermined maximum time. If the logical processor is still active at the 
end of this dispatcher timer interval, it is swapped out of the system. This 
is a useful mechanism to prevent either runaway partitions or malicious 
partitions that could otherwise monopolize the system and prevent forward 
progress for the other partitions on the system. 

OS-initiated swap: It could happen that the logical processor of a partition 
chosen via the foregoing criteria is in an unproductive mode, e.g., an idle 
loop. There is a mechanism provided on the System/390 that allows an 
operating system or a VMM running on a partition to inform the dispatcher 
that it is in an unproductive mode and so may be swapped out. 

IBM's LPAR provides fault containment as expected from a logical parti- 
tioning scheme. Any software fault that occurs can cause the failure of only 
the partition that caused the error. Other partitions cannot be affected by such 
a fault. Whenever possible, the effect of hardware faults is also limited to the 
partition that was executing when the fault occurred. A detected fault causes an 
exception that is transmitted to the partition that was executing. The operating 
system in this partition then attempts to recover from the fault exactly the way 
it would have attempted on a native machine. The effect of a hardware fault 
is localized to a single partition, especially in the case of dedicated partitions. 
However, unlike physical partitioning, there still are several cases where the 
failure of a shared component could bring down several partitions or even the 
whole system. 

Today, there are few systems, other than IBM's mainframes, that offer 
logical partitioning through microcode. With the advent of RISC instruction 
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sets and the resulting move away from firmware implementations, it is more 
common to find systems that implement the microcode functions in a software 
layer similar to codesigned virtual machines. This software layer, called the 
hypervisor, is the subject of the next section. 

9.3.3 Logical Partitioning with Hypervisors 

Logical partitioning has been introduced on several systems that do not have 
microcoded processor implementations. Examples include the current IBM's 
iSeries servers based on the AS/400 (Boutcher 2001), HP-Compaq's Superdome 
servers (HP 2002), and IBM's pSeries AIX servers. The complex microcoded 
instructions that support logical partitioning on the IBM System/390 are 
replaced by programs that use the basic ISA of the host platform and run 
in a special mode that is more privileged than all other software on the system. 
Thus the definition of a new mode of operation is what distinguishes this class 
of partitioning. This new mode is used by the hardware vendors to provide 
partitioning capability. If the mode is not exposed in the ISA, then the software 
that runs in this mode can be viewed essentially as an extension of the hardware 
itself, very much like the VMM software in a codesigned virtual machine. The 
common name given to this piece of software is the hypervisor. 

In order to limit the vulnerability of the system to software failures, an 
important characteristic of any hypervisor is its small size. Like operating 
systems in nonpartitioned systems, hypervisors have ultimate control of all 
resources on a machine. Unlike operating systems though, hypervisors tend to 
be unobtrusive ~ their main function is to configure the system and then get 
out of the way, allowing the hardware that has been allocated to the partition 
to work directly with the operating system in the partition. 

9.3.4 Comparison with System Virtual Machines 

Hypervisors and conventional system VMMs are similar, in that both run in 
the highest-privilege mode. However, the principal difference between the 
two is that hypervisors need hardware support and work in a special mode, 
while system virtual machines may be implemented on standard unmodified 
hardware. The guest operating system in a logically partitioned system works 
in the privileged mode, just as it would on native hardware, whereas in a 
conventional system VM, the guest operating system works in user mode. 
Applications running on partitioned systems tend to work more or less at 
native speed, especially with dedicated partitions, which have exclusive use of 
the processors allocated to them. 
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Today's system VMs on the IBM zSeries (System/370 descendents) can 
support very large numbers of virtual machines, often several times the number 
of processors on the system. In comparison, because of the high-performance 
requirements and the fault-tolerance requirements ofthe markets to which they 
are targeted, partitioned systems restrict the number of partitions on a system 
to much smaller numbers. A 64-way HP Superdome system, for example, 
supports no more than 64 partitions. 

Whether logical partitioning is better than a conventional software-based 
VM is likely to be debated for a long time. There is a certain elegance to the 
software VM approach that aims to provide a virtual system on unmodified 
hardware, i.e., on any implementation of the original, untouched archi- 
tecture. Also, adding special hardware features to allow the coexistence of 
multiple operating systems on the machine virtually eliminates the possibil- 
ity of running the virtual machine monitor on a copy of itself. However, at 
least within IBM, the software only nature of the VM approach had already 
been compromised soon after its introduction by the incorporation of special 
performance-enhancing hardware assists for VM. In fact, when IBM designed 
the PR/SM hardware/microcode feature, it not only included in the design 
special mechanisms to support logical partitioning, but also leveraged these 
mechanisms to further improve performance for conventional system VMs. 

9.3.5 Hardware Support for Logical Partitions 

Even if most of the monitor functions can be incorporated into the hypervisor 
software, there are hardware implementation changes that need to be made to 
support logical partitioning. 

Hypervisor state registers: The hypervisor state may have its own set of 
registers that are not accessible to software in any other mode. For example, 
as we will see shortly, there are special registers that isolate the real memory 
of one partition from the real memory of other partitions and also from the 
real memory used by the hypervisor itself. 

Replicated registers: Some of the common architected registers may be 
replicated, depending on how often the hypervisor is invoked. Amdahl's 
MDF (Doran 1988), for example, replicated the general-purpose registers 
and all other registers except the floating-point registers, which were not 
used in the hypervisor mode. Registers that are replicated need not be saved 
on a mode switch and do not occupy space in memory ~ this was an 
important consideration when real memory was much smaller than it is 
today. Another reason for the replication was the extra level of protection 
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provided by physical separation of the registers, especially against bugs in 
hypervisor software. 

Hypervisor memory: The hypervisor needs to access memory, especially to 
save information about the various partitions as well as to save the relevant 
state of each partition on a mode switch. Thus, the physical memory of a 
system, which in nonpartitioned systems is owned by the operating system, 
must be under the control ofthe hypervisor in a logically partitioned system. 

One way to do this is to partition the physical memory into disjoint regions. 
One of these regions is allocated to the hypervisor itself, while each of the other 
regions is allocated to each of the logical partitions currently active on the 
system, as shown in Figure 9.7. Corresponding to each partition is a partition 
memory base register (PMBR) and a partition memory limit register (PMLR), 
which determine the bounds of the physical memory accessible only to the 
partition. 

If the hypervisor is allocated an appropriately sized contiguous chunk of 
the low address space of physical memory, it is possible to bypass translation 
for memory accesses in the hypervisor mode ~ the effective address computed 
in an instruction becomes identical to the physical address. Addresses in a 
partition, however, must be relocated. 

The virtual address generated by a partition is converted to a real address via 
normal address translation mechanisms (see Section A.3.4). This real address 
must then be added to the value contained in the PMBR ofthe current partition 
to determine the actual physical location of the address. In order to prevent 
a partition from accessing the physical memory assigned to another partition, 
the physical address generated must also be checked against the PMLR. An 
attempt to access a location beyond that indicated in the PMLR corresponds to 
an attempt by the partition to access a real-memory location beyond the size of 
the real memory expected by the operating system in the partition and should 
generate a real-memory violation exception. 

The conversion of a partition real address to a physical address could be 
done in hardware by adding one more stage to the address translation process. 
However, this penalty can be avoided in a processor with a hardware TLB 
by simply replacing the real-memory address field in the TLB entry with the 
physical address. This, of course, assumes that the size of real memory allocated 
to a partition is an integral number of pages and that it is smaller than the 
size of the actual physical memory available. In fact the sum of the sizes of 
real memory of all partitions on the system must be smaller than the size of 
physical memory, leaving some of the physical address space to the hypervisor. 
This suggests the reason that typical logically partitioned systems allow only a 
few logical partitions. 
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Figure 9.7 Mapping of Real Memory of Partitions to Physically Available Memory. When contiguous chunks of 
physical memory are allocated to each partition, the mapping table is simple and needs just two pointers as 
shown. 

Any TLB miss handling depends on whether the system implements a 
hardware- or software-managed TLB. In a hardware-managed TLB, the miss 
is handled by the hardware walking the architected page tables to find the page 
mapping. When the real address corresponding to a virtual address is found by 
the hardware, one of the TLB entries is replaced and overwritten as usual with 
the virtual and real addresses ofthe new entry. But in addition, the PMBR ofthe 
partition is used to establish the physical address of the page in the TLB entry. 

Efficient and secure mapping to physical addresses requires that the page 
table, which contains information about physical addresses, be invisible to 
the operating system in each partition. Thus modifications to the page table 
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Figure 9.8 Adaptation of a Hardware TLB for Logical Partitioning. The pointer table is typically small and can 
be maintained in hardware. The current page table pointer is loaded with the entry in the pointer table 
corresponding to the currently active partition. 

must be done in hypervisor mode. For efficient servicing of page faults, each 
entry in the TLB is tagged with the identity of the partition to which that entry 
belongs. As shown in Figure 9.8, the page table pointer is under the control of 
the hypervisor and must be reloaded with the appropriate pointer whenever 
one partition is swapped for another. 

In the case where the processor implements a software-managed TLB, each 
partition expects to see a TLB, and hence the TLB for each partition must 
be virtualized. If the overhead is acceptable, the virtual TLB can be swapped 
in and out of the physical TLB as active partitions change. Otherwise, the 
physical TLB can act as a cache for all the virtual TLBs for a processor, with 
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the hypervisor intercepting all actions of a partition that access the TLB and 
making the appropriate replacement decisions. 

Interrupt Handling 

There are three kinds of interrupts meant for the hypervisor. These are gen- 
erated as a result of actions initiated by the hypervisor itself. One kind is an 
interrupt from an I/O device responding to a query about its operational sta- 
tus. The second kind involves interrupts from the system management console 
through which a system administrator instructs the hypervisor, for example, 
about the requirements of a new partition. The third kind involves interrupts 
from a partition requesting some service from the hypervisor. 

In the case of a machine check interrupt, for example, due to an uncor- 
rectable hardware fault, the hypervisor first attempts to determine whether the 
machine check affects the hypervisor and its tables. If so, there is not much 
that the hypervisor can do. It may be able to examine the contents of the tables 
to determine the partitions affected and reboot these partitions. On the other 
hand, if the hypervisor itself has not been affected due to the machine check, 
the hypervisor emulates a machine check for the partition that was running at 
the time of the interrupt and jumps to a special routine registered by the guest 
operating system. 

This is a general technique that can be used for hardware interrupts meant 
for a guest operating system. As in the case of the VMM of a system virtual 
machine, the hypervisor is the first point at which interrupts are handled. The 
hypervisor determines whether the interrupt is meant for it or for one of the 
partitions on the system. If the interrupt is for a partition that is not the one 
currently executing, it may be queued for a later time, e.g., immediately after 
the partition is reactivated. In special cases, that partition can be reactivated 
immediately to enable it to handle the interrupt. After an interrupt is handled, 
control can remain with the partition that handled the interrupt or it can be 
transferred back to the partition that was executing at the time of the interrupt. 

The case of software interrupts (or traps) is considerably easier. The trap 
can be handled by the guest operating system in privileged mode without the 
hypervisor's entering the picture. 

9.3.6 Hypervisor Services Interface 

We have assumed thus far that an operating system that works on a native 
system should work unchanged in a partitioned system. Hardware support 
for the hypervisor can go a long way in improving the performance of such a 



4 7 0  Chapter 9~Multiprocessor Virtualization 

system. But it should be clear that the performance can be made even better 
if a guest operating system is made aware of the fact that it is operating in a 
hypervisor environment. It may be recalled that, in discussing VM assists in 
Chapter 8, we also noted that the performance of a virtual machine system can 
be enhanced by a "handshaking" mechanism between the VMM and the guest 
operating system. 

The communication between the hypervisor and the guest OS is carried 
out using calls from the OS to the hypervisor. Thus, beyond the ISA of the 
virtual machine is another interface, called the hypervisor services interface. A 
typical call to this interface involves a request for management of a resource 
that would normally have been under the control of the OS but that would 
be managed better if handled by the VMM. An example is the hardware page 
table management on the IBM PowerPC (Engebretson, Corrigan, and Bergner 
2001). 

The PowerPC has an architected page table with an inverted page table 
structure. When a TLB miss occurs, the hardware accesses the inverted page 
table, also referred to as the hardware page table (HPT) of the processor. When 
running in the native mode, if no entry is found in the HPT, a page fault 
interrupt is delivered to the operating system, which determines an appropriate 
page for replacement and then creates a new entry in the HPT. The situation 
is slightly different in the partitioned case. The guest operating system now 
has its real addresses mapped to physical addresses, and hence the mapping 
in the HPT indicates the virtual-to-physical mapping of the pages in memory. 
For security reasons, this map must not be accessible to the guest operating 
system. Instead, it is the hypervisor that has sole control of this table. On a 
page fault, the guest OS does not directly modify the HPT. Rather, it invokes 
the hypervisor, using calls from the hypervisor systems interface to establish an 
entry in the table. 

Figure 9.9 shows some of the calls in the hypervisor interface related to page 
table management in the IBM PowerPC. 

Flgure 9.9 
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Some Calls in the Hypervisor Interface to Support Page Table Management on the IBM PowerPC 
iSeries. 
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It is certainly possible to allow the hypervisor to take over the entire page 
table management, rather than just provide the services to aid the operating 
system in this function. However, there are advantages if the hypervisor imple- 
ments just mechanisms rather than both mechanisms and policies. Policies are 
often best implemented by the operating system, which has a better view of 
the requirements of the partition and its applications. Further, restricting the 
hypervisor to the mechanisms makes it compact and less error prone. 

As we had indicated in the case of system VMs, the disadvantage of the 
hypervisor services interface philosophy is that the operating system is no longer 
portable. Calls made to the hypervisor may need to be changed when the 
operating system is ported to another platform. This could be a problem, even 
with a new implementation of the hypervisor on the same platform ~ new 
versions should be designed with backward compatibility of operating systems 
in mind. 

9.3.7 Dynamic Partitioning 

In order to provide versatile operation, partitioning techniques must allow for 
the possibility of changes in the configuration of a running system. Two types 
of changes can occur. 

1. A partition may complete its task, and a new partition may be ready for 
installation on the system. 

2. A partition may find its own needs changing and therefore desire to change 
its configuration, for example, the number of processors, the amount of 
memory, or the devices that are attached. 

The first type of change is already accommodated on most logical parti- 
tioning systems. In order to shut down a partition, the hypervisor must first 
recover all the resources owned by the partition that is shutting down. For 
security purposes, it may need to erase (or otherwise make unreadable) infor- 
mation that may be contained in the memory and on the disks being vacated 
by the partition. It may also need to perform other tests to ensure that the 
operation of all freed hardware will be identical to that needed by a system that 
is being booted up. The freed resources will be placed in a pool of resources 
from which a new partition gets its allocation. 

When the request comes to configure a new partition, the hypervisor exam- 
ines the resource requirements of the partition and determines whether they 
can be completely satisfied from the pool of available resources. If the request 
cannot be satisfied, for example, because of insufficient processors or memory, 
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the hypervisor returns a failed-request message, also possibly indicating the 
reasons for the failure. If the request can be satisfied, the desired resources are 
removed from the free pool and a new partition is created. At this point the 
partition can be loaded with the desired guest operating system. 

Note that this technique can be used to migrate a partition from its cur- 
rent form to a new form. The need for such a migration may come in two 
ways. First, an unrecoverable hardware failure may have occurred in one of its 
components. In this case, the hypervisor can attempt to configure an identical 
partition using resources from the free pool and then migrate the state of the 
partition to the new partition before shutting down the old partition. 

The need to migrate partitions can also come from unexpected hardware 
demands of some partition. If, for example, the paging requirements of a 
partition have grown to a point where its performance is severely degraded, 
it may be possible to create a new partition with an identical configuration, 
except with a larger memory, and migrate the state of the old partition to the 
new. Of course, such a migration is useful only if the operating system on 
the partition can also accommodate changes to its memory size in a dynamic 
manner. 

In Section 9.3.2 we saw how reconfiguration of I/O resources of a partition 
could be accomplished in a dynamic manner on the IBM System/390 LPAR. 
A similar technique can be used to increase the allocation of processor resources 
of a partition. However, reallocation of memory poses a problem. The problem 
is similar to that faced during dynamic memory allocation ~ the requirement 
that the real memory of a partition be mapped as a contiguous physical chunk 
must be relaxed. Thus, support must be provided in the hypervisor to stitch 
together several pieces of physical memory to create the illusion of a contiguous 
real memory. 

The way segmentation and paging helps with the problem of dynamic mem- 
ory allocation on a processor is discussed in Appendix Section A.3.4. Similar 
schemes can be adopted for memory allocation in partitions. In order to take 
advantage of paging hardware already available in most systems, allocation 
of memory between partitions should be made at page granularity. This is 
feasible, except the failure of a memory module can affect a large number of 
partitions. Moreover, the number of physical pages on typical systems will be 
so large that the hypervisor may need a lot of space simply for bookkeeping. 
Whenever a partition is shut down, for example, the hypervisor would need 
to go through a large number of entries to ensure that every page belonging 
to the partition is invalidated and then freed. This problem can be alleviated 
by choosing a granularity of allocation that is much larger than a page though 
still considerably smaller than the size of typical main memory allocations, for 
example, 256MB. 
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Figure 9.10 Illustration of the Dynamic Allocation of Real Address Space for Partitions Using Chunks. 

The hardware implication of allowing dynamic expansion, and perhaps 
even dynamic contraction, of the memory space of a partition is that it is 
no longer sufficient to have a single PMBR-PMLR pair associated with each 
partition. Instead, the hypervisor must keep a map between different regions 
of the real memory and the physical memory for each partition. For example, 
by allocating 16 pointers for each partition, memory sizes of up to 4GB can be 
supported, assuming 256MB chunks, as shown in Figure 9.10. 

9.3.8 Dynamic LPAR 

IBM's PowerPC pSeries servers (Jann, Browning, and Burugula 2003) intro- 
duced the capability of dynamically migrating resources from one partition to 
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another without requiring a reboot of the affected partitions. This is referred to 
as dynamic logical partitioning, or DLPAR. Resources moved by DLPAR have 
the same set of capabilities they would have had if they were assigned to the 
partitions at boot time. Movement of resources currently requires the following 
steps. 

1. A request is made to the guest AIX operating system on a partition, asking 
it to release a resource and, if necessary, to put it in a quiescent state. 

2. The AIX operating system stops the resource and releases it to the 
hypervisor, which places it in its free pool of resources. 

3. A request is made to the hypervisor, again through the system console, to 
allocate the resource to another specific partition that needs it. 

4. When successful, a request is made to the guest AIX operating system on 
this partition asking it to acquire the resource and configure it for its use. 

The AIX operating system kernel was modified to run entirely in the vir- 
tual mode in order to accomplish DLPAR. In fact, the granularity of memory 
allocation in IBM's system is a page. Removal of processors had already been 
implemented in AIX to support graceful degradation in the event of proces- 
sor failures. Addition of processors was a feature added to AIX to support 
DLPAR. 

9.3.9 Expanding the Role of the Hypervisor 

The hypervisor is essentially an extension of the hardware platform provided 
to the system. The services provided by the hypervisor can therefore include 
functions that control hardware features of the system. 

�9 The hypervisor can monitor power usage in various parts of the system and 
feed this information back to the partitions. Operating systems running on 
the partitions can react to high usage of power and take corrective measures 
by dropping requirements for the particular resource showing high power 
usage. 

�9 The hypervisor can provide similar functions in the event of hardware prob- 
lems. If an error is detected during computation and if repeated attempts 
do not lead to the elimination ofthe error, the hypervisor can take measures 
to move all partitions using the faulty processor to a spare processor and 
isolate the failing processor and even to replace it with a good processor 
without halting the rest of the system. 
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The traditional tasks of the hypervisor are passive in nature ~ the hyper- 
visor gets commands from the system administrator and either satisfies the 
request or informs the administrator it is unable to satisfy the request. This is 
largely due to the evolution of the hypervisor as an extension of the hardware 
and hence a desire to make the hypervisor compact, verifiable, and error free. 
It is conceivable that in the future, the hypervisor will take on the role of a 
powerful software layer in the hierarchy of layers that make up a system. When 
this happens, the hypervisor will implement not only the mechanisms but also 
policies to configure and manage the resources in the system. The hypervi- 
sor could then make decisions on its own, based on several different factors, 
concerning the following. 

Environmental factors, such as the power usage, temperature, or reliability 
of the hardware 

�9 Business factors, such as the security of the system and the fulfillment of 
various system-level objectives contracted with users of the system 

�9 Operational factors, such as efficiency of utilization of hardware 

�9 Cost factors, such as the revenue generated by the system as a whole 

Figure 9.11 illustrates a time sequence where processors and other resources 
migrate in a dynamically partitioned system to achieve system load balancing. 

Indeed, as the complexity of large computing systems increases, it will 
be increasingly difficult for system administrators, let alone users, to manage 
resources of the system efficiently and securely. Increasingly, therefore, sys- 
tems will provide more automation in the areas of resource allocation and 
reconfiguration. Systems will monitor their own behavior, learn, and adapt to 
changing situations without intervention from the operator. It is possible that 
the hypervisor could end up playing a central role in this "autonomic" system 
of the future (IBM 2001). 

Systems such as IBM's 370/VM and VMware's GSX and ESX servers are, in a 
sense, techniques to partition the system and provide multiple operating system 
images on a single hardware platform. We discussed such systems extensively 
in Chapter 8. From the point of view of isolating one operating system from 
another, these systems are similar to logical partitioning ~ software failures 
can mostly be confined to a guest single operating system image; they do not 
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Figure 9.11 Illustration of the Effects of Dynamic Partitioning. The figure shows the use of resources by three 
partitions at two different points in time. In (a) the usage of resources, for example, just after the system is 
initialized, it displays some degree of physical locality. However, as time progresses (b) and as the processes 
get migrated to achieve better load balancing, the physical range of the partitions running these processes 
start merging with each other. 

bring down other guest operating system images. However the VMM in these 
systems is a larger body of software, and the chances of an error in the VMM are 
higher than the chances of an error in the hypervisor of a logically partitioned 
system. In order for a system VM to provide cluster virtualization capability, it is 
desirable for it also to emulate the physical fault containment aspects of a cluster 
or of physical partitioning. This imposes special requirements on the VMM. In 
particular, each group of physical nodes that emulates a multiprocessing node 
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in the virtual cluster should run its own VMM so that a hardware failure in a 
node will not cause another virtual node in the cluster to fail. 

We illustrate the principles underlying the support of fault-containment 
features in a traditional system VM by describing the Cellular Disco system 
(Govil et al. 1999) developed at Stanford University, which was derived from 
an earlier traditional system VM called Disco (Bugnion et al. 1997). 

9.4.1 Cellular Disco System Overview 

As we saw in Chapter 8, a sufficient condition for efficient virtualization is 
the ability to intercept all the privileged operations performed by the virtual 
machine. Cellular Disco, which is designed to run on a MIPS multiprocessor 
system, achieves this by taking advantage of the fact that the MIPS system pro- 
vides three levels of privilege ~ a user mode, a semiprivileged supervisor mode, 
and a privileged mode ~ and that most operating systems that run on MIPS 
systems use only two of these modes, the user and privileged modes. Cellular 
Disco forces the virtual systems to run in the user and supervisor modes and 
restricts the use of the privileged mode to the virtual machine monitor. When- 
ever an operating system on a virtual machine executes a privileged instruction, 
it traps as shown in Figure 9.12, because execution of such an instruction is not 
permitted in the supervisor mode. The trap is handled by the VMM, which then 
interprets the instruction. The MIPS architecture further forces all supervisor 
and user-mode memory accesses to go through dynamic address translation. 
All references to real memory made by an operating system therefore can be 
mapped to a region of physical memory distinct from the regions addressed by 
operating systems on other virtual machines. 

Figure 9.12 Modes in Which Various Parts of the Cellular Disco System Operate. (a) Native system; 
(b) Cellular Disco. 
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The virtual machine monitor also intercepts I/O requests from a guest 
operating system executing on a virtual machine. After checking for the validity 
of the request, the VMM either forwards the request to a real I/O device or 
handles the request itself. An example of the situation where it handles the 
request itself is virtual paging. In typical virtual machine implementations 
there are two levels of paging, one by the guest operating system and another 
by the VMM. It is possible for the operating system to request that a page 
be written out to its paging disk when the VMM itself has written this page 
out to its own paging disk. In a simple VMM implementation, such a request 
would be satisfied by first bringing back the page from the paging disk of the 
VMM and then writing the page out to the paging device of the guest operating 
system. Cellular Disco makes this process more efficient by trapping every read 
and write to the guest operating system's paging disk. It keeps internal data 
structures that map the status of all pages. Thus when the request to write out 
a page to the kernel's paging disk is observed, Cellular Disco notices that the 
page has already been paged out to its own paging disk and simply annotates 
the internal mapping to indicate the actual location of the page. When the 
guest operating system subsequently wishes to read from its paging disk, the 
mapping is consulted to determine the true location from where its contents 
are to be read. 

9.4.2 Memory Mapping 

The mapping of real memory in a virtual machine to physical memory is 
performed in Cellular Disco with the help oftwo maps. The pmap data structure 
is indexed by the real address and returns the corresponding physical address 
in the system. The memmap data structure maps a physical address back to the 
real address. ~ 

Unlike the physical partitioning schemes and some of the logical partition- 
ing schemes where the physical memory is strictly parceled out to the different 
virtual machines on the system and where every real memory location on a 
virtual machine is associated with a physical memory location, Cellular Disco 
operates like a traditional system virtual machine and virtualizes the real mem- 
or/also. This allows the overcommitment of real memory ~ the sum of the 
real memory assumed by all active virtual machines on the system can be more 

1. Note that the Cellular Disco designers refer to the real memory as the physical memory of 
the virtual machine and to the actually available physical memory of the system as the machine 
memory. 
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Figure 9.13 Memory Sharing in Cellular Disco. 

than the available physical memory on the system. Each virtual machine is 
allocated a resident set size that is dynamically trimmed as the system begins 
to run low on physical memory. The VMM incorporates a page-replacement 
policy of its own that takes advantage of information about the usage of pages. 
If a page contains unneeded data, annotations in the internal data structure 
allow the VMM to detect this and avoid the overhead of writing the page out 
to disk. This would be useful, for example, when the page that needs to be 
swapped out is an unallocated page on a virtual machine. 

Cellular Disco provides functions to an application beyond those normally 
available to the application through the operating system interface. An example 
is the ability to split large applications into multiple processes working in 
separate virtual machines that nonetheless share global regions of memory. 
System calls are provided to allow processes within an application to register 
such shared regions. The process of registration can bypass the guest operating 
system because all system calls have to be intercepted by the VMM. Figure 9.13 
shows two virtual machines sharing code pages as well as a buffer cache while 
still keeping their application data regions separate. No additional overhead 
is incurred in writing to a shared location because the underlying platform is 
a shared-memory multiprocessor, and cache coherence guarantees that other 
processors will see the write in the shared region in a timely manner. 

This system is a convenient and efficient alternative to the conversion of a 
large shared-memory application to a cluster application that communicates 
using messaging and network protocols. The only overhead for the application 
is the need to relink the application with a different shared-memory library. 
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Cellular Disco handles the paging of the shared regions to its paging disk, 
attaching information about all virtual machines sharing the page along with 
the contents of any page being written out to disk. For efficiency, it places this 
information in a sector contiguous to the paged-out data, thus avoiding the 
penalty of an additional seek of a disk sector. 

9.4.3 Fault Containment 

One important aspect that differentiates Cellular Disco from conventional sys- 
tem virtual machines is its support for hardware fault containment. Hardware 
fault containment is an important characteristic of clustered systems - -  the 
effects of a hardware fault in one part of the system are usually contained 
within the node of the cluster containing the fault. Operating systems and 
applications running on other nodes usually can continue to operate unaf- 
fected. Unfortunately there are a few critical faults that could potentially bring 
down the entire system. For example the VMM itself, which manages all the 
resources of the system, is vulnerable to failure of the hardware components it 
uses. It is important therefore to keep such critical parts to a minimum in order 
to increase the mean time between failures (MTBF) of the system as a whole. 

Cellular Disco treats the hardware as a set of cells, with each cell running 
its own VMM and managing the physical memory it contains, as shown in 
Figure 9.14. A failure in a hardware component within a cell does not affect 
virtual machines on the system that do not use that cell. Cellular Disco 
increases the MTBF of the system by keeping the monitor code compact (less 
than 50K lines of code) and by restricting access of the VMM in one cell to 
only those physical memory locations belonging to that cell. Communication 
with other cells is achieved through the use of a carefully designed and fast 
remote procedure call, which serves as an efficient and trusted interprocessor 
communication primitive. 

One way for such a system to manage fault containment is to limit each 
virtual machine to operate on a fixed set of cells. The main problem with this 
is that it can lead to underutilization of the system because of the inability of 
the VMM to move the workload toward idle processors in other cells. Thus, 
there is a tension between the requirements of load balancing and hardware 
fault containment. Cellular Disco attempts to get around this problem by 
associating each processor with a fixed list of virtual CPUs (VCPUs) and by 
allowing migration, over time, of a virtual CPU from one processor to another, 
even across cell boundaries. The establishment ofa VCPU list for each processor 
simplifies the scheduling of processors and eliminates a source of contention 
and lock complexity in conventional systems. The ability to migrate VCPUs, 
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Figure 9.14 Fault Containment in Cellular Disco. The impact of a hardware fault is contained in the virtual 
machines operating on the cells where the fault occurs. Shading indicates affected area due to a fault 
in the indicated node. 

although at coarser time intervals than conventional systems, permits better 
load balancing on the system. For fault containment, rather than force the 
boundaries of a virtual machine to the minimum number of cells that could 
ideally contain it, Cellular Disco allows local deviations from such a strict 
policy. 

Consider a virtual machine that needs all the CPUs contained in two cells 
and that has been running well for some time but suddenly finds itself slowing 
down because of overload on one if its assigned processors, say, due to too 
many active VCPUs. Cellular Disco will discover such a situation and attempt 
first to move the particular VCPU of the virtual machine to another, less 
loaded processor within the same cell. This satisfies the fault-containment 
requirements of the system. If a lightly loaded processor is not available within 
the cell but is available in some other cell, Cellular Disco allows the migration 
of the VCPU to another cell. Thus the virtual machine, which needed the 
resources of only two cells, becomes vulnerable to faults in three cells rather 
than the minimum two. Some degree of protection to faults is traded off 
for better performance on the system as a whole. More components of the 
virtual machine can migrate to the new cell if the new cell is comparatively 
lightly loaded. Eventually, if all the VCPUs migrate from one cell to the new 
cell, Cellular Disco provides a mechanism to eliminate completely all data and 
control information residing in the old cell, thus reducing the fault vulnerability 
to two cells rather than three. 
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9.4.4 Memory Borrowing 

A second situation where Cellular Disco allows flexibility from a rigid fault- 
containment policy is in the use of memory. The virtual machine monitor 
running on each cell manages the memory attached to that cell. This helps in 
fault containment but can lead to imbalance in the use of memory resources. 
Thus a cell that is a part of a memory-intensive virtual machine may run out 
of physical memory and may page in and out of disk frequently, even though 
other cells in the system may have plenty of free physical memory available. 
Cellular Disco permits relaxation from the rigid fault-containment policy by 
allowing a cell to temporarily borrow memory from other cells. 

Memory borrowing in Cellular Disco is accomplished as follows. Each cell 
maintains a list of free pages. Initially this list contains only pages that physically 
belong to the cell. As the pages get used up and the cell begins to run low on 
physical memory, it considers borrowing memory pages from other cells. The 
potential candidates from which a cell borrows memory are determined by the 
following. 

The list of cells that each virtual machine has designated for this purpose. 
Users of a virtual machine can determine the extent to which they wish to 
protect themselves from faults in the system. The smaller the set the virtual 
machine designates, the lower is its vulnerability to faults but the higher is 
the probability of performance loss due to paging. 

Cells that have already been actively supplying memory pages to virtual 
machines in this cell. These cells are kept in a vulnerability list. By ensuring 
a minimum availability of free pages from cells in the vulnerability list, 
the policy biases borrowing to favor those cells that have already been 
supplying pages, and hence prevents an increase in the vulnerability to 
faults. 

The availability of pages in the remote cells. Cells are candidates for 
borrowing if they have a certain minimum amount of memory available. 
When the available memory drops below this amount, the cell may refuse 
a request to borrow pages of its memory. 

The overall memory requirements of the requesting virtual machine. In 
order to keep virtual machines that do not need much memory from having 
to span multiple cells, Cellular Disco biases its allocation of available local 
memory in a cell to such virtual machines. Thus a request for memory when 
the available local memory has fallen below a threshold may actually end 
up being satisfied locally. 
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A flowchart indicating the actions taken on a page fault in a cell is shown in 
Figure 9.15. It is interesting to note that Cellular Disco resorts to paging only 
when memory borrowing fails. More than one page is borrowed at a time in 
order to reduce the number of such requests. Once a page is borrowed from 
another cell, the monitor puts it in its free list, tagged with the identity of the 
cell that it belongs to. There is no penalty to accessing this memory for routine 
reads and writes ~ the only effect of borrowing is the increased vulnerability 
to faults in the virtual machine that uses a borrowed page. 

9.4.5 Recovering from a Fault 

The flexibility provided to virtual machines for going beyond hard cell bound- 
aries both for CPUs and memory makes the job of recovering from hardware 
faults more complex. Cellular Disco must ensure that all affected cells and 
virtual machines are taken care of in the event of a fault. The steps taken by 
Cellular Disco on a fault can be summarized as follows. 

1 The hardware determines the extent of the fault and attempts to recover 
from it. 

2. Through an interrupt the hardware informs all processors in the system 
of the recovery. This interrupt is handled by Cellular Disco, which then 
initiates its recovery process. 

3. Cells communicate with each other to agree on a set of hardware nodes that 
are still functioning. The ability to share memory between cells is exploited 
to expedite this process. The set of nodes determined to be "live" is used to 
restore the communication mechanism to a state where it is "unjammed" 
of all messages to and from nodes that are outside the live set. 

4. Each VMM on a functioning cell determines all the virtual machines 
affected by the fault. In doing so, it consults the various internal data 
structures that contain information about the cells and physical resources 
that each virtual machine was using. 

The entire system needs to participate in order to ensure that all affected 
virtual machines are properly purged from the system and that all references 
to the affected virtual machines are eliminated from the data structures kept in 
each cell. This is a considerably more elaborate process than that needed on a 
physically partitioned system ~ and is the cost for improving the utilization 
of the system under normal operating conditions. 
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Figure 9.15 Cellular Disco's Actions on a Page Fault. As far as possible, the system avoids using the paging disk. The 
requests of virtual machines with low memory requirements are satisfied locally, if possible. When choosing 
a cell to borrow from, a cell from the vulnerability list is chosen, if available. 
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The Cellular Disco research suggests that it is possible to implement fairly 
sophisticated virtualization and fault-containment mechanisms in an efficient 
way. Its general philosophy of using physical boundaries as strong hints for the 
purposes of fault containment rather than as rigid walls provides a degree of 
flexibility, especially in situations where an application is willing to trade off 
some of the fault-containment characteristics for better performance. While 
the research was conducted in the context of system virtual machines, many 
of the ideas could eventually find application in hypervisor-based logically 
partitioned systems. 

All the schemes described thus far have involved situations where the ISA of 
the virtual system is identical to the ISA of the host system. When the two ISAs 
are different from each other, added complexities are introduced. 

�9 The instructions ofthe target ISA must be dynamically emulated bythe host 
system. The translation of instructions from the ISA of the virtual machine 
to the native ISA is an operation that must not be visible to the virtual 
machine or the programs running on it, including the operating system. 
The emulation techniques needed to achieve this are those described in 
connection with the implementation of process VMs (Chapters 2-4) for 
most ISA features and codesigned VMs (Chapter 7) with respect to some 
system ISA features, such as page faults. 

�9 The memory model of the target system, particularly the coherence and 
memory ordering rules, must be observed on the virtual system. These 
involve additional actions on the part of the host system. The host could 
handle this either in hardware, in the firmware, or in emulation software 
contained in the trusted monitor layer, i.e., either in the virtual machine 
monitor or in the hypervisor. 

As described earlier, there are two different ways in which multiprocessors 
are generally configured. The processors can be connected in a loosely coupled 
cluster configuration, where not much other than I/O is shared between the 
processors. Alternatively, the processors can be configured in a shared-memory 
configuration, with all processors in the multiprocessor configuration sharing 
the same memory. Implementing a cluster virtual machine on a native cluster 
system is fairly straightforward if each target virtual processor is mapped to one 
real processor. This case is shown in Figure 9.16. Since memory is not shared 
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Figure 9.16 Virtual Uniprocessor Cluster on a Real Uniprocessor Cluster. 

between nodes in such a cluster, it is sufficient to virtualize each processor using 
techniques given earlier in this book. Virtual node communication is through 
messages that can be translated to similar messages on the host. 

When the system to be virtualized is a shared-memory multiprocessor, 
the situation becomes more complex. Because the memory is shared between 
the processors, the monitor on each processor must handle shared-memory 
requests exactly the way they would be handled on a native machine. So, for 
example, if the guest virtual machine supports coherent shared memory, the 
monitors running on the separate processors must ensure that information 
written to any shared-memory location is made visible to all processors that 
share that location. If the underlying native system is itself a shared-memory 
system, then the hardware mechanisms that already exist on the system to 
support coherence can be used to ensure coherence for the virtual system. This 
is the case, for example, in the FLEX-ES system from Fundamental Software 
Inc. (FLEX), which provides a virtual SMP for an IBM System/390 system as 
a user application under Linux on an Intel IA-32 based SMP. The basic IA-32 
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Figure 9.17 Virtual Shared-Memory System on a Real Shared-Memory System. When there is a mismatch between 
the I /0  of the virtual system and the real system, it may be necessary to add hardware, as shown, for 

efficient I /0  emulation. 

SMP is enhanced with special hardware adapters, as shown in Figure 9.17, 
to emulate the functions of the System/390 communication and channel I/O 
adapters. Since the underlying Intel IA-32 platform also implements memory 
coherence, the coherence expected by the virtualized mainframe system is 
trivially supported. While the memory ordering rules of the Intel IA-32 are not 
exactly identical to those of the System/390, the differences can be taken care 
of in the VMM layer without significant degradation of performance. 

If the host's model does not match the guest's memory model, then it 
becomes an additional task of the combination of emulation software run- 
ning on all processors to communicate with each other and keep track of 
shared locations. Most solutions to this problem require several instructions 
and several cycles for each coherence request. Hence, when there is a modest 
amount of sharing in a system, the emulation performance begins to degrade 
considerably. The next section examines some ways to handle such cases and 
discusses the potential degradation of performance. Only a cursory treatment 
is provided here to this rather complex problem. 
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9.5.1 Memory Model Emulation 

As described in Appendix A, the ISA of most processors includes special con- 
ventions for the access of shared-memory locations. As with all aspects of an 
ISA, these conventions represent a contract between the programmer and an 
implementation of the ISA. A programmer writes a program assuming that 
accesses to variables shared among processors obey certain rules, while the 
hardware designer (the processor designer or the system designer) ensures that 
the rules used by the programmer are indeed guaranteed by the implementa- 
tion. We note two main aspects of the memory model, the memory coherence 
and the memory consistency models, that determine how results appear in 
different shared-memory systems. These are the two aspects that need to be 
given special consideration when a multiprocessor system is virtualized ~ the 
differences in these models between the host and the guest ISAs can produce 
undesirable results during virtualization, unless special actions are taken by 
the emulation software. 

Memory Coherence Emulation 

Recall that memory coherence is said to be implemented on a multiprocessor 
system if the order of writes to a given location by one processor is maintained 
when observed by any other processor in the system. Appendix Section A.7.3 
describes the difference in behavior of coherent and noncoherent systems. The 
nature of actions that emulation software must take to support the coherence 
model of a guest virtual machine depends on the coherence models of both the 
guest and the host. We list the various possibilities in Figure 9.18. 

1. Memory coherence is not required on either the guest or the host: In this 
case no action is required because programs have presumably been written 
in a way that accounts for this absence of coherence. Synchronization in 
such systems is done through explicit synchronization instructions. The 
synchronization primitives in the host and the guest may not match, but it 
is usually not difficult to emulate a synchronization primitive of the guest 
using synchronization primitives of the host. 

2. Memory coherence is required by the guest and is available on the host: 
In this case, the emulation software ensures that the virtual machine runs 
with the memory coherence option enabled. 

3. Memory coherence is not required on the guest but is enabled on the 
host: An example of this is a distributed cluster system that needs to be 
emulated on a shared-memory multiprocessing system. There is typically 
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The Various Actions Needed for Emulating the Coherence Model. In all cases synchronization 
primitives of the guest must be emulated on the host. 

no special action that needs to be performed by emulation software. The 
coherence hardware, which provides a coherent view of memory across the 
processors, does more than is needed by the coherence model of the guest. 
If there is a performance disadvantage because of the coherence require- 
ment and there is a faster noncoherent mode available on the machine, this 
mode can be used, as in case 1 earlier. Synchronization instructions will 
need to be emulated using the synchronization primitives of the host, even 
if the host runs in coherent mode. 

4. Memory coherence is required on the guest but is not supported by the 
host: An example of this is a shared-memory guest machine running on a 
distributed-memory host machine. The only option here is to use software 
to enforce coherence. As we said earlier, even when machines do not pro- 
vide coherence support, they do provide synchronization primitives so that 
software can perform explicit synchronization. Unfortunately, the brute- 
force technique of synchronizing after each memory write by a processor 
is too slow, because synchronization operations, especially on large multi- 
processor systems, are slow. A more practical approach is to use a directory 
that registers the set of processors sharing various locations, with a coher- 
ence operation being triggered on the set of sharing processors when one 
of the processors in the set changes the contents of the shared location. 
This operation can get expensive as the size of the directory gets large. The 
size of the directory can be reduced by increasing the granularity of an 
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entry in the directory to be a page. Keeping such information at page gran- 
ularity is also convenient because the available page table structures can 
be used for storing sharing information and to trigger a coherence action. 
There have been several techniques of this nature that have been devel- 
oped in connection with distributed shared-memory (DSM) computing 
(Hennessy, Heinrich, and Gupta 1999), which also deals with the problem 
of providing coherence to an application while running on noncoherent 
hardware. 

Fortunately most ISAs today provide coherence support. Hence, coher- 
ence emulation is not a source of performance degradation for such virtual 
machines. 

Memory Consistency Models 

Memory consistency deals with the order in which accesses by one processor 
to different locations in memory are observed by another processor (refer to 
Appendix Section A.7.3 for a more detailed explanation). This is in contrast to 
memory coherence, which deals with the order of writes to a single location. 
Memory consistency deals not only with different locations but with all accesses, 
whether reads or writes. The important thing to take care of when a program is 
being run on a virtual machine is that the ordering of reads and writes must be 
such that it could have been produced on a native implementation of the virtual 
machine. Thus the emulation software should account for differences between 
the memory consistency models ofthe host and guest and ensure that the order- 
ing of memory operations is consistent with what the ISA of the guest specifies. 

As noted in Appendix Section A.7.3, four hazards have to be considered in 
a consistency model: the read-read (RR) hazard, the read-write (RW) hazard, 
the write-read (WR) hazard, and the write-write (WW) hazard. In a strong 
consistency model, an implementation must ensure that none of these hazards 
is present. When this requirement is relaxed, we get one of the many relaxed 
consistency models. Such relaxed models are referred to as being weaker than 
the strong consistency model. 

We could encode the consistency model using four bits, each bit indicating 
whether ordering is imposed for the corresponding hazard pair. So, for exam- 
ple, a (1111) will indicate strong ordering, while a (1101) will indicate that the 
WR ordering is relaxed from strong ordering, as in the processor consistency 
model used on the Intel IA-32 or the IBM System/390. The weakest consistency 
model (0000) imposes no ordering between any pair of read-write operations. 
Note that reads and writes to the same location by a processor must be ordered 
according to program order in all cases (refer to Appendix Section A.7.3). 
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Figure 9.19 
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Lattice of Consistency Models. Each 4-tuple represents the four hazards RR, RW, WR, and WW. 
A "1" in a position indicates that the corresponding hazard is not tolerated, while a "0" indicates 
that the hazard is ignored by the consistency model. The 4-tuple (0000) represents weak consistency, 
(1111) represents strong consistency, and (1101) represents processor consistency. 

For purposes of comparing two consistency models, it is convenient to draw 
a lattice, as shown in Figure 9.19, where each node in the lattice corresponds 
to a consistency model. The least element on the lattice (0000) represents the 
weakest consistency model, while the greatest element (1111) corresponds to 
the strongest consistency model. When comparing two consistency models, 
we determine whether the least upper bound (lub) of the pair is itself one of 
the pair. If it is, then this lub of the pair is defined as being stronger than the 
other. Thus between ( 1101) and ( 1001), the lub is ( 1101), implying that ( 1101) 
is stronger than ( 1001). The model represented by (1111) is stronger than any 
other consistency model, because it is the greatest element in the set. 

As seen from Figure 9.19, the nodes (0001) and (0110) are not comparable. 
One model is stronger in some respects and the other stronger in other respects. 
There are two models that are stronger than both these models, (0111) and 
(1111). The lub of the pair is (0111). Any ordering that satisfies the lub (0111) 
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therefore will also be consistent with the ordering specified by the models in 
the pair (0001 ) and (0110). 

When emulating a consistency model of a guest using a different consistency 
model for the host, we can divide the space of possibilities into the following 
three categories. 

1. The memory consistency model of the guest is the same as that of the 
host or weaker than that of the host: In this case there is nothing special 
that needs to be done by the emulation software as long as the inter- 
pretation or translation process does not eliminate or reorder memory 
accesses to shared locations by a processor. This last restriction ensures 
that the order of accesses to memory in the virtual machine system belongs 
to the set of orderings of accesses to memory allowed by the consistency 
model of the virtual machine. Note that this restriction prevents the elimi- 
nation of memory accesses - -  an access to a memory location cannot be 
safely eliminated just because its contents are available in a general-purpose 
register, for instance. 

2. The memory consistency model of the guest is stronger than (more 
restrictive than) the memory consistency model of the host: In this case, 
it is important that the additional hazards that must be avoided on the 
guest must also be avoided on the host. We discuss this case in more detail 
in the next section. 

E The memory consistency model of the guest is stronger in some respects 
and weaker in other respects: In this case we first find the lub between 
the two consistency models. The lub consistency model must be stronger 
than the consistency model of the guest. Hence we would be emulating the 
guest correctly, though conservatively, if we assumed that the consistency 
model of the guest is the lub model. Since the lub model is also always 
stronger than the host model, the problem is now reduced to an example 
of case 2. So, as a fictitious example, if the memory model of the guest is 
(0110), which relaxes the RR and WR hazards, and the memory model of 
the host permits all hazards except the WW hazard (0001), then the lub is 
(0111). Thus in this example, the ordering satisfied by model (0111) would 
be consistent with the ordering allowed on the guest. Hence it is sufficient 
to accurately emulate this lub model. 

Emulating a Stronger Consistency Guest 

When a guest virtual machine has a consistency model that is stronger than 
that of the host, there are certain hazards that may occur in the host that would 
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violate the memory consistency model of the guest ISA. Let us, for example, 
consider the case of a guest with a processor consistency model and a host 
with a release consistency model. This is an interesting case because there are 
several processors that belong to each of these models ~ a multiprocessor vir- 
tual machine implementation of IA-32 running on a PowerPC multiprocessor 
would be an example in this category. In this case, it is important that any RR, 
RW, and WW hazards not permitted in the processor consistency model also 
not be permitted on the virtual machine. 

Most ISAs that implement relaxed forms of consistency also provide special 
memory barrier instructions that permit the programmer to specify the points 
at which ordering needs to be maintained, hence essentially raising the level of 
granularity at which consistency is implemented. For purposes of illustration, 
let us define a rnembar instruction, which, when inserted into the code, ensures 
that there are no hazards between any pair of instructions across the barrier. 
Obviously then, a trivial solution for any consistency emulation is for the virtual 
machine emulator to place a membar instruction after every access to memory, 
as shown in Figure 9.20a and b. This ensures that for every pair of memory 
accesses on any given processor in the host, there is an intervening rnembar 
instruction that prevents a hazard between the pair. Notice that the same effect 
could have been obtained by placing a membar operation before each memory 
access. 

Unfortunately, the membar instruction is an expensive instruction in terms 
of its execution latency. This can be appreciated better if one understands 
that the effect of the membar instruction is to ensure that all processors in the 
system have been informed and have acknowledged that some processor wishes 
to impose such an ordering. Each processor then takes appropriate action to 
ensure that the request is honored. Since loads and stores form roughly a third 
of all instructions in an instruction stream, the performance of the virtual 
machine can be degraded quite significantly because of the insertion of these 
barrier instructions. It is therefore important for the monitor to restrict the 
number of membar instructions whenever possible. 

Notice that the trivial solution just demonstrated works for any consistency 
model on the guest and, in particular, for the strong model. The first optimiza- 
tion that can be performed is to eliminate those memory barrier instructions 
where the memory model allows relaxation. In the case of processor consis- 
tency, the memory barrier instruction after a write can be eliminated as shown 
in Figure 9.20c if the subsequent memory access is by a read instruction. The 
second optimization that can be performed is to eliminate a memory barrier 
instruction after an instruction if the next sequential memory access is to the 
same location as the previous memory access ~ program order requirements 
take care of these even without barrier instructions. This must, however, be 
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Using membar Instructions to Impose Consistency Requirements of the Guest That Are 
Stricter Than That of the Host. (a) Original host code. (b) Conservative use of membar instructions 
after each memory access. (c) Reducing the number of membars to account for W-R relaxation in 
the guest. 

done with care. In the example of Figure 9.20c the m e m b a r  instruction fol- 
lowing Read A cannot be eliminated because the m e m b a r  instruction just after 
Write A has been removed, thus permitting the following Read B to be done 
before Write A. However, processor consistency does not permit Read B to be 
done before Read A, implying that there must be at least one m e m b a r  between 
these two instructions. Notice that the m e m b a r  that was between the Read C - 
Write C can be eliminated without danger of the Write B moving ahead. It is 
important to note that there are other ways of inserting membars  in the code 
that achieve the same objective. 

This example shows that it is difficult to reduce the overhead of inserting 
memory barrier instructions when a guest has a stronger consistency model 
than the host. However, there is another way to reduce the overhead of such 
emulation. Even in a multiprocessing system there are many occasions when a 
processor executes a single threaded application or a portion ofa multithreaded 
application that does not share memory with other threads. Since the hazards 
we are trying to avoid are multiprocessor hazards, there is no need to add 
barrier instructions if there is some way for the virtual machine monitor to 
know that a thread does not share memory with an active thread on another 
processor. The translator in such systems is free to move memory accesses 
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Reducing the Number of Memory Barrier Instructions Using Knowledge About Sharing Charac- 
teristics of Access Locations. We leave the last membar in the segment, because at this point we have no 
knowledge of the sharing pattern of the code that follows the sample segment. 

relative to each other, as long as it provides a way to recover the state of the 
virtual machine processor whenever it is needed. 

A more interesting situation arises when an application is written in such 
a way that the threads comprising the application are largely independent and 
only occasionally share memory, perhaps as a form of communication. In these 
cases, it may be more efficient to restrict the insertion of memory barriers to 
keep the required ordering of memory access to only the shared locations, as 
shown in Figure 9.21. 

The figure shows that when location B is not shared, we can remove the 
barriers between Read A and Read B because any reordering of access to loca- 
tion B will not be visible to any other processor. If neither location A nor 
location B is shared, then the only ordering visible to other processors is the 
Read C-Write C ordering. No membar is needed between this pair because 
of program order requirements. Hence it is unnecessary to place a membar 
anywhere in the code. 

Thus the principal obstacle to good performance is the problem of deter- 
mining efficiently during translation whether an access is to a shared location 
or not. This is a difficult problem because, although the history of accesses 
by an instruction can provide some measure of confidence about whether or 
not that access is to a shared location, there is a lot of bookkeeping involved 
in determining whether locations are shared, and extra overhead involved in 
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ensuring that a trap is generated when a previously unshared location becomes 
shared. 

Another problem is that of false sharing. False sharing occurs, for example, 
when the emulation software detects an access to a location by two different vir- 
tual processors but does not know that the guest operating system has migrated 
the thread from one processor to another for load-balancing purposes. False 
sharing could therefore lead to the elimination of fewer memory barriers than 
what would be possible. 

Real ISAs often allow other relaxations or impose other orderings beyond 
the ones mentioned here. For example, on the System/390, a distinction is 
made between instruction reads and data reads. The ISA does not require 
that instructions be fetched in the order they are eventually executed. It also 
allows instruction fetches to occur before the reading of operands of previous 
instructions. Such relaxations, which obviously arise from a desire to make 
hardware more efficient, also help in reducing the overhead of emulation. 

We have seen in this section that creating a virtual machine system with 
an ISA different from the ISA of the native host is certainly possible, though 
the efficiency of such virtualization depends a lot on the mismatch between 
the memory models of the two ISAs. In particular, when the memory model 
of the host is more relaxed, due either to a weaker coherence model or a 
weaker consistency model, the potential performance degradation is high, 
unless the emulation software performs more work in localizing the coherence 
and synchronization mismatches. As with VM assists mentioned in Chapter 8, 
hardware could be added to assist the emulation software in this task. An 
extreme example of this is for the processor to provide a mode in which it sup- 
ports the stronger memory models required by the guests. There are processor 
ISAs, such as the PowerPC ISA, that provide both a coherence mode and a 
mode in which coherence may not be required. There are also processor ISAs, 
such as Sun's SPARC ISA, that support multiple consistency models. 

Large companies and other organizations are continually grappling with the 
problem of reducing the number and types of computer systems they must 
maintain without depriving their important users of the flexibility of maintain- 
ing and operating their own system. This has led to an array of systems claimed 
to enable such consolidation, basically by decoupling the view of the hardware 
as seen by the operating system from the actual hardware that the system runs 
on. Virtual platforms on large servers provide users with characteristics similar 
to those they would have enjoyed on their own private physical systems. 
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This chapter examined various ways in which large multiprocessor servers 
can be adapted to provide multiple virtual multiprocessor platforms to various 
users. We have seen how different forms of virtualization handle the task of 
isolating virtual machines from each other while still providing the benefits 
of sharing resources. Some of these solutions, such as physical partitioning, 
are superior at isolating virtual machines from hardware failures, while others, 
especially the codesigned hardware-software approaches, excel in the degree 
of flexibility they provide in the allocation of resources to the virtual machines. 

The biggest impediment to the adoption of new instruction set architectures 
is the existence of large bodies of application programs in binary form for the 
existing ISAs. Large multiprocessor systems of today are usually homogeneous 

they incorporate processors that all execute the same ISA in their native 
mode. For most organizations, consolidating to a large multiprocessing system 
with one ISA will still leave a significant number of important applications in 
platforms of other ISAs that need to be supported, at least until they are ported 
to the native ISA. Hence virtualization of these other platforms will remain 
an important subject, at least until a more widespread adoption of platform- 
independent languages, such as Java, and platform-independent operating 
systems, such as Linux. We have seen that efficiently emulating applications 
of one ISA on another, while already difficult for uniprocessor platforms, is 
quite daunting in the case of multiprocessor systems, especially when there 
are incompatibilities in the memory consistency model. It is likely that new 
techniques will be developed, particularly exploiting thread-level parallelism, 
to improve the performance of emulating one ISA on another. 

Same-ISA virtualization, on the other hand, appears to be here to stay. 
While the advantages ofvirtualization listed in the introduction to this chapter 
are compelling for enterprise servers, it is likely that smaller servers, such as 
those of Internet service providers, will also begin to employ virtualization, 
particularly as a means of ensuring privacy between users and as a means of 
protecting users from malicious or accidental failures of the platform employed 
by other users. Indeed, as more applications use network resources for their exe- 
cution, the need to protect one application from another, even in a single-user 
environment, may eventually lead to the adoption of virtualization techniques 
on personal devices such as laptop computers or even mobile phones. 



W ith ever-expanding computer applications and their associated demands 
on computer system administration, the role of virtual machines and 

virtualization are likewise expanding. Virtualization enables the introduction 
of new system capabilities without adding complexity to already-existing and 
already-complex hardware and software. These new capabilities will support 
innovative computing paradigms and will provide critical functions in areas 
that have assumed major importance in a world grown increasingly dependent 
on computers. 

In an argument reminiscent of those given for the original development 
of VM systems on mainframes, it has been suggested that operating systems 
and applications running on real machines today should be relocated to virtual 
machines. Part of the motivation for this is the desire to allow new services 
to be developed in a layer between the hardware and the operating system 
without modifying or trusting either the applications or the operating system. 
Examples of new services are intrusion-detection systems that help in isolating 
users from malicious attacks, environment-migration services that help mobile 
users access their entire computing environment without having to carry their 
machines everywhere, and enhanced reliability through redundant execution 
of a program on multiple virtual machines. There have been several efforts 
that use virtual machine techniques to emulate one ISA on another. Virtual 
machines are being used to package entire environments and applications to 
avoid the time-consuming job of installing operating systems and applications 
on machines. They are also being used to isolate data on a system, thereby 
allowing the same physical machine to work with confidential and public data 
without compromising security. 
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To illustrate the importance of virtual machine technologies to future sys- 
tems and paradigms, in this chapter we describe three examples of emerging 
virtual machine applications that can make a fundamental difference in the 
future of computing. The first of these is the application of virtual machines 
to computer security, an area receiving increasing attention. Modern comput- 
ing systems are some of the most complex structures ever created. With the 
commoditization of both hardware and software and with widespread use of 
network computing, it has become easier for intruders to cause damage on a 
large scale by taking advantage of the nearly inevitable loopholes and flaws in 
such complex, constantly evolving systems. Eventually, systems will mature and 
become more immune to attack, and it is likely that integrated mechanisms will 
be developed specifically aimed at thwarting such attacks. The virtual machine 
intrusion-detection mechanisms described in this chapter promise to be useful 
tools in the development of such attack-immune systems. 

The second application we consider, the migration of complete computing 
environments, is also motivated by the commoditization and networking of 
computing systems. A growing number of computer users depend on having 
their full environment, including all data, programs, and system personal- 
ization, readily available at multiple locations (e.g., at work, at home, and 
while traveling). In order to do this, however, these users must carry their 
environment with them on a portable machine. It is more desirable, however, 
both for convenience as well as for security, to allow a user to log in to any 
computer and immediately reproduce the user's environment on that specific 
computer. Virtual machine technology, which provides the ability to capture 
the entire state of a computer system, facilitates migration of a full computing 
environment. Eventually, users may become accustomed to having their data 
and computing environment on large, remote computer farms. While such a 
paradigm may obviate the need for having an entire computer at each location 
to which the user travels, it will not eliminate the need for migrating entire user 
environments from one system to another. Load-balancing, system-utilization, 
and system-latency issues will require means for capturing the state of the user 
environment and making it portable. 

The notion of computing as a service or as a utility is beginning to gain 
acceptance. The scientific community has been actively promoting this para- 
digm for some time, and it also appears to be a concept that will be useful 
for businesses. The concept of a computational grid promises a seamless way 
through which computing resources can be shared by multitudes of users. The 
grid virtualizes computing resources in a way that is philosophically similar to 
the virtualization of resources in system virtual machines, though technically 
it achieves virtualization by redefining the way applications are written. In a 
sense, the grid concept represents the ultimate evolution of virtual machines. 
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Just as the Java platform fundamentally embodies virtualization, portability, 
and safety in its definition, the grid fundamentally embodies these same char- 
acteristics at the system and application levels. Virtualization is not optional 
on the grid ~ applications running on the grid must accept the notion that 
the physical characteristics of the real resources they are using are unknown to 
them. The hardware and operating system of the individual machines have the 
responsibility for providing this implementation-independent view. Although 
today this is done by loading extensions on existing systems, it is likely that, 
as in the case of security features mentioned earlier, support for operation on 
a grid will be integrated with the design of machine hardware and basic sys- 
tem software. This integration will likely include many of the virtual machine 
concepts described in this book. 

We begin our survey of emerging VM applications in Section 10.1 with a 
discussion of the role that virtual machines can play in maintaining security 
in our increasingly vulnerable computer systems. In Section 10.2, we examine 
the idea of virtual machines as the enabling technology for migrating entire 
environments from one computer system to another. Finally, in Section 10.3, 
we take a look at the emergence of the grid computing paradigm, its similarities 
to other virtualization techniques, and its potential role in making virtual 
machines ubiquitous. 

Users of commercial systems, especially mainframe computers, have long been 
concerned with system security. These machines, which are used by large 
institutions, including banks, airlines, and federal agencies, handle sensitive 
information and are required to be secure against attacks. Security has not 
been as much of a concern, however, for users of common commodity com- 
puters ~ until relatively recently. Today, with the increase in the number of 
security attacks as well as the increasing cleverness of the perpetrators, com- 
puter security has become a major issue in all types of computing, including 
low-end desktop machines, portable machines, and even personal digital assis- 
tants (PDAs) and cellular phones. Seldom does a month pass when we do not 
hear about (or, even worse, fall victim to) yet another worm or virus that has 
invaded many thousands (if not millions) of computers around the world. 

The most common way the security of a system is compromised is sim- 
ply for an attacker to get access to the privileged part of the system, e.g., as a 
superuser in Unix environments or as an administrator in Windows systems. 
Interestingly, a large number of attacks are carried out by people who have 
gained access to such privileges without much effort ~ for example, through 
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inadequately protected passwords or, more commonly, through repeated 
attempts to gain access to the system via commonly used passwords. Once 
the attacker gains access to the system, he or she can tamper with the operating 
system to gain confidential information or even to destroy data. Often, during 
the initial entry into a system, an intruder simply modifies the system to ease 
entry into the system in the future. 

Another common type of attack exploits inherent weaknesses in system 
software. The size and complexity of modern system software, especially the 
operating system, makes it very difficult to ensure that every security hole is 
eliminated before the system is shipped to customers. Programs written in 
languages such as C, which are considered "unsafe," often exhibit bugs (or 
possess security holes resulting from poor programming practices) that can 
be exploited to gain access and hence control the system. One common type 
of security hole involves unchecked accesses to C arrays. When such an array 
is used as a buffer for user data, the user can fill the buffer with a block of 
data that is bigger than the array size and cause memory areas adjacent to the 
buffer to be overwritten. If one of these overwritten areas happens to be an 
address to which the program jumps, an attacker, through clever calculation, 
can cause that address to point to a routine, e.g., a shell program, by which 
the attacker gains control of the system. This is illustrated in Figure 10.1. It is 
generally not likely for an innocent user inadvertently to do harm to the system 
in this manner because the probability that arbitrary user data will cause a jump 
to a sensitive location is low. However, such security holes can be exploited 
maliciously and cause havoc in systems. 

10.1.1 Intrusion-Detection Systems 

In practice, security holes due to bugs or poor programming, as described in the 
previous section, eventually get fixed. However, as new code is introduced to a 
system, new holes appear. Clearly the most effective measure one can take to 
ensure the safety of a system is to isolate the system from all potential attackers 
(which is often the same as isolating it from all other systems). This is not a 
practical solution for most s y s t e m s -  users are dependent on communication 
with other systems either over local-area networks or over the Internet, and 
this makes them vulnerable to malicious attacks of the kind mentioned earlier. 
Using object-oriented programming with built-in type and range checking as 
is done in Java and MSIL will also provide a high level of security, but only for 
those programs running within the HLL VM framework. A significant amount 
of system code and a number of native libraries are likely to remain outside the 
secure framework for quite some time. 
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Figure 10.1 Exploiting Buffer Overflow in a Program Stack. In the normal course of events (a) the user parameter 
fits in the buffer. The return address on a stack is that of a location in the user's program. I f  the user 
inadvertently causes an overflow of the buffer (b), the return address may be clobbered (overwritten) but 
typically not with a legal instruction address. In this case, the return causes an exception. A malicious 
program (c) can manipulate the parameter to be copied into the buffer so that it overwrites the return 
address with a location that allows the adversary to launch another valid program. This program can be a 
shell program that, now running in the supervisor mode, allows the user free rein over the system. 
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Typical Enterprise Network Intrusion-Detection System (NIDS). The sensors monitor the network 
for spurious activity. The console allows the programming of the sensors, logs the activity seen by 
the sensors, and forms the control point to isolate parts of the system when malicious activity is 
detected. 

A common way of providing security protection for current systems is 
through the use of an intrusion-detection system (IDS). As the name suggests, 
these systems attempt to examine a computer either continuously or peri- 
odically to check for potential attacks. These systems depend" on the general 
knowledge of how potential attacks may take place. Once the characteristics 
of an attack are known, an IDS can examine the activity on a computer to 
determine whether an attack with the given characteristics is occurring and 
then take action to shut down any malicious processes before they can cause 
significant harm. Since most attacks are launched from the network to which 
a system is connected, an intrusion system can be located at some point in the 
network away from the c o m p u t e r -  in this case it is termed a network-based 
intrusion-detection system, or NIDS for short. If, on the other hand, the intru- 
sion system is located within the computer itself, for example, in the operating 
system, it is referred to as a host-based intrusion-detection system, or HIDS. 

Network-based intrusion systems (Figure 10.2) work by examining data 
packets as they move through the network, looking for specific patterns, or sig- 
natures, of suspicious activities. The traffic can be monitored either at the host 
or at points more remote from the host, e.g., at firewalls or routers. As soon as 
suspicious activity is detected, a NIDS can block the activity or reroute the traf- 
fic to a quarantine location. Since it is possible for attacks to be disguised, there 
is no guarantee that malicious activity will always match one of the signatures 
in the NIDS database. There is also the possibility of innocuous traffic being 
deemed suspicious because of a similarity in its signature to one in the database 
(i.e., a false positive). Still, the NIDS has proven to be quite effective in many 
situations, particularly because it is decoupled from the system being protected. 

Host-based intrusion-detection systems work by directly examining activity 
on the host and taking advantage of detailed knowledge of the host's operating 
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system. A HIDS will look, for example, for repeated attempts to login by an 
intruder, or it will look for attempted accesses to files that should normally 
not be accessed by a user. Typically, the HIDS is integrated with the operating 
system and has high visibility over all the actions that take place on the system. 
Even the HIDS that operates as an application on the host enjoys high visibility 
by interacting closely with the operating system. In fact, such decoupling of the 
HIDS from the operating system can provide more protection to the system 
from intrusions that attempt to attack the HIDS itself. 

Thus it is clear that the two types of systems are different in several respects 
and have their own advantages and disadvantages. A network-based intrusion 
system has significantly less visibility than a HIDS and has to base its decisions 
almost entirely on an examination of network traffic. An attacker thus has more 
flexibility in maneuvering around the detection system, especially by camou- 
flaging itself. On the other hand, the NIDS can continue to monitor activity 
even after a host system has been successfully attacked ~ this is invaluable in 
learning about the nature of the attack and in taking measures to prevent it in 
the future. A system incorporating a HIDS can become completely disoriented 
after an attack, perhaps even providing misleading information while giving 
the intruder enough time to marshal additional resources to gain control of the 
system. 

10.1.2 Monitoring and Recovering from Attacks 

Attackers are constantly finding new ways to get around the defenses of a 
system. Thus while it is important for systems to have good intrusion-detection 
systems, it is equally important to take adequate measures to recover from an 
attack and to prevent similar attacks in the future. One important part of this 
effort is to perform logging. Logging saves information about critical activity 
on a system, e.g., login attempts and accesses or changes to certain important 
files on the system. This type of limited information can help in the analysis 
of methods used by an intruder and hence help in developing defenses for 
future attacks. However, in order to be able to recover fully from an attack, it 
is necessary to save much more information, for example, a checkpoint of the 
state of the system at some point before an attack occurs. 

Many techniques and policies have been proposed for logging of events 
in a system. Most of these techniques assume that the operating system is 
functioning correctly, because they use the services of the operating system 
in order to record various events that occur. In fact many of them even keep 
the log of activities on the system being monitored. Such systems are doubly 
compromised. When an attack takes place, not only does the system fall under 
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the control of the attacker, but the log of the system may also be altered in 
a way that is transparent to the user of the system or in a way that prevents 
reconstructing the attack for building up new defenses. 

There are also difficulties involved with the reconstruction of a system after 
an attack. The first requirement is determining a known good state of the 
system before the occurrence of the attack. This implies that a checkpoint of 
the system must be available for some point in the past. From this state the 
actions taken by the system can be replayed up to some later point, if complete 
knowledge were available about all the inputs into the system following the 
checkpoint. If the times at which these external inputs, such as keyboard 
activity or network activity were known, the system could be brought back 
step by step to a point just before the occurrence of the suspicious activity. 
Unfortunately, not all external input events result in deterministic changes to 
the system. Asynchronous interrupts occurring because of events outside the 
core, for example, from an I/O device, may not occur spontaneously or may 
not occur at exactly the same point when the system is replayed. Such events 
must be logged in sufficient detail so that they can be simulated accurately 
when the system is being replayed. 

This completes a brief overview of the typical ways in which systems are 
attacked and of the approaches used by intrusion-detection systems to detect 
attacks. We have also outlined the requirements of system logs in order for a 
system to be able to recover from an attack. In the next section we examine 
how virtual machine technology facilitates these functions. 

10.1.3 Role of Virtual Machine Technology 

Most of the techniques needed to maintain security in a system have usually 
been implemented as separate programs on existing systems. It is reasonable 
to believe there would be significant advantages if the security features were 
integrated closely with the rest of the system. Yet it is important that techniques 
used to enforce security and monitor activity on a system be implemented 
in a way that separates their implementation from that of the system being 
attacked. This is where virtual machine technology comes in. We will look at 
three examples of the use of virtual machines in the area of system security. 

Virtual Machine as a Sandbox 

We have seen in Chapters 8 and 9 how virtual machines allow the isolation 
of complete system environments from one another. Fault containment is 
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Figure 10.3 A System Virtual Machine as a Sandbox. 

an important property of virtual machines ~ a software failure on one virtual 
machine does not generally propagate to other virtual machines. Typical virtual 
machine systems are capable of isolating the failed virtual machine, shutting it 
down, and then restarting a new virtual machine without these actions being 
noticed by the other virtual machines in the system. This ability to isolate a 
virtual machine makes it useful as a tool (Figure 10.3) for closely examining 
the effects of an attack after it has occurred. As noted earlier, such postmortem 
analysis is useful in designing a defense against future attacks or even toward 
detecting such attacks before they cause harm. 

In a paper describing the advantages of virtual machines, Chen and Noble 
suggest that the complete state of a virtual machine can be saved, cloned, 
encrypted, moved, or restored ~ actions that are not so easy to do with 
physical machines (P. M. Chen and Noble 2001). They further suggest that 
the best way to understand the effects of an attack is to replay the attack and 
gather information about the behavior of the attack by monitoring the system 
as the attack progresses. While this is risky to do on a real system, one could 
safely carry this out on a virtual machine by cloning the original machine 
that was attacked, inspecting the effects of the attack, and throwing away 
the machine after it has served its purpose. (Cloning of virtual machines can 
be done using the system encapsulation and restart techniques described in 
Section 10.2.) 

Cloning a system on a virtual machine opens up other interesting possibil- 
ities. A potentially suspicious network packet or other suspicious input can be 
sent to a clone before it is forwarded to the actual system, to see if it has any ill 
effects. Similarly, during the development of intrusion-detection systems, tests 
for the effectiveness of the system can be conducted more safely on a cloned 
system running on a virtual machine than directly on the system that needs to 
be protected. 
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Virtual Machine for Monitoring Low.Level Activity 

A system virtual machine forms a barrier between a system and the hardware 
on which it is running and also between a system and other systems running 
on the same hardware. This property of the virtual machine can be extended to 
provide a barrier between a system potentially under attack by intruders and 
the IDS that monitors the low-level activity ofthe system. Here are two possible 
ways to configure an IDS in a virtual machine system to achieve this. 

| The IDS can be written as a separate process in its own virtual machine, or 
on the host operating system of a hosted virtual machine, with special access 
to the functions of the VMM through a dedicated interface. This interface 
must support (a) means to send commands from the IDS to the VMM, 
for example, to enable certain monitoring functions, (b) a mechanism to 
efficiently access the physical memory of the system being protected, and 
(c) means for the VMM to transmit information about activity on the 
virtual machine back to the IDS. 

2. The IDS can be integrated with the VMM. This gives the IDS the privilege 
and status of the virtual machine monitor and allows it complete access to 
all hardware activity of the system being protected. The VMM is a critical, 
central piece of software in a system and should therefore be thoroughly 
debugged and hardened against attacks and failures. In a scheme where 
the IDS is integrated with the VMM, it is imperative for the IDS also to be 
written, debugged, and verified with the same rigor. 

Separating the IDS from the VMM makes the functioning of the IDS a 
bit less efficient because of the need to communicate through an interface, as 
mentioned earlier. However, it avoids the addition of baggage to the VMM, a 
component that is central to the operation of the system and hence that must 
be efficient and verifiable. 

The Livewire system (Garfinkel and Rosenblum 2003) is an example of a 
system that separates the IDS from the VMM. The changes needed to a VMM 
for supporting the interface required by an external IDS are minimal and 
need not compromise the robustness and efficiency of the VMM itself. The 
IDS configures the VMM to gather information about the activity of a virtual 
machine. To enable this, the system specifies additional events or instruc- 
tions at which the virtual machine relinquishes control to the VMM so that 
the required information can be gathered. The VMM is also provided with 
a list of checks to be made on the gathered information. These checks may 
be a simple matter of matching the activity against templates of known mali- 
cious activity. Thus, once set up, the VMM performs all the needed activity 
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without communicating back and forth with the IDS module. Once the sig- 
nature of a malicious event is detected, the virtual machine is suspended, and 
the IDS is signaled and provided with the monitoring data gathered. The IDS 
examines the data and either responds with a command instructing the VMM 
to resume operation of the virtual machine or halts the virtual machine if it 
cannot guarantee that the system has not been compromised. 

The system just described is simple because it is conceptually stateless. The 
decision about whether to halt a virtual machine or to allow it to continue is 
based only on the information provided by the VMM when suspicious activ- 
ity is detected. This may be restrictive. Certain security measures require the 
incorporation of state in the intrusion-detection mechanism. Often, a sus- 
picious event may not be directly identifiable as malicious but may require 
further examination of specific other events in order to be identified as such. 
For example, monitoring the system call activity immediately after a series of 
attempts to log in could give greater confidence in identifying the user logging 
in as an intruder. To achieve this, the IDS can send a command to the VMM 
immediately after a series of unsuccessful login attempts, instructing it to moni- 
tor all traps and interrupts intended for the virtual machine being protected. 

Unlike the VMM, an IDS needs to have information about the type of 
operating system running on the virtual machine. The characteristics of intru- 
sions often tend to be specific to the operating systems being attacked. As a 
result, an IDS tends to have several operating system-specific mechanisms. The 
Livewire system, for example, includes an OS interface library that allows the 
IDS to perform an analysis on a crash dump generated by a virtual machine, in 
almost an identical way as it would have been done by an application running 
on the operating system. 

We mentioned earlier that the VMM is provided with a list of checks and 
templates to be used during the monitoring process. This is the function of 
the policy engine, the part of the IDS that determines how the monitoring 
should progress and whether the observed behavior matches the signature of 
malicious activity. The interface to the VMM, along with the mentioned OS 
interface library, provides a framework on which to build the policy modules 
of the policy engine. Livewire (see Figure 10.4) used this technique to build 
several policy modules, each of which was only between 30 and 130 lines 
of code. More details about the implementation of these for a Linux-based 
system are presented in Garfinkel and Rosenblum (2003); following are a few 
examples. 

Lie detector module: Attackers often want to mask their activity by lying 
about the system. They do this by getting control of the system, modifying 
it, and then masking their activity by providing false responses to system 
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Figure 10.4 Livewire Intrusion-Detection System (Garfinkel and Rosenblum 2003). The IDS may be viewed 
as another virtual machine built on top of the VMM but with special privileges. The major compo- 
nents of the IDS are (a) the OS interface library, which provides an OS-level view of the monitored 
virtual machine, obtained by interpreting the metadata returned by the guest OS through the VMM, 
and (b) the policy engine, which provides a framework to implement common policies as well as a 
set of policy modules each of which implements an intrusion-detection scheme. The VMM isolates 
the IDS from the monitored virtual machine. 

queries. A VM-based intrusion-detection system can thwart such attempts 
by sending an enquiry to the attacked system about the state of the system 
and comparing the results it provides with the actual state of the hardware 
of the system, which is completely known to the VMM. 

User p r o g r a m  in tegr i ty  detector module: Checking the binary stored on 
disk is not helpful after an attacker has modified the contents of a long- 
running program in memory. Livewire uses the VMM to check every code 
page of a program in memory and generates a signature (e.g., checksum) 
that is then compared with known good signatures for the same pages saved 
elsewhere. Any discrepancy is flagged as a potential violation of security. 

S igna ture  detector module: Antivirus programs have traditionally relied 
on the fact that most new viruses and Trojan horse programs simply reuse 
known techniques - -  often just copying the basic kernel code of an old 
virus or Trojan horse. Thus it is often effective to create a signature of 
these kernels and to check for this signature in files that are likely to be 
attacked. Virtual machine technology allows such a detection technique to 
be extended to the entire memory of the system. The VMM has access to the 
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virtual hardware of the virtual machine, and hence an intrusion-detection 
system can use the interface of the VMM to schedule a periodic scan of the 
memory for such signatures. 

Memory access enforcer module: Traditional operating systems protect 
code sections and other important parts of memory by rendering them 
read-only. Integrity check techniques are sometimes employed to ensure 
that certain critical sections ofmemory have not been tampered with and are 
still protected as read-only. But these techniques can detect such attacks only 
after they have occurred. By running the system inside a virtual machine, it 
is possible to get better and more immediate protection from such attacks, 
by rendering the same critical pages as read-only. Any attempt to change 
the access privilege of these pages is intercepted by the VMM, which can 
then halt the system. 

The implemented policy modules generally fall into two categories: polling 
modules and event-driven modules. Polling modules poll the system at regu- 
lar intervals to look for malicious activity, while event-driven modules report 
that some undesirable event has occurred on the system. The memory-access 
enforcer is an example of an event-driven policy module; the others are 
examples of polling modules. 

Virtual machine technology helps eliminate some of the disadvantages that 
a HIDS has in comparison to the NIDS, with its better isolation characteristics. 
While it is natural to extend existing virtual machine systems to support intru- 
sion detection, it is also possible that intrusion detection may one day be the 
reason for deployment of virtual machines. 

Secure and Complete Logging Using Virtual Machines 

Logging ofactivity on a system is an important part in the fight against malicious 
attacks on a computer system. As mentioned earlier in this chapter, a log of 
the activity on a system enables analysis of the events associated with an attack, 
especially if such data is available from the period both immediately prior to the 
attack and as the attack progresses. Such an analysis could lead to techniques 
that (a) anticipate an attack and (b) know when an attack has occurred. 

A common method of logging is to record all accesses to important and 
critical parts of the system, e.g., login attempts, network-related events, access 
to the system registry, and commands invoked at the superuser or system- 
administrator level. Unfortunately this information is not trustworthy when 
under attack ~ an attacker gaining control of the operating system can change 
the logging information to mask the attack. Moreover, while evidence of the 
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intrusion may be available from the log, there may be insufficient information 
to determine the exact vulnerability that led to the success of the attack. 

Researchers at the University of Michigan (Dunlap et al. 2002) have pro- 
posed a virtual machine-based system called ReVirt that attempts to address 
both these problems, namely, the inability to guarantee the integrity of logging 
information as well as the incompleteness of traditional logging information. 
They use the VMM both to separate the logging process from the system being 
monitored and to collect all information needed to replay instruction-by- 
instruction system activity for a long period of time ~ potentially starting 
from a point before the start of the attack and continuing to well after the 
attack is under way. 

Any computing system may be viewed as a finite-state machine. If the 
starting state is known, it is sufficient to know only the sequence of inputs 
to be able to replay its entire execution; the system moves through a set of 
states that can generally be determined simply by re-executing the program. 
However, there are situations where the transition between the states of a 
system is time dependent ~ reproducing the effects of an earlier execution in 
such cases requires a simulation of the input at the time recorded during the 
earlier execution. 

A better reference for recording nondeterministic events is the number of 
instructions that have been completed by the machine rather than the time 
on the system clock. It has been observed (Bressoud and Schneider 1996) 
that even when the inputs are completely deterministic, for example, in a 
program with no I/O, the time at which an instruction is executed varies 
from run to run, even though the count of instructions executed remains 
the same. This is due to a number of factors, the most obvious one being the 
variable latency to cache memory, depending on the interaction with other 
applications simultaneously running on the system. Modern processors often 
provide performance-monitoring hardware to count completed instructions, 
and hence it may be feasible to trigger events at specified instruction execu- 
tion counts. However, a more efficient and an equally effective measure is the 
number of branches that have been executed by the machine. The location 
of an event can be completely characterized by the exact number of branches 
that have been executed from the program start, along with the value of the 
instruction program counter when the event occurs. 

Counting events, e.g., the number of instructions executed or the number of 
branches executed, is accomplished through the setting of special performance 
counters visible at the ISA level. Each time the event occurs, the counter counts 
down by 1. When the counter reaches a value of zero, an interrupt can be 
scheduled to inform the application that the desired count has been reached. 
The designers of ReVirt observed that on IA-32 processors (and possibly on 
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Figure 10.5 Two-Phase Method for Delivering a Nondeterministic Event Accurately During Replay. 

other processors too), the interrupt generated by the counter does not stop 
execution immediately and could in fact occur several tens of instructions 
later. To ensure the delivery of a nondeterministic event at a precise point in 
the computation, they use a two-phase technique, shown in Figure 10.5. At the 
start of the replay the precise number of branches to be executed before the 
occurrence of the event is known. The instruction address of the desired point 
within the basic block after the last branch is also known. In the first phase, the 
branch performance counter of the IA-32 processor is set so that 128 branches 
will still remain to be executed. The interrupt from the counter is received at 
some point where the number of branches remaining to be executed is less 
than 128. At this point, the second-phase strategy is invoked. In this phase, a 
breakpoint is set to the program counter value recorded for the event. Each time 
the execution arrives at the breakpoint, the number of branches is examined 
to determine whether the desired number of branches have been executed. 
The exact point is reached when the desired number of branches have been 



514 Chapter 10~Emerging Applications 

executed, and execution progresses to the instruction at the desired instruction 
address. 

The number of events to be recorded can grow to an unmanageable size 
unless one takes care to minimize the logged information. Note that only those 
events that can affect the execution of the monitored virtual machine need be 
logged; it is not necessary to log the events that arrive at the VMM but are 
not delivered to the virtual machine itself. Some of the common events that 
must be logged are timer and I/O interrupts. There are some cases where, in 
addition to logging the event itself, it is necessary to log the actual input value, 
for example, for inputs from the keyboard, mouse, network interface card, real 
time clock, and CD drive. Input from the hard drive need not be recorded if 
we ensure that the hard drive will be set to the original state at the start of the 
replay. Even in the case of a CD drive, the actual input values read from the 
media need not be recorded if the original CD is available to be replayed; in 
this case, even these events become deterministic. 

It is important to have good knowledge of the characteristics of the specific 
system to ensure that all nondeterministic events are properly logged. As an 
example of system-specific aspects that need to be considered, the ReVirt paper 
(Dunlap et al. 2002) indicates the following three aspects specific to the IA-32. 

1. The IA-32 architecture allows a long memory instruction (e.g., a string 
instruction) to be interruptible, meaning that an asynchronous interrupt 
could cause a context switch in the middle of execution of the instruction. 
By saving the value of a register, ecx, as part of the state, an implementation 
will have the necessary information to resume the instruction where it 
left off after handling the interrupt. This implies that the register value 
must also be saved when a nondeterministic event is recorded, in case the 
interrupted instruction happens to be a string instruction. 

2. The read-timestamp-counter ( rd tsc)  instruction returns nondetermin- 
istic values, but this instruction does not trap when in user state unless 
the control register CR4 is set in a particular way. One way to deal with 
this instruction is for the VMM to treat it the same way as other sensi- 
tive but nonprivileged instructions, as described in Chapter 8, namely, to 
scan ahead for the instruction, insert a trap, and emulate the instruction. 
The ReVirt system sets the CR4 so that the instruction traps, replaces the 
instruction with a library call routine ge t t imeofday( ) ,  which does not 
use the rd t sc  instruction, and scales the value returned to account for the 
overhead. 

3. A similar situation occurs with the read-performance-monitor-counter 
(rdpmc) instruction. This instruction also exhibits nondeterministic 
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behavior and usually does not trap in user mode as in the rdtsc  case. 
As with the rcltsc, the ReVirt system sets the CR4 so that the instruction 
traps in user mode, but then it simply disallows the instruction in the guest 
kernel and applications running in the monitored virtual machine. 

The ReVirt system was built on a hosted virtual machine system based on 
Linux (UMlinux 2002). The proper functioning of the system ~ specifically 
the ability to detect the occurrence of an external interrupt event as well as 
to deliver it at the precise point during the computation ~ was tested using 
special kernels. The performance overhead due to logging was found to be less 
than 8% for a wide variety of benchmarks. The growth rate of the log was 
found to be between 40 and 1400MB per day. This is a reasonable number and, 
in practice, allows logging for several days, possibly even months. 

10.1.4 Role of Dynamic Binary Rewriting Technology in Security 

In Section 4.7 we described a type of process virtual machine for which both 
the host and guest ISAs are identical but where the principal aim is the opti- 
mization of code for a particular platform. In such a system, a program is 
executed under the control of runtime software, which interprets the instruc- 
tions in the program, determines code regions (e.g., superblocks) that are 
frequently executed, translates such code regions, optimizes them, and saves 
the optimized binary in a code cache from which the code is executed when 
encountered next. 

The ability to control the execution of a program through the runtime 
also makes it possible for the runtime to sandbox the execution of a program, 
both to prevent the program from being attacked by potential intruders and to 
prevent the program from being the launching point of an attack on the system. 
This is the principle behind program shepherding (Kiriansky, Bruening, and 
Amarasinghe 2002), a concept that has been implemented on the RIO dynamic 
optimization infrastructure (Bruening, Duesterwald, and Amarasinghe 2001), 
which itself is an evolution of the Dynamo binary optimization system (Bala, 
Duesterwald, and Banerjia 2000) described in Chapter 4. 

The fundamental idea behind program shepherding is that a program can 
be adequately protected by ensuring that every branch or jump is to a legal 
location and every branch into a code region originates from either another 
part of the same program or from some other trusted location on the system. 
This is not done easily at compile time because static analysis fails to resolve 
addresses of dynamically shared libraries as well as the targets of many indirect 
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jumps. Thus safe execution of a program can be ensured only through runtime 
checks. 

Restricting Control Transfers 

Let us now examine the way in which control transfers can be restricted. One 
way to do this is to add instrumentation (i.e., instructions) at branch and jump 
sites to check the validity of the target. However, this could degrade perfor- 
mance of the program quite significantly. Moreover, as long as the program is 
vulnerable to attack, the attacker could change this instrumentation to circum- 
vent the checks. A more effective way of achieving this is through techniques 
used in dynamic binary optimization. A section of code is interpreted the first 
time it is executed. The targets of the conditional and indirect branches are 
recorded in a safe location. When the same sequence of basic blocks has been 
executed a predetermined number of times, this sequence of blocks is gathered 
into a superblock, reoptimized, and placed in a code cache, as described in 
Chapter 3. The runtime software of such a system performs checks for the 
validity of branch targets both during the interpretation phase as well as during 
execution from the code cache. If the superblock represents the typical path of 
execution, these checks will be performed much less frequently when executing 
out of the code cache. In order to ensure that the code being executed is not 
maliciously modified, the code cache itself should be protected by making it 
writable only when the runtime is in control. 

An overview of the RIO system infrastructure is shown in Figure 10.6. 
The specific characteristic of the system, namely, that the RIO code and the 
application code both work as part of the same process and share an address 

Figure 10.6 
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space, is an inheritance from the Dynamo system, which was described in 
Section 4.7.2. Even though they are part of the same process, there are two 
modes in which the machine operates, the RIO mode, in which the infra- 
structure code operates, and the application mode, in which the application 
work is performed. The system begins by scanning instructions and collecting 
basic blocks, which are inserted into a basic block cache, a region of mem- 
ory protected from being overwritten. At a branch or jump, a map (hash) 
table lookup is performed to check whether the next basic block has already 
been cached. If it has been cached and if a direct address is given, the two 
basic blocks in the cache are linked through a new direct branch so that the 
table lookup is avoided the next time. Further performance improvement is 
obtained by stitching together frequently executed sequences of basic blocks to 
form a superblock, which is then inserted into the code cache (shown as the 
superblock cache in Figure 10.6). The collection of basic blocks and superblocks 
is done in RIO mode, but the execution of the code itself is done in application 
mode. A mode switch into the RIO mode occurs when a control transfer 
lookup fails to find an entry either in the basic block cache or in the code 
cache. 

Management of control flow transfers is achieved as follows. For each direct 
branch from one cached basic block to another, security checks are performed 
at the time the basic blocks are linked. A link is added only if the security 
policy allows a direct transfer; otherwise control returns to a runtime routine 
that checks for and handles all potential security violations. Once the link is 
inserted, it is part of the basic block cache (or superblock code cache), which 
itself is protected from being tampered with. As long as the program is restricted 
to such linked branches, there is no overhead in execution. In fact there could 
even be a performance benefit due to more efficient layout of the code. 

Indirect-ium p destinations have to be looked up in the map table to deter- 
mine the mapping of destination addresses to corresponding locations in the 
basic block cache or the code cache. Only those cache addresses that are vali- 
dated are placed in the map table; these account for most of the addresses to 
which jumps are made. Additional checks can be recorded in map table entries. 
For example, the target of a return from a subroutine can be checked to make 
sure the program returns to a point immediately after the original call. Such a 
check would thwart the type of attack that was described in Section 10.1, where 
the program returns to an inappropriate address because the stack has been 
clobbered. 

In general, the only branch or iump targets that lead to any significant 
program degradation are indirect iumps targeted outside the code segment 
being protected. The RIO system checks for the validity of such targets by 
performing dynamic checks whenever they are encountered. 
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Restricting Code Execution 

The origin of a piece of code must be authenticated before it is allowed to 
execute. This authentication must be performed not only at the time the code 
is loaded from the disk or from the network, but also while it is executing 
the code could be changed in memory either by another program on the system 
or even by itself. Any changes to the code in memory must either conform to 
the security rules or be disallowed. 

Most of the checks in the RIO system of this kind are performed at the time 
the system copies a sequence of instructions into the basic block cache. The 
main challenge here is to ensure that the code was not tampered with after 
being fetched into memory and before being copied into the basic block cache. 
Modern program binary file formats separate the code sections from the data 
sections and allow loaders to write-protect code pages as they are brought into 
memory. Any attempt to change the code results in an exception. However, the 
system also needs to handle the case of dynamically generated code, permitting 
the execution of such code when it is legal to do so and preventing it when it 
is not. 

There are two cases of importance. The first is the case of new sections of 
code that are created and then loaded for execution. In this case, the region 
of code is usually converted from being writable to being write-protected. The 
RIO system authenticates the code at this point and allows the conversion 
only if the request is from trusted code. Similarly, if the program makes a 
direct jump into writable space, the system verifies the origin of the jump and 
write-protects the target area before allowing execution to proceed. 

The second case occurs when code and data are shared on the same page 
this case poses an interesting problem. Since data areas should not be write- 

protected, it is necessary to have two copies of such pages, one of which is 
write-protected and is the source of instructions, while the other serves as 
the target for data reads and writes and is not write-protected. This solution 
is adequate for most common situations. It does not handle the situation 
where the code itself is changed by the program, however ~ the case of self- 
modifying code. Such writes into the code area must be intercepted by the 
runtime monitor in order to ensure they are being performed legally. It is 
necessary for the system to monitor all writes into write-protected regions and 
to authenticate the source of such writes. If it is a legal self-modifying code 
situation, the runtime monitor makes the page writable, allows the write to 
proceed, and then write-protects the code page again, after ensuring that the 
basic block cache and the code cache are purged of all the affected regions. This 
is clearly a case that could significantly degrade the performance of the system. 
Fortunately, it is not a common occurrence in modern programs. 
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Table 10.1 Page Access Privileges in the RIO System 

Page Type RIO Mode Application Mode 

Application Code R R 

Application Data RW RW 

RIO Code Cache RW R (E) 

RIO Code R (E) R 

RIO Data RW R 

R -  read only, RW - -  read/write, R (E) - -  executable 

Protecting the Runtime Monitor 

The RIO system designers protected the RIO system code itself from attack by 
using different page protections during the RIO mode of operation and the 
application mode. The RIO mode has slightly higher page access privileges 
than the application mode, even though both modes operate within the same 
address space. An emulated "context switch" occurs when the machine switches 
modes. Table 10.1 indicates the access privileges to the various types of pages 
in the RIO mode and in the application mode. For instance, the code cache 
itself has read and write privileges in the RIO mode, whereas it has only read 
and execute privileges in the application mode. Tables used by the RIO system, 
for example, the map tables, have read-only privilege in the application mode 
whereas they have read and write privileges in the RIO mode. 

10.1.5 Secure Systems of the Future 

Security is an aspect of computing that has not been systematically addressed 
in the past, and is beginning to gain tremendous importance. Users and organi- 
zations are already beginning to think of ways in which they can partition their 
platforms so that they are able to run open, general-purpose, widely avail- 
able systems and applications that are insecure alongside other applications 
and data that have to be protected and kept highly secure. The Terra system 
(Garfinkel et al. 2003) attempts to achieve this by creating a trusted virtual 
machine monitor that supports virtual machines incorporating the semantics 
of dedicated, tamper-resistant hardware on the same hardware platform as 
virtual machines that run normal, open, general-purpose applications. 

We have seen in this section the application of various techniques described 
in earlier chapters of this book to handle the security problem. The process of 
thinking through the various issues and of coming up with solutions to handle 
them has motivated and will continue to motivate the search for fundamental 
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ways of avoiding thorny security issues. Thus the world is moving toward new 
paradigms where security, perhaps even at the expense of some performance, is 
a fundamental aspect in the design of an environment and its applications. The 
HLL VMs, as described in Chapters 5 and 6, exemplify this approach. For some 
time to come, however, the vast legacy of existing environments will continue 
to call for security solutions of the type discussed in this section. 

It is not uncommon for individuals to maintain programs and to work on 
multiple computers at different locations, for example, one at home and one 
at work. Usually, there is an overlap in the activity conducted in the user's 
different work locations, and it is clear that the user's data is likely to be needed 
at multiple locations. To facilitate this multiple work-site environment, it is 
likely that the same operating system and the same set of applications are 
installed on different computers. Yet there are often subtle differences between 
the environments of the various installations that prove frustrating to the user. 
For example, one location may have a slightly different version of an application 
program from another, perhaps because an upgrade was applied to the machine 
at one location and not the other. One might naturally ask whether there is 
some way in which the user can see an identical environment everywhere he or 
she works. 

Many users get around this problem by working exclusively on portable 
devices such as laptop computers. While this ensures that the user always sees 
and works with exactly the same environment, it does have two significant 
disadvantages. First, the user is required to carry a physical device to transport 
the environment, and second, this means that the user is responsible for the 
physical security of the portable device at all times. 

In the 1960s, mainframe servers solved this problem (at least within the 
environs of a large office building) by providing users with simple, "dumb" 
terminals as the only interface to the system. The operating system, applica- 
tions, and data of the user resided in a central location and were accessible from 
the terminal through a network of serial links. The system virtual machine envi- 
ronment described in Chapter 8 extended this concept by allowing each user 
to perceive the computer being accessed as his or hers exclusively. The virtual 
machine concept provides flexibility, by allowing each user to customize his 
or her environment, and security, by isolating a particular user's environment 
from those of other users of the machine. 

The last few decades have seen a dramatic decrease both in the cost and in 
the size of computing devices. The dumb terminal of the mainframes has now 
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become a sophisticated computer in its own right. Thus, while the concept of 
the mainframe server still survives, most users today access both mainframes 
and the Internet through a device capable of performing significantly sophisti- 
cated computation. Such processing may include applications such as graphics 
rendering and game simulation, Web browsing, and the editing of text doc- 
uments. It is the environment associated with this interface that needs to be 
replicated when a user moves from place to place. 

Replicating such an environment from one computer to another is not 
trivial, because this implies that a tremendous amount of state information 
must be transferred. The state of the machine includes not only the state of 
the resources used by the operating system and the applications running on 
the machine, but also the code and data belonging to the operating system and 
applications.Thus, a capsuleis formed to capture the state of a running machine 
and hence information about the processes currently active on the system. The 
notion of a capsule allows a user environment targeted for migration to be 
treated as an object that can be manipulated. 

Even assuming that the actual hardware on multiple sites is identical, repli- 
cating the environment requires all this state information to be encapsulated, 
transmitted across a network, and installed on the other computer before the 
user can take over operation at a second computer. These operations have to 
be done efficiently in order for the switch between environments to appear 
seamless to the user. The following subsections will be devoted to ways to make 
such environment mobility practical and efficient. 

10.2.1 Virtual Computers 

As we mentioned in the introduction, virtual machine technology provides 
the ability to capture the entire state of a computer system and thus facili- 
tates migration of a full computing environment. Figure 10.7 shows what is 
involved in such a migration. Traditionally, in order to migrate from one com- 
puter to another, one would close all programs on one computer, shut it down, 
and either transport the hard drive or copy all information contained on the 
hard drive of the first computer on to the hard drive of the second. 

Often even this seemingly simple scenario runs into complications because 
of subtle differences in the configurations of the two machines. Virtual machine 
technology inherently is better at smoothing out such subtle differences. The 
process of environment encapsulation is simplified if the environment is 
running on a virtual machine rather than directly on real hardware. The 
virtual machine monitor must implement data structures that separate the 
resources belonging to the different virtual machines running on the system. 
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Figure 10.7 Environment Migration Using Virtual Machines. (a) Traditionally, migration involves the move- 
ment of data between machines, each with its own hardware, operating system, and complement of 
applications. (b) A faithful reproduction of the user environment is possible from one machine to 
another through the use of virtual machine technology. The state of the virtual machine, including 
the state of the application, and the state of the operating system are packaged and migrated. The 
data for the application may also be migrated if it is not located on a file system accessible at the 
destination. 

Thus, the virtual machine itself can serve as a capsule that can be migrated to 
another system that implements the same virtual machine system, as shown in 
Figure 10.7b. 

The information about a virtual machine that is typically kept for use by 
the virtual machine monitor is restricted to the configuration of the virtual 
machine and pointers to tables that link virtual resources such as memory to 
real resources on the system. A capsule, on the other hand, does not contain any 
information about the mapping of the virtual resources. A capsule must also 
capture the state contained in all resources, including the disks and memory. 
It is conceivable that the information contained in a capsule can be many 
gigabytes in size and could take several hours to be transmitted on networks 
commonly used for connecting home computers to the outside world, for 
example. 
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Encapsulation of a running machine is similar to checkpointing. It allows 
the machine to be suspended for an indefinitely long time and resumed exactly 
from the point where the execution was originally suspended. The capsule 
is a host-independent checkpoint that can be transported from one machine 
to another; execution can be suspended on one computer and resumed at 
exactly the same point on another computer. If the virtual machine archi- 
tecture is identical to some real machine architecture, the execution can be 
resumed on a real implementation rather than on another virtual machine 
system. 

It must be remembered that the system virtual machines running on a 
centralized mainframe such as the IBM z/VM also allow a user to see the same 
environment when traveling from one location to another. However, in that 
case, both the data and the processor reside in a remote location and stay 
there, even during execution. The amount of state information that needs to 
be transferred to a remote terminal is negligible, and the overhead of updating 
the environment to make it cognizant of the new terminal is small. The harder 
problem is the one we have outlined here ~ that of migrating the environment 
to work on different data and compute facilities. 

There are several issues involved in developing a practical solution for this 
problem, and we list some of them here. 

The entire state of a computer (which could include tens of gigabytes or 
more of disk space) can be so large that the time taken to migrate the 
state may be prohibitive. Note that it is generally not necessary to send the 
entire state from one computer to another initially. It is usually sufficient 
to transmit a small part of the state at first, transmitting additional parts 
of the state as needed. It may also be possible, as we shall see later, to take 
advantage of information that may already be available on the second 
computer, e.g., portions of the operating system itself. 

Having decided what portion of the machine state needs to be migrated, 
there is still the problem of packaging and securely transmitting the infor- 
mation. Compression and encryption techniques have to be employed to 
reduce the amount of data transmitted and to transmit it securely. 

When the hardware on the two machines is identical and when the virtual 
machine monitors running on them are identical, the process of transmit- 
ting the environment from one machine to another should be seamless. It 
may be the case that while the processors are identical in the two machines, 
the memory or I/O configuration on the two machines is different. For 
example, one machine may be connected to the external network using an 
Ethernet adapter, the other with a wireless connection. We have already 



524 Chapter 10~Emerging Applications 

seen in Section 8.4 how such situations are handled, both in native system 
virtual machines and in hosted virtual machines. 

Finally, the ISA of the user's virtual machine and the ISA of each of the 
host computers determine the extent to which the performance of the sys- 
tem appears identical on the different sites. When the ISA of the guest is 
different from the ISA of the host, the virtual machine monitor is required 
to translate from one ISA to the other. We have already discussed various 
binary translation and optimization techniques that help in doing this. 

In the next two subsections we examine the basic functioning oftwo systems 
that have implemented the environment-migration concept. 

10.2.2 Using a Distributed File System: The Internet Suspend/Resume Scheme 

Kozuch and Satyanarayanan (2002) proposed the use of virtual machines in 
migrating the state of a user environment from one computer to another via 
a technique they called Internet Suspend~Resume (ISR). The name attempts to 
capture the notion that the system essentially allows a user to suspend operation 
on one machine, travel to another machine, and resume execution on the 
other machine by migrating the state of the first machine over the Internet 
(Figure 10.8). The authors use the VMware GSX Server described in Chapter 8 
to carry out their experiments. The ISR proposal encapsulates the state of 
the virtual machine, including the contents of the virtual memory and the 
disk; the virtual machine monitor keeps this state in a file on a distributed file 
system accessible also from the destination computer. 

One of the longstanding problems with the migration of state from one 
location to another is the need to change the IP address to access the network 
and all references to this address in the saved environment. MobileIP tech- 
nology (Perkins 1998) solves this problem for mobile users of the Internet. 
The authors of the ISR scheme suggest that migration can be made completely 
transparent as long as the guest operating system is configured to use only such 
mobile technology. 

The simplest approach for resuming the environment on a new machine 
is for this machine to access the state saved in the distributed file system and 
to load it as the state of a new virtual machine. If the system configuration 
and the virtual machine monitor on the destination machine are the same as 
those of the originating machine, the loading of the file may simply involve 
the loading of tables and data structures in the virtual machine monitor of 
the destination. In order to accommodate the variety of distributed file system 
definitions, Kozuch and Satyanarayanan suggest that the state file be written to 
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Figure 10.8 Internet Suspend/Resume. (a) What happens on a laptop when the user travels from one place to another. 
(b) How a similar effect is obtained using VM migration. The state of the user's environment is saved on 
a distributed file system accessible to the machine in the user's destination location. 

an abstract file system interface, with machine-dependent aspects encoded in 
a small block that resides with the file. 

Loading the entire state on the destination machine could take a consid- 
erably long time. In order to make the migration experience more responsive 
to the user, the authors propose the organization of the state information in 
modules that are loaded incrementally, with the environment resuming on the 
new virtual machine as soon as the needed elements have been loaded on the 
destination system, rather than waiting until the entire state has been loaded. 

The ISR scheme uses a "pull" model, with the destination computer reading 
in the environment state file on demand, for example, when the user logs in 
to the destination machine. This could result in a long latency between the 
time the user logs in and the time when a sufficient amount of state is available 
on the destination to allow it to resume the environment. The authors suggest 
that there may be usage patterns that could be learned by a system in order to 
hide the latency of the resumption by proactively copying in the state to the 
local machine even before the user requests it. For example, the system could 
learn the pattern of travel between work and home for a particular user and 
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bring in a part of the state of the system at the destination before the expected 
time at which the user arrives at the destination. 

The amount of information that is part of the state of a virtual machine is 
considerably large. Copying the state, compressing it, transmitting it, uncom- 
pressing it, and then loading it back on another machine will be time con- 
suming as well as bandwidth consuming. Techniques are needed to limit the 
amount of information that has to be transmitted in a burst, without com- 
promising the ability to transmit the full state information from one host to 
another. For example, when a user frequently travels between two sites, the 
suspension of the environment at a site need not completely eliminate the envi- 
ronment at the site. It may be possible to keep information in some structured 
way so that when the environment is resumed at the site at a later time, only 
the changes to the environment need be loaded. Another possibility is to reuse 
portions of the environment from the environment of other users already on 
the system. Candidates for such reuse include files associated with the operating 
system, only a few of which are user specific. 

The eventual adoption of such a scheme will depend on the security of 
information guaranteed by the migration system. Users would not want any 
information in their virtual machine to be accessible by other users or even 
by the VMM. Kozuch and Satyanarayanan propose that the state saved in the 
distributed file system be maintained in an encrypted form. They also suggest 
that users be validated before being allowed use of a host machine. 

10.2.3 State Encapsulation in the Stanford Collective 

The Stanford Collective project (Sapuntzakis et al. 2002) takes a conceptually 
similar approach to environment migration. The principal difference from the 
Internet Suspend/Resume approach is that the capsule that holds the complete 
state of the user's virtual machine is sent to the destination computer to which 
the user is headed rather than to a distributed file system accessible by the des- 
tination. One advantage of this "push" model is that by appropriately planning 
the migration activity, the user can have instantaneous access to his or her 
environment at the destination site. 

The virtual machine of the Collective system is an Intel IA-32 platform 
running on the VMware GSX server (VMware), the basic operation of which 
was described in Chapter 8. As noted in that chapter, the GSX server is a hosted 
virtual machine system, with the host operating system being either Linux or 
Microsoft Windows. On such a virtual machine system, the VMM can take 
full advantage of the device drivers written for the wide range and types of I/O 
adapters and devices that already exist for the host operating system. 
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The Stanford Collective developers noted that there still remain challenges 
in supporting certain I/O devices, e.g., network adapters, because of the porta- 
bility requirement. If a virtual machine is using a virtual network card to 
communicate over the Internet, the encapsulation will include an IP address 
that may not work on a physical computer different from the physical computer 
producing the capsule. The Collective system enhances the virtual machine 
monitor to enable tunneling of network packets travelling to and from the 
capsule's old network over a virtual private network (VPN). 

The Collective system developers performed extensive tuning of their sys- 
tem to be able to suspend a virtual machine and transmit it to a destination 
machine in about 20 minutes (a period they considered a typical commute 
time) using standard 384 kbps DSL lines. The system attempts to be oblivious 
of the details of the guest operating system. Hence many of the techniques they 
employ are applicable more generally than the ISR scheme described in the last 
subsection. Some of these are listed next. 

Reducing Memory State Before Migration 

Most physical machines today contain hundreds of megabytes of memory, 
and it is reasonable to expect virtual machines to have main memories that 
are similarly large. At any given instant, however, the part of main memory 
that is critical for good performance is relatively small. There is typically a 
large part of main memory that could be paged out to disk without noticeable 
difference in the system's response time. Unfortunately it is not possible to 
determine which pages do or do not belong to the current working set at 
suspend time without intruding into the guest operating system. The Collective 
system works around this by starting a balloon program on the virtual machine 
that requests a large number of pages. This program causes pages to be released 
from the other active processes on the system by the guest operating system 

the expectation is that these pages are released from the currently inactive 
processes that do not need to respond instantaneously on a resume at the 
destination. The size of the memory state is now reduced by zeroing out the 
pages requested by the balloon program, thus enabling better compaction of 
the capsule. 

There are several subtle policy issues associated with ballooning. While 
transmission of the state of the memory is more effective when more of the 
pages are recovered through the balloon program, the response of the system 
during the resume operation becomes more sluggish unless the right number 
and type of pages belonging to the active processes remain mapped in memory. 
Pages holding cached data or those that are part of dirty buffers are ideally 
left untouched. On the other hand, active pages that are easily compressible 
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need not be released to the balloon program; there is less benefit in their 
being zeroed out for compression and possibly greater overhead in their being 
restored during the resume process. 

Note that the balloon program is a process running within the environment 
of the virtual machine, though it is triggered by the VMM when it receives a 
suspend request. The fact that this program runs on the guest operating system 
allows the program to be specialized for the characteristics of the operating 
system. Operating systems such as Microsoft Windows limit the size of the 
maximum working set for each process ~ the balloon program cannot recover 
more pages than the specified maximum number of pages that may be used by 
the balloon program itself. On the other hand, Linux does not set a limit to the 
size of the working set for a process ~ the Collective system monitors the swap 
space, while the balloon program keeps allocating and zeroing out new pages, 
until the free swap space reduces by a preset maximum. 

Reducing the Size of the Transmitted Packet 

The balloon-program approach just mentioned goes a long way toward 
reducing the bandwidth required to transmit the information associated with 
a capsule. However, with very large disks becoming common, the state rep- 
resented by the disk is rather formidable. Moreover, disks already hold many 
types of data, such as pictures and video, as compressed files, and additional 
compression is seldom effective. On the other hand, typical user migration 
involves just a few platforms, and the required disk image is usually not a big 
change from the image that was left on a platform when last visited. The Col- 
lective exploits this observation by maintaining differences between capsules 
rather than the full disk image for each capsule, thus saving a considerable 
amount of time and resources. 

Figure 10.9, taken from Sapuntzakis et al. (2002), shows a sample capsule 
hierarchy, where each node represents a capsule state. The state of the disk in 
a node is saved in its entirety only in the capsule corresponding to the root 
node. Each node in this path inherits a base disk image corresponding to its 
parent node. Only the incremental difference between the states of the parent 
and the child is stored in each child node. The state of the disk at any node can 
be derived from the disk information contained in the nodes along the path 
from the root down to that node. 

Each incremental disk uses the copy-on-write concept. The idea here is that 
whenever a copy of a disk is needed, the entire disk contents are not copied. 
Rather, the image of the disk is represented by a set of pointers to unique copies 
of various segments of the disk. Associated with each segment is a reference 
counter that counts the number of pointers to that segment. When a change 
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Figure 10.9 Example Capsule Hierarchy for a University. The root capsule contains all the software that will be 
needed by all students. Each department customizes the capsule to suit its requirements. The department 
administrator does this by deriving a child capsule from the parent capsule. As mentioned in the text, only 
changes to the university capsule are saved in each department capsule. Students derive capsules from the 
department capsule, perhaps having one capsule per course in a department. Alternatively, like Student1 
depicted earlier, students may derive their own private capsule. The leaf node, e.g. Stuclentl Working 
Capsule, is what migrates when the student moves from place to place. 

needs to be made and a segment must be written into, the reference counter is 
checked. If the count is 1, then the original copy of the segment can be written 
into. If not, the segment is copied, the pointer is made to point to the new 
copy, and its reference counter is decreased by 1. This new copy can now be 
modified without affecting the earlier versions. Copy-on-write allows many 
different versions to share a single copy of the actual data; this is particularly 
effective when these versions are largely the same and differ in only some small 
aspects. 

Before changes are made to the disk image, all nodes in the path from the 
root to the leaf corresponding to the image have to be transferred. Modifica- 
tions can be made only to leafnodes in a hierarchy. For example, in Figure 10.9, 
if Student4 wishes to make a change to his or her disk on a location that does 
not already have any of the information corresponding to nodes in the path 
from the root up to the leaf node, this information is brought over. A new child 
node is created with Student4 as the parent, and changes are made strictly to 
the incremental disk at this node. When the student moves to another com- 
puter, the currently open incremental disk image is transferred to the new 
computer. The images corresponding to the other nodes are essentially read- 
only images and need not be deleted from the computer from which execution 
was suspended. As students move from computer to computer, various nodes 
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in the hierarchy remain behind, increasing the probability of finding a copy 
of a desired node and decreasing the incremental traffic that will be incurred 
when the user moves from place to place. 

Reducing Start.Up Time on a Resume 

On a resume operation, a lot of time can be saved if the information in the 
capsule disks is fetched on demand rather than being prefetched completely, 
because the working set typically needed by a user in a session is small. On 
the Collective system this is implemented as follows. All accesses to disks 
are intercepted by the VMM and forwarded to a disk server. The disk server 
translates the request to an access in one of the nodes in the hierarchy. If 
it is a write, the access must be to the leaf node, as mentioned earlier. An 
access to information residing in one of the intermediate nodes may need a 
remote access to the node that owns the information. On such an access, local 
shadow copies of the desired blocks are made from the remote incremental 
disk image. Thus the desired blocks of the remote disks are incrementally built 
up on demand on the local system. Note that disk blocks in a node can be 
shared by all capsules derived from this node. In Figure 10.9, for example, if 
some blocks of the departmental copy are brought over on demand, they need 
not be brought over again when another student attempts to access the same 
blocks. 

Reducing Transmission Time and Bandwidth by Exploiting Redundancy in 
Disk Blocks 

It is not uncommon to find disk blocks that are identical, because the nature 
of activity on most systems tends to promote similarity among data blocks. 
Here are some sample situations when a needed block is already available on 
the system. 

�9 A user moving back and forth between two systems leaves behind a trail of 
disk blocks that can potentially be reused the next time the site is visited. 

�9 Blocks of program files are often already resident in memory. Most pro- 
grams do not modify their own code, and hence it is generally possible to 
copy these disk blocks directly from memory. 

�9 The memory of a machine often contains disk blocks other than program 
files, for example, blocks that are part of a disk cache. 

�9 Often different users (and hence different capsules) utilize the same pro- 
grams or data files. If a copy of a block already present in the capsule of 
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a different user could be employed, it eliminates the need to transmit the 
copy from a remote site. 

The Collective makes use of the hashed copy scheme. Each block on disk 
is associated with a hash value that aims to identify uniquely the contents of 
the block. The hash scheme employed in the Collective is a strong crypto- 
graphic hash, SHA-1, which has a very low probability of a collision (NIST 
2002). Instead of transferring the actual data blocks between computers, the 
Collective transmits the computed hash values of the data blocks. When a disk 
block is needed by a computer, it checks to see whether a block with the same 
hash value is available locally. It then uses this block directly or generates a 
copy of the block if the block is to be written into (copy-on-write). This avoids 
the need to transmit the block from a remote location. If the block is not avail- 
able locally, the computer broadcasts a request for a copy. Other providers 
on the system receive this request and check against a table of hash values of 
already-available blocks and satisfy the request. The authors claim that the 
scheme is reliable because the probability of a collision, i.e., of having the same 
hash value for different data, is less than the probability that a requestor of 
a disk block receives a bad block because of an error in a TCP connection or 
an error in memory. The scheme is also claimed to be secure because SHA-1 
makes it practically impossible to manufacture data that produce a given hash 
value. 

Results of experiments (see Figure 10.10) using the Collective system 
(Sapuntzakis et al. 2002) indicate that these optimizations significantly reduce 
the traffic and hence the time for migrating a user environment from one 
machine to another on a typical DSL network. The authors simulated the 
migration of a user between home and work machines using snapshots 
based on the Business Winstone 2001 benchmark. The various techniques 
described earlier appeared to reduce the amount of data transferred to typ- 
ically around 50MB, which can then be reduced further to less than 22MB 
through compression using the gzip program. Hashing reduces the trans- 
ferred amounts even more. Needless to say, there were situations, for example, 
at the beginning of program execution sessions, where the raw amount of 
data needed to be transferred was as high as 500MB. However, even in 
these cases, compression brought down the size by a factor of 2 or more, 
with hashing providing further reductions. The authors conclude that the 
experiments indicate that in typical situations of commuting between home 
and work, the entire environment could be transmitted during the com- 
mute. This makes it possible for a user to suspend execution at one site and 
resume execution at the other without noticing any change in the computing 
environment. 
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Figure 10.10 Performance of Optimization Techniques Used in the Collective (Sapuntzakis et al. 2002). The 
raw memory size in the experiments is 256MB. Snapshots were taken while running the Winstone 
benchmark every minute after the first three minutes. The migration of each snapshot was simulated 
assuming the destination had all information up to the previous snapshot. The graphs show the 
effectiveness of the hashing scheme combined with compression using gzip in reducing the traffic 
from the originating host to the destination host. 

10.2.4 Migration of Virtual Machines in VMotion 

The Internet Suspend/Resume scheme and the Collective scheme are research 
projects, and it may be a while before all the issues involving the migration of 
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virtual machines over the Internet are sorted out. Meanwhile, there are aspects 
of such migration that already exist in VMotion, developed by VMware. 

VMotion is part of the VirtualCenter (VirtualCenter) infrastructure 
management software that manages a cluster of Intel IA-32 virtual machine 
systems connected in a local-area network, as shown in Figure 10.11. The man- 
agement functions of VirtualCenter include the deployment and monitoring 
of virtual machines running on a native virtual machine system called the ESX 
server. Under certain circumstances VirtualCenter may need to migrate a run- 
ning virtual machine from one host in the cluster to another. Examples of such 
circumstances include: 

�9 Load balancing, to improve the response time of the system through better 
utilization of resources 

�9 Security, to quarantine a virtual machine that has been attacked 

�9 Collocation, to bring communicating virtual machines closer together 

�9 Fault tolerance, to move a failing host to another processor 

�9 Power management ,  to move the load away from an overheated processor 

�9 Maintenance, to move the load away from some processor while it is 
upgraded 

The migration of a virtual machine from one node to another in Virtual- 
Center is done using VMotion. This migration involves copying the state of 
the virtual machine, including the processor state, the memory state, and the 
state of other virtual hardware resources, such as BIOS, devices, MAC address 
for Ethernet cards, and chip set states. The issues here are quite similar to 
the issues we discussed in connection with the ISR and Collective schemes. 
However, VMotion, being a product, has to grow cautiously ~ it is currently 
restricted in its capabilities in several respects. 

�9 The source and destination computers must be in the same server cluster 
managed by the same VirtualCenter manager. 

�9 The file systems on the source and destination computers must be identical 
and located on shared disks in a storage-area network (SAN). This avoids 
the complexities of migrating disks encountered by the Collective. 

�9 The processors running on the two computers must have the same 
architecture and be provided by the same vendor. This avoids potential 
incompatibilities that could prevent the state saved on one machine from 
being directly loaded into the other machine. 
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Overview of the VMware VirtualCenter. VC stands for VirtualCenter. A cluster of three nodes is shown, 
with the nodes named hostB and hostC sharing a file system on a storage-area network (SAN). 

�9 The virtual machine supports a Gigabit Ethernet adapter. 

�9 The virtual machines must not be running multiprocessor cluster applica- 
tions; they should be running only stand-alone applications. 

When a request is received to migrate a virtual machine using VMotion, 
software in the VirtualCenter performs the following actions. 

Zu 

2. 

It first ensures that the virtual machine is in a stable state on the current host. 

It then copies the contents of the memory belonging to the virtual machine 
to the destination host. Data associated with the guest operating system as 
well as the data of applications running on the virtual machine are copied. 
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This is referred to as the baseline copy. It is not the final copy because 
the virtual machine on the original host continues to run during this 
process. 

3. The virtual machine on the original host is suspended. VirtualCenter then 
copies the last changes to memory along with the rest of the state of the 
virtual machine to the destination host. The information sent to the desti- 
nation host at this stage is a capsule containing changes to the information 
sent earlier, similar to the incremental capsule as described in the Collective. 

4. It then activates the virtual machine on the new host. 

It is almost certain that more migration technology that has been devel- 
oped in various research projects will continue to find its way into systems 
such as the VirtualCenter. What we observe is that there are many forms in 
which the problem of migration of virtual environments presents itself. We 
have reported here the early work in this area. As research progresses and as 
vendors get more experience dealing with products that allow migration, many 
new techniques will be developed. The eventual popularity and success of this 
paradigm may, in fact, mark the coming of age of virtual machine technology, 
particularly of system virtual machines. 

~ ~ o ~o~~% Grids: Virtual Organizations 

In the past couple of decades, the world has seen a rapid increase in the 
total amount of available computation power. Continual advances in litho- 
graphic techniques have allowed silicon feature sizes to shrink to incredibly 
small dimensions and hence have enabled the incorporation of billions of tran- 
sistors on a fingernail-size die. This has been accompanied by the development 
of microprocessors, systems, and applications available at low cost to the com- 
mon person and by the availability of easy-to-use programs that exploit the 
Internet. The economics of the computer industry are such that it is more 
profitable for companies to provide only a few types of microprocessors and 
a few types of systems rather than to spend the enormous amount of money 
needed to develop a wide variety of microprocessors, to manufacture them at 
different locations, and to develop different operating systems for each type 
of system. The result is the wide availability of fairly high-powered general- 
purpose computing engines that sit on the desks of millions of people around 
the world or are being carried by millions of people virtually everywhere they go. 

Yet the nature of tasks that most users perform on their computers is 
such that only a tiny fraction of the available compute power is actually used. 
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Whether it is browsing the Internet to shop for an appliance or editing a term 
paper for a history class, the typical user does not exploit anywhere close to the 
full capabilities ofthe computer he or she is working on. The immediate impact 
of this is an environmental one ~ there is some energy consumed by a system 
as long as it is turned on ~ even when it is not performing any useful compu- 
tation. This impact is being addressed in many ways, especially through the use 
of automatic power-management techniques. However, as computation and 
storage keep getting cheaper and as these computers get faster, there is more 
energy consumed by each of them. Thus, despite the incorporation of sophis- 
ticated power-management techniques, there is a sharp increase worldwide in 
the energy used by computers. 

Ironically, there are occasions when users would like even more compu- 
tation power than what they have available on their own systems. Scientists 
working with real-time data often do not have the processing capability to 
manipulate the large volumes of data they gather. They may need such process- 
ing capability either simply for visualization or for actually making decisions 
based on the data in real time. Their ability to perform such computation may 
be restricted due to the lack of compute capability, but it could also be due to 
the sophisticated software needed for the computation. Such users may not be 
willing to spend the large sums of money needed to buy systems that give them 
the desired response time or to buy the relatively expensive software, because 
of the infrequent use they make of such systems or software. This scenario 
has an analog in other areas, such as transportation, where a user generally 
owns a vehicle that is adequate for most but not all of his or her needs; for the 
occasional extraordinary need, the user rents an appropriate vehicle, borrows it 
from an acquaintance, or takes advantage of a service provider such as a public 
transportation company. 

Applying the vehicle rental model to the computer world seems a plausible 
thing to do. In fact, in the early days of personal computers, computer rentals 
were not uncommon. However, as the complexity of configuring software 
increased and as the cost of owning hardware decreased, short-term rental of 
computers fell out of favor. 

With the emergence of ubiquitous connectivity and the Internet, rental is 
no longer the right model for making more efficient use of compute power. 
Instead, the public utility is beginning to look like a more appropriate model. 
Rather than own or lease the physical resources needed to carry out an occa- 
sional task, the emerging model for the future is for the user to seek these 
resources over a communication network and to have the task performed 
remotely. The computation world is, as suggested in Foster and Kesselman 
(1998), in a state analogous to the electricity world in 1910, when local gen- 
erators were the norm. Over time the electrical system evolved toward power 
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grids, where suppliers of electricity pooled their resources for use by a much 
larger number of consumers. The design of the power utility system allows 
each user as much or as little power as he or she may need at any given time, 
with charges based on the amount consumed. The application of this model to 
the computing world would allow a user as much computation power as he or 
she may need to get an acceptable response time for a task, without having to 
own all the required resources. 

The utility model for computation is already being driven by the needs 
of the high-end scientific computation community. The problems in under- 
standing fundamental forces in nature, in the development of new drugs for 
common diseases, and in the prediction of weather all have one aspect in 
common ~ they rely on the ability to conduct large simulations involving 
massive amounts of computation. The physics community has long exploited 
large-scale collaboration across the globe ("big science") as an alternative to 
dividing up the available funding among smaller, less effective projects. This 
community has been quietly spearheading the adoption of this collaborative 
model for computing, by championing the utility model under the name of 
grid computing. Just as "big science" converted individual projects and labo- 
ratories into one large laboratory aimed at solving one fundamental problem 
after another, grid computing is bringing together many small and big com- 
puters in a heterogeneous "grid," both to make available to others unused 
computational resources on one person's computer, as well as to allow a bigger 
group of users to share a variety of specialized, often expensive, computing 
resources, such as supercomputers, in the manner of a utility. 

About a decade ago, the World Wide Web was developed by the scientific 
computing community as a means for more effective collaboration among 
scientists to share both data and experimental results. Later, the same model 
proved to be useful for the commercial world and for the layperson. It is possible 
that models of grid computing originating with the scientific community will 
similarly prove to be functional to a much wider set of users in harnessing 
the enormous amounts of computation power already available and that will 
become available in the future. 

Grid computing is a form of virtualization. It behaves like a system virtual 
machine by automatically directing a user application to a machine that has 
available resources and that matches the requirements of the application. Tak- 
ing the system virtual machine concept to a higher level, grid computing creates 
a virtual organization by allowing a systematic sharing of resources between 
disparate systems that may be geographically distributed (Figure 10.12). Grid 
computing thus extends the virtual machine concept from instruction-level 
dynamic optimizers through process-level and system virtual machines to what 
we will call organization-level virtual machines. Unlike the other types of virtual 
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Figure 10.12 A Grid as a Set of Organizations, Both Real and Virtual (Foster, Kesselman, and Tuecke 2001). 
Pictured are three real organizations (ovals) and two virtual organizations. Virtual Organization P is a 
collaborative project with distributed resources, as shown by the dark grey shading. Virtual Organization 
Q is a project that exploits idle cycles in resources on the grid (shown in light grey shading) to perform 
ray tracing. Sample policies that govern access to resources are shown in quotes. 

machines discussed in this book, the real machine that is virtualized does not 
have a well-defined, formal architecture. Rather, its architecture is embod- 
ied in the procedures and protocols that govern the relationships between 
the collaborators. Many of these procedures and protocols are often nothing 
more than a verbal understanding between human beings. The creation of the 
virtual organization using a federation of computer systems will hopefully pro- 
vide the impetus to understand and document the interfaces that define these 
relationships in a formal manner. 

The development of such interfaces will facilitate the deployment of new 
services and allow the grid concept to be exploited by a broader community. 
Thus, rather than the virtual organization being an attempt to faithfully repro- 
duce the functioning of a real organization, the virtual organization enables 
the creation of function that did not exist before. The enablement of new 
function is a property of all virtual machines, as we have seen throughout 
this book. 
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Characteristics of an Ideal Grid 

In this section we attempt to describe the salient characteristics of a grid. These 
characteristics are a combination of what exists on grids today and a wish 
list of features necessary for grid computing eventually to become a utility. 
The discussion here is an adaptation of the discussion of the computational 
grid described in Foster and Kesselman (1998) and in Foster, Kesselman, and 
Tuecke (2001). In the former, the authors describe a computational grid as 
a software and hardware infrastructure that provides dependable, consistent, 
inexpensive, and pervasive access to high-end computational capabilities. In 
their subsequent paper, Foster and his colleagues extended this definition, 
suggesting that a grid is an infrastructure that enables flexible, secure, and 
coordinated resource sharing among dynamic collections of individuals, insti- 
tutions, and resources. These latter characteristics led them to refer to the grid 
as a virtual organization. We will now examine each of the characteristics of a 
grid in more detail. 

Infrastructure 

A computing grid is fundamentally a hardware and software infrastructure 
that enables sharing of resources. Hardware infrastructure components include 
computational resources, storage resources, sensors, and instruments. Soft- 
ware infrastructure components include programs to monitor use of resources, 
programs to schedule resources to requestors, and programs to turn resources 
on and off. 

A computational resource on a grid may be a workstation, a mainframe, 
a supercomputer, or virtually any other type of computer. A shared storage 
resource may be a part of a disk on a personal workstation, a portion of a file 
system, or an entire network-attached storage. One important characteristic of 
a grid is that the systems comprising a grid need not be homogeneous ~ there 
can be a variety of processors and a variety of operating systems running on 
the grid. 

Dependability of Service 

A desirable characteristic of a grid that follows from its utility nature is that 
it be dependable. A true grid utility must be designed in such a way that all 
users of the grid either have equal access to its resources or can be guaranteed 
a quality of service specified in a contract with the service provider. This is 
sharply in contrast with most existing grids, which usually comprise a loose 
collection of resources provided by willing individuals or collaborating groups 
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with a loose understanding of what is provided and what is expected. A grid 
participant who has volunteered the idle cycles on a workstation may not have 
any obligation today to provide the cycles that are pledged. As the concept of a 
grid evolves to that of a service, users will start to depend on the services of the 
grid for their day-to-day activities, and such informal understanding between 
participants will inevitably have to be replaced by more formal specifications 
and contracts. There are already efforts of this nature under way, especially 
with the establishment of the World Wide Grid Forum and the work being 
carried out in the Open Grid Services Architecture (OGSA). 

Dependability of the grid system also implies fault tolerance ~ when a 
computational node in a system fails, the system must be able to recover from 
the failure and reallocate the resources in a manner transparent to the end user. 
Dependability also implies guarantee of security ~ users of the system must be 
guaranteed that their assets are not accessible to others and that others cannot 
maliciously prevent their access to resources. 

Note that dependability and guarantee of quality of service are important 
in other forms of virtualization we have already seen. In the system virtual 
machines of Chapter 8, many VMs access a single complex of hardware, and 
it is important for the virtual machine monitor to allocate resources in a fair 
way among the various virtual machines. Similarly, the different forms of 
partitioning we encountered in Chapter 9 must ensure that resource allocation 
among the partitions is done both in a fair way and in a way that maximizes 
the performance of the system. 

Consistency of Service 

The behavior of the service provided by a grid must be predictable and consis- 
tent. A grid may contain several types of machines and systems, each of which 
may be able to satisfy the requirements of a particular task. While it would 
be impossible to ensure that the response time of a task is exactly the same 
each time it is executed, users will expect consistent results each time a task is 
executed. They may also expect some reasonable bound on the response time. 

Pervasive Access 

An important aspect of any utility is that it be accessible from virtually any- 
where. Most current grids, as well as those that are being proposed, use the 
Internet as their communication medium. Thus, as long as the Internet is 
accessible from some part of the world, a user in that part of the world should 
have access to all resources made available by the grid. 
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Inexpensive Access 

A utility service becomes popular only when the cost of a task to the end user 
is attractive as compared to the alternative of performing the task on resources 
owned by the user. Like a utility, a grid should satisfy the needs of both the 
large organization wishing to perform data-mining tasks on a massive database 
as well as the individual who would like to have a video rendered. 

Coordinated Resource Sharing 

MI the attributes of a grid mentioned so far view the grid as a utility. A grid 
is envisioned to be more than just a utility, however. Users of a utility may 
not have much in common with each other ~ they form a community only in 
the sense that they happen to be using the same service. In its role as a virtual 
organization, however, the grid is expected to allow diverse groups to pool 
their resources and work collaboratively toward a common goal. This view of 
the grid requires the development ofconventions for access privileges to various 
resources, including not only hardware but also content and programs. It also 
requires the development of protocols for communication between various 
clusters or even various grids. Coordinated resource sharing requires the precise 
identification of which resources are shared, who is allowed to share these 
resources, and in what manner they may be shared. Moreover, the underlying 
infrastructure must provide the ability to discover appropriate resources that 
a task may need anywhere on the grid. Development of protocols that address 
these sharing and communication issues, called intergrid protocols, are key to 
the widespread adoption of the grid model, just as Internet protocols were key 
to the widespread adoption of the Internet. 

Dynamic Communities 

As the grid model evolves, it is likely that a single grid will support not just 
one community but, rather, several different communities. An example of 
a community is a group of researchers collaborating to design a new drug. 
The resources needed by this community may be similar to those needed by 
another community that is collaborating on a high-energy physics problem. 
Both these communities should be able to coexist on the same grid. Once again 
the infrastructure of the grid must ensure that adequate means are provided to 
identify, monitor, and control the needs of each community and to isolate one 
community from another. 

Communities need not be static. Communities may spring up for the 
purpose of solving a problem and dissolve soon after this goal is achieved. 
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A user may enter a community at some point during the lifetime of the com- 
munity and exit at some later point. A user may even be a member of two 
different communities at the same time. All these scenarios require that ade- 
quate provision be made in the architecture and the interfaces while designing 
a grid. 

Whether or not the grid concept evolves to embrace one unified standard 
protocol, such as the Internet, remains to be seen. Today there are several 
different grids, each with its own protocols and each having its own suite 
of tools and management software. It is quite possible that the model that 
eventually emerges will be that of multiple grids, one for each community, 
working on a larger physical grid that pools an appropriate fraction of its 
resources for each of the community grids. Each community grid, with its own 
set of protocols, may actually be viewed as a virtual grid, much the way virtual 
machines with different operating systems coexist on a virtual machine system. 

10.3.2 Evolution of the Grid Computing Model: The Globus Toolkit 

A computing grid can take on several different forms, ranging from a simple 
network of workstations taking advantage of idle cycles on user machines to a 
complex commercial server that satisfies the requirements of users who may 
wish to contract out a single application or an entire virtual machine. It is likely 
that no single paradigm will emerge as the winner. Rather, the grid is likely 
to evolve ultimately as a service that customizes the solution to the needs of 
the user. 

The number of grid systems being deployed is growing by leaps and bounds. 
Most of the current efforts are aimed at bringing together researchers in specific 
communities. Table 10.2 contains different classes of users of the grid ranging 
from system administrators to the end user. Each of these classes has a purpose 
distinct from the others and it is important that any toolkit developed to facil- 
itate the use of the grid satisfies the needs of all of these classes of users. The 
grid developers provide the basic services required to construct the grid. Tool 
developers construct the programming models and associated tools which are 
used by the application developers, who construct grid-enabled applications 
for the end user. 

Today there is an active effort to provide basic infrastructure tools to enable 
users to deploy and manage grids of their own. The Globus project (Globus), 
for example, is an open-source effort that aims to provide core services, inter- 
faces, and protocols that enable users to create a new class of applications 
accessing remote resources seamlessly while allowing resources to remain under 
local control. The Globus project distributes a toolkit that includes software 
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Table 10.2 Classes of Grid Users (Foster and Kesselman 1998) 

Class Purpose Makes Use of Concerns 

End users 
Application developers 

Tool developers 

Grid developers 

System administrators 

Solve problems 
Develop applications 

Develop tools, 
programming models 

Provide basic grid services 

Manage grid resources 

Applications 
Programming models, 

tools 

Grid services 

Local system services 

Management tools 

Transparency, performance 
Ease of use, performance 

Adaptivity, exposure of 
performance, security 

Local simplicity, connectivity, 
security 

Balancing local and global 
concerns 

services and libraries to perform discovery, monitoring, and management of 
resources, to enhance security of transactions on the grid, and to perform more 
routine functions, such as file management. The expectation is that it will pro- 
vide a substrate not only for collaboration among the science and engineering 
communities, but also for businesses and corporations. The effort was origi- 
nally funded by DARPA but today is sponsored by several federal agencies as 
well as by corporations. 

10.3.3 Comparison with Conventional Virtual Machines 

In this section we try to highlight the similarities and differences between the 
concept of a grid and that of other virtual machines we have been describing 
in this book. 

Efficient Utilization of Resources 

The eventual goal for the first grid systems was the desire to put to use the idle 
cycles available on the hundreds of millions of computers in the world today. 
There are many fundamental problems that require a lot of computation power 
but whose solutions do not need the large, expensive supercomputers com- 
monly employed for such problems. Harnessing the unused resources toward 
solving such large problems would be an efficient use of the world's computa- 
tional resources. This is similar to the motivation that led to the development 
of system virtual machines and to multiprocessor virtual machines, including 
logical partitioning. 
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Sharing of Resources 

System virtual machines for both uniprocessors and multiprocessors sup- 
port sharing of resources. However, unlike grid computing, the sharing in a 
conventional system VM is usually limited to the physical hardware resources 

the VMM in such systems is typically not concerned with the sharing of 
content, for example. 

A central concept in grid computing is the sharing of resources of disparate 
systems by a community of users working toward a common goal. The discov- 
ery of resources needed to solve a problem and the negotiation for use of such 
resources with their owners play a big role on a grid. 

Distributed Versus Centralized Control 

Compared to traditional virtual machines, the grid has a global scope, with 
resources spread over large areas, perhaps across the world. Control of shared 
resources therefore cannot be done in any centralized manner. As with the 
Internet, users of a grid may collaborate with each other to determine appro- 
priate sharing and use of resources. This is quite unlike a conventional virtual 
machine monitor, which must have a centralized view of resources and must 
maintain strict control over the use of resources in order not to compromise 
the privacy and security of users. 

Heterogeneous Nodes 

Like operating systems, virtual machine monitors and hypervisors generally do 
not span nodes of a cluster. A VMM works best when it has the flexibility to 
reallocate virtual machines among a set of similar real processors. The compo- 
nents in a node may be somewhat dissimilar in terms of their sizes and perhaps 
in the nature of devices attached to them, but they are similar in terms of the 
ISA supported by the processors. 

On a grid, the expected degree of heterogeneity in the types of components 
available is much higher. Each cluster could have a processor, memory, and 
I/O configuration quite different from other clusters on the grid. Moreover, 
the processors in a cluster could be running a different type of operating system 
or even a different ISA from those in other clusters. The set of programs that 
can be run on one cluster may be considerably different from the set that can 
be run on another. A program that performs a function on one cluster may 
be completely different from the program that performs the same function 
on another cluster. Such an environment will breed programs that may not 
directly specify the instructions needed to solve a problem, but will, rather, 
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specify the function needed to solve the problem. The software infrastructure 
of the grid will assess the availability of various different types of nodes that 
could perform the function, choose the best cluster and node on which to 
run the function, and configure the appropriate program that must be run on 
that node. 

Adaptation of Applications 

One of the requirements imposed on virtual machines in the past was the 
need to run applications unchanged. The fact that the application was running 
on a virtual machine, as opposed to a real machine matching an expected 
configuration, was unknown to the application. In system virtual machines this 
is true not only at the application level but also at the operating system level. 

This level of transparency was not manifested in early examples of the 
grid. A case in point is the SETI@home project (Anderson et al. 2002), where 
the solution is tailored especially to the physical characteristics of the grid. In 
particular, the solution is aware ofthe latency of communication between nodes 
on the grid and breaks up the problem in such a way that a given computer 
can operate on one of the pieces for a sufficiently long time without needing 
to communicate with other computers on the grid. The solution also accounts 
for the potential unreliability of nodes on the grid by sending each problem 
chunk several times to different computers. 

The hope is that someday these functions can be taken care of in the infra- 
structure of the grid so that the solution developer will need to be concerned 
only with the aspects of the problem at hand rather than the physical char- 
acteristics of the platform on which the problem is being solved. There are 
significant challenges in reaching that point, but efforts are already under 
way. One example is the development of libraries that will ease the porting 
of applications meant to run originally on message-passing clusters or on dis- 
tributed shared-memory systems or even on tightly coupled SMP systems so 
that they can exploit the computational resources available on a grid (Foster 
and Karonis 1998). 

Portability of Applications 

As noted in the discussion in Chapter 5 on high-level language virtual machines, 
there is increasing emphasis on enabling applications to be portable so that 
they can run everywhere. Thus applications are being written with portability 
in mind. Targeting applications to run on virtual machines, such as the Java 
virtual machine, rather than on processors with specific ISAs is a step in that 
direction. Enabling applications for the grid is another step in that direction. 
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Applications that can exploit not only heterogeneous system configurations 
but also heterogeneous ISAs are likely to be portable on a variety of platforms, 
possibly even those that emerge in the future. Further, the potential unre- 
liability of components on the grid as well as the challenges of maintaining 
security and privacy on such an open structure could lead to the development 
of infrastructure for creating applications that produce the right results even 
under adverse circumstances. 

10.3.4 Coming Full Circle: Implementing the Grid on Classic Virtual 
Machine Systems 

The administration of the grid, as we have noted, involves several pieces of 
software, often referred to as middleware, that perform various operations, 
including those of allocating the available resources to tasks, scheduling the 
tasks, and ensuring security and privacy. Middleware supports the process 
level of abstraction, just as a traditional operating system supports processes. 
However, the analogy between the grid and an operating system should not be 
carried too far. For example, like an operating system, the grid has to perform 
user accounting; unlike the operating system, however, the grid relies on 
the accounting services provided by multiple administrative domains. Legacy 
jobs, ordinarily running under the accounting policy of a traditional operating 
system, may find an inconsistency in the manner they are dealt with because 
different administrative domains may employ different accounting policies. 

An interesting solution to this multipolicy problem, proposed in 
Figueiredo, Dinda, and Fortes (2003), is to change the level of abstraction 
of jobs from the user process level to the full machine, which includes the 
hardware and the operating system. With this approach, the unit of work with 
which the grid middleware deals becomes a system virtual machine rather than 
a process. Accounting can now be done conveniently in a hierarchical manner 

the operating system running on the virtual machine performs accounting 
in a traditional manner, while the grid accounts for the resources at the virtual 
machine level. 

Utilizing the conventional system virtual machine as a unit for the grid 
is suitable from other points of view, too. It automatically addresses the two 
important aspects of a grid ~ isolation of jobs from each other and platform 
independence. Beyond these, it adds the important ingredient of environment 
flexibility. It is not necessary for the user application to be recast for an OS 
environment supported at some given node ~ the unit of work includes the 
full system environment in which the application executes. Let us examine 
these aspects in more detail. 
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�9 User isolation: As we saw in Chapter 8, system VMs were originally 
designed as an alternative to multiprogramming, with each user isolated 
from the physical system and from other users by running on a separate vir- 
tual machine. This feature of a system VM protects a user sharing resources 
with other users. This is ofparticular importance on a grid, where it may not 
be prudent to trust a provider of physical resources. Moreover, the forced 
user isolation in the system VM paradigm ensures greater system integrity. 
Compared to a typical multiprogrammed environment, it is less likely that 
the actions of a user on a virtual machine will either crash the system or 
bring down other users. Moreover, as discussed in Section 10.1.3, there is 
less likelihood that a malicious attack on a single user will compromise the 
security of the system as a whole. 

�9 Platform independence: The platform independence that can be provided 
by a system VM also helps in its use for grid computing. For example, the 
user simply has to specify the hardware resources needed ~ for the most 
part, it is not necessary for there to be a physical system that matches the 
exact configuration specified by the user. Through various emulation tech- 
niques, such as those described in Chapter 8, the virtual machine monitor 
can virtualize those devices that do not physically exist. Mso, it is not nec- 
essary to recompile or relink an application, because the virtual machine 
monitor ensures compatibility right up to the ISA level. 

�9 Task management and accounting: There is a fundamental difference in 
the way resource control is managed in a virtual machine-based computing 
grid as compared to a more conventional grid. In process-oriented grid 
deployments, resource control must be managed for each process, similar to 
that in traditional multiprogramming systems. In the virtual machine case, 
the resource control is at a higher level of granularity, namely, at the virtual 
machine level. This higher granularity can simplify the job of allocating and 
accounting for resources both for the provider of the resources as well as for 
the user of resources. Moreover, this model fits better with the prevailing 
model in mainframe commercial computing, where charges are based on 
the specified performance of the system where an application runs. 

�9 Portability: Portability of applications is a key requirement for a comput- 
ing grid. A process-based grid and a system VM-based grid both emphasize 
portability, but they differ in philosophy over how it is implemented. In 
a process-based grid, the responsibility to ensure portability is left to the 
application programmer. This may mean, for example, writing the appli- 
cation for an environment supported on a large number of grid nodes. 
Mternatively, it may mean writing the application in a high-level language, 
such as Java, which is then supported on multiple nodes, perhaps with 
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different ISAs. The system VM-oriented grid approach, on the other hand, 
allows an application to run on any platform that has a virtual machine 
monitor supporting the virtual machine specified by the application. This 
may even extend to applications on environments with different ISAs, the 
best performance for an application being given, of course, on a node that 
matches the ISA desired by the application. 

Viewed from the Java computing model, the difference between the process- 
based grid and the system VM-based grid may be attributed to the nature of 
virtual machines supported. A node in a process-based grid implements a spe- 
cific virtual machine environment, such as Java, and expects applications to be 
written for it. In the system VM-based approach, each node supports a range of 
virtual machines, especially those expected by the more common applications. 
Thus the former may have some advantages for new applications currently 
being written, while the latter is more likely the choice for the deployment of 
legacy applications on the grid. 

In fact, the system VM-based grid could also be the solution to a thorny 
problem faced when trying to migrate an HLL VM, such as a Java VM, from 
one platform to another. In a Java VM, for example, it is probably not difficult 
to encapsulate the pure Java state of the applications and the libraries. But the 
typical IVM also has its own implementation state in native code and may be 
running native primitives or even user native code, all of which are difficult to 
encapsulate at the JVM level. Rather than migrate the WM, it may be easier 
to raise the granularity of migration and to migrate the entire system in which 
the WM resides. For example, the IVM could be running on a virtual machine 
with Linux as the host operating system. The encapsulated state of the virtual 
machine will then include not only the Java state but the rest of the state of the 
JVM implementation along with the state of the Linux environment. Various 
techniques outlined in Section 10.2, such as ballooning, could be used to reduce 
the size of the encapsulated module. 

Figueiredo, Dinda, and Fortes (2003) identified three important aspects of 
a task in an system VM-based grid. The first is the ability to capture the state 
of a virtual machine, the second is the ability to instantiate a virtual machine 
either from scratch or from its state description, and the third is the ability to 
save user data. They point out that these three tasks do not necessarily have to 
be on the same machine. For example, the state of a virtual machine can be 
captured at the location where it is currently executing, but it may be resumed 
at a machine at another location, where the image is transported. This is similar 
in concept to the ideas embodied in the Collective (Sapuntzakis et al. 2002) 
and Internet Suspend/Resume (Kozuch and Satyanarayanan 2002), discussed 
in Section 10.2; many of the optimizations mentioned in connection with 
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those schemes are applicable in this case too. Saving user data in a distributed 
file system allows the state encapsulation to be small, as already discussed in 
connection with Internet Suspend/Resume. 

One can identify three different types of servers performing these three dif- 
ferent functions for a system VM-based grid. The application is run on a virtual 
machine in a computation server (or VM host) whose virtual machine monitor 
has the capability to encapsulate the state of the machine at some checkpoint 
and make it accessible from other locations. When the virtual machine needs 
to be resumed, the image of the state encapsulated earlier is provided by an 
image server. Uniform access to data from any of the computation servers on 
the grid is facilitated by retaining the data on a data server. 

The tools needed to manage the grid in such a heterogeneous server system 
are not much different from those required for the process-based grid, and 
one could use essentially all the basic infrastructure tools provided for this 
purpose, for example, by using the Globus toolkit mentioned in Section 10.3.2. 
Such tools are critical for the success of the system VM-based grid. They 
facilitate the functions associated with grid management, e.g., the scheduling 
of virtual machines, the migration of virtual machines, and the enforcement 
of service-level agreements. More importantly, they also allow users to specify 
the requirements of their jobs and allow providers to advertise the capabilities 
of the virtual machines they are willing to support, to bid on user tasks, and to 
monitor the usage of resources on their systems. 

We end this section by reproducing a simple scenario from Figueiredo, 
Dinda, and Fortes (2003), which takes a fictitious grid (Figure 10.13) and 
illustrates ways in which many of the functions needed to instantiate a virtual 
machine on the grid can be performed with tools that already exist today. 

1. User X accesses the grid and publishes his/her requirements using grid 
middleware on frontend server F. An information service is consulted 
that checks against the list of available physical machines matching X's 
requirements and that can support a dynamic VM. Alternatively, the user 
may simply advertise his/her requirements and solicit bids from potential 
providers for the task. 

2. X also consults the information service to determine an image server that 
could provide an image with the base operating system installation that 
meets the needs of the application. Alternatively, X may itself provide a 
VM image containing a customized version of some operating system. 

3. A new virtual machine is instantiated at physical server P, using an image 
from image server L The image can be transferred from I to P using an 
explicit command for transferring data, such as GridFTP (Allcock et al. 



5 5 0  �9 Chapter lO--Emerging Applications 

Figure 10.13 Example to Demonstrate Some of the Elements of a VM-Based Grid Service (Adapted from 
Figueiredo, Dinda, and Fortes 2003). User X avails the services of frontend F and gets allocated a 
virtual machine Vi on physical server P. The virtual machine gets its image from image server I. The 
application gets its data from data server D. 

2001), or P can access the image through a distributed grid virtual file 
system. 

4. The location of physical server P is made known to the user, who then 
utilizes a secure shell, e.g., OpenSSH (OpenSSH) or Globus GRAM 
(Czajkowski et al. 1998), to negotiate the start-up of virtual machine Vi. 

This virtual machine may be a new one that is booted up, or it may be an 
existing virtual machine, which is just being resumed from a saved image. 
The virtual machine instance Vi may also be assigned a dynamic IP address 
at this time, for example, using DHCP (DHCP). An interesting technique 
has recently been developed (Sunderara i and Dinda 2004) that allows a vir- 
tual machine to keep its IP address even when it migrates from host to host. 

5. Once VM instance Vi is running and connected to the network, additional 
data sessions may be established to connect the guest operating system 
within Vi to application server A and to user data server D. As before, 
these sessions can be realized with transfers, such as GridFTP, or implicit 
transfers through a distributed file system. 

6. The application now begins executing under the guest operating system in 
virtual machine Vi. If it is a stand-alone batch application, the application 
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runs unattended and may inform the user only at completion. If it is 
an interactive application, the user interacts with the application either 
through a login session window or through a virtual display, such as VNC 
(Richardson et al. 1998). 

In the foregoing, it was assumed that the user needs to interact only with 
the application. A more sophisticated user may be presented with a console 
for the operating system or even for the virtual machine itself. The user, rather 
than the grid scheduler, can then make decisions about when to shut down, 
hibernate, restore, or migrate the virtual machine. The mechanisms needed to 
perform these tasks are similar to those mentioned earlier, namely, file transfer 
mechanisms for efficient transfer between machines, distributed virtual file 
systems, and virtual networks. 

The virtual machine, like a real machine, may persist even after completion 
of the application that initiated it. If it remains inactive for a sufficiently long 
period of time, the grid management system can place it in hibernation, saving 
its image on the shared file system, or in some other globally accessible space. 
When its services are required, the virtual machine is reawakened at any one 
of several possible computation servers, and appropriate changes are made 
to the handles used to communicate with the image servers and user display 
sessions that may be open. The virtual machine session ends only when there 
is no image of the virtual machine present on any of the image servers or in 
permanent storage anywhere on the system. 

The importance of executing legacy applications should not be underes- 
timated. The world is full of such applications, critical for businesses, either 
because it is difficult to migrate the applications to newer platforms or because 
the environments on which they run provide a capability not matched by 
the newer platforms. The high reliability and availability of the original IBM 
mainframes has been maintained through its evolution into the zSeries, which 
remains the workhorse of large commercial organizations. The VM-based grid 
computing system aims to serve a similar role for critical applications being 
designed today on a variety of platforms. Moreover, the system VM-based 
model has inherently attractive features, even for the deployment of new appli- 
cations, as observed earlier. The techniques described in earlier chapters to 
ensure the correctness and efficiency of virtual machines may eventually find 
use in such grid implementations. 

10.3.5 Concluding Remarks 

Many of the scenarios mentioned in this section are also relevant for businesses, 
especially large corporations. Business-specific research and development often 
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involve the use of massive amounts of data, large groups of internal and exter- 
nal collaborators distributed across a geographically wide region, and massive 
computational resources to perform analysis and mining spread across the 
globe. There is a feeling in some quarters that just as the Internet developed 
from a medium for collaboration among scientific researchers to a powerful 
medium for everyone, particularly for businesses, the grid concept is about to 
take off and become a vehicle that transcends the scientific community and 
embraces the business community and the world at large. 

In the earlier chapters of this book we described various types of virtual 
machines that have been implemented over the years. VLSI process technol- 
ogy progressed so rapidly in the last couple of decades that processing power 
became relatively inexpensive and this may have caused some of the classic 
types of virtual machines to temporarily fall out of favor. This chapter sug- 
gests that new problems and new organizations for information processing are 
likely to cause resurgence in interest in such virtual machines. We focused our 
attention in this chapter on three applications. Security concerns in modern 
computing systems of all kinds are making headlines almost every day. The 
potential of virtual machines in protecting systems, both large mainframes and 
small portable devices, cannot be ignored. We have demonstrated examples of 
use of virtual machines in combating various types of security problems. 

The use ofvirtual machine technology in the migration of whole computing 
environments from one hardware platform to another is proving to be of great 
importance in enterprise computing, where applications often run continu- 
ously for large periods of time, and where such migration may be necessitated 
due to hardware failures, power considerations, load balancing, or system 
upgrades. 

We have also seen how virtualization techniques extend to the emerging 
concept of grid computing. Indeed, virtualization and virtual machine tech- 
nology are poised for pervasive deployment in future computing systems of all 
types. 



M any virtual machines present an interface essentially identical to that 
of some desired real machine. Furthermore, all virtual machines are 

implemented on top of some real machine; virtual resources are ultimately 
realized with real resources. In order to fully understand virtual machines, 
therefore, it is important to understand the major components of a typical 
computer system, including their interfaces and the corresponding resources 
that are managed through the interfaces. This appendix outlines the major 
computer system components, with emphasis on the ones most relevant to 
virtual machine implementations. 

The discussion will begin with an overview of the three primary computer 
system hardware components: processors, memory, and I/O. Then we will 
discuss instruction set architecture (ISA) features and the ways in which the 
ISA can be used both to perform computation and to manage the hardware 
resources. Next, the organization of an operating system is described, with 
emphasis on managing system resources. We follow this with a discussion of 
the important aspects of multiprocessor systems. Finally, two specific ISAs, the 
PowerPC ISA and the Intel IA-32 ISA, are summarized; these two ISAs are used 
in examples throughout the book. 

Over the years, many different computer architectures have been defined. 
As they have evolved, they have tended to take on similar characteristics, 
although there are still some significant variations among the architectures 
prevalent today. It is not practical to discuss all these variations here (or to 
cover them all in the book). We instead consider only typical architecture 
features that are relevant to our discussion of VMs. It is assumed that the 
reader has some familiarity with operating systems and the general concept of 
instruction set architectures (ISAs). 

553 
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Figure A.1 illustrates a computer system typical of what one would find 
in a desktop system. Multiprocessor server organizations are overviewed in 
Section A.7. Both types of systems are composed of processor(s), memory, 
and I/O subsystems containing both high- and low-speed buses. The following 
subsections describe each of the three major components. 

Processor 

Interface 

Memory 

Controller 

Local Bus 

Interface 

Controller Controller 

LAN 
Hard Drives 

Expansion 

High-Speed I/O Bus 

Frame 
Buffer 

CD ROM Floppy 

Low-Speed I/0 Bus 

Figure A.1 System Organization. 
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A.1.1 Processors 

Processors fetch and execute instructions held in memory. The various types 
of instructions and their operation are described in Section A.2. In this section, 
we briefly outline the more important types of processor microarchitectures. 

Figure A.2a illustrates a simple in-order pipeline, where instructions pass 
through a series of stages as they are executed. The pipeline essentially performs 
its operations in assembly-line fashion. This allows multiple instructions to be 
in the pipeline at the same time, though at most one instruction is in each 
pipeline stage at any given time. In Figure A.2a instructions pass through the 
pipeline in their natural, architected program sequence (i.e., "in order"). They 
are first fetched and decoded. Then, when the input operands of instructions are 
ready, they are read either from registers or from memory, and the instructions 
are executed. Finally, instruction results are written to registers or stored in 
memory. 

Some instructions depend on the results of preceding instructions; if the 
results are not ready as inputs when an instruction needs them, the pipeline 
must "stall" the instruction until the preceding instruction produces the result. 
If an instruction takes several cycles to produce its results, e.g., if it loads data 
from memory, then a following dependent instruction may suffer a number of 
stall cycles. It should be apparent that the sequence in which instructions appear 
and their data dependences influence the number of stalls and, therefore, 
overall pipeline performance. 

Many high-performance processors use a superscalar microarchitecture, as 
shown in Figure A.2b. In a superscalar processor, more than one instruction 
can be fetched and decoded in the same clock cycle. Thus, the peak instruction 
throughput is increased when compared with the simple pipeline. After decod- 
ing, instructions are dispatched into an instruction issue buffer. From the issue 
buffer, instructions can issue and begin execution when their input operands 
are ready, without regard to the original program sequence; i.e. they can issue 
"out of order." This avoids many of the aforementioned pipeline stalls when 
instructions depend on preceding instructions. 

A third class of processors, illustrated in Figure A.2c, can execute multiple 
instructions per cycle but only in the original compiled sequence. It is up to the 
compiler to arrange and combine multiple parallel (independent) instructions 
into a very long instruction word (VLIW). All the instructions in one VLIW 
issue before the next VLIW is considered for issuing. The in-order-VLIW 
approach simplifies the instruction issue logic, compared to an out-of-order 
superscalar processor, but it puts the burden of finding and reordering groups 
of independent instructions on the compiler rather than the hardware as in 
superscalar out-of-order machines. 
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Memory Systems 

The memory system of a modern computer consists of a combination of main 
memory and cache memories. The main memory is explicitly managed by the 
operating system, while cache memories are generally managed by hardware 
and hidden from software. 

Main Memory 

Memory systems are built primarily from random-access memory (RAM) 
chips, organized so that multiple bits can be accessed in parallel. Usually, 
at least a word (four bytes) is accessed, but often it is a larger quantity, i.e. a 
line of 32 to 128 bytes. In most modern processors, the smallest quantity of 
main memory that can be uniquely addressed is the byte, and if there are n 
real memory address bits, then the 2 n bytes form the real address space. Pro- 
cessor load and store instructions generate real addresses in a manner to be 
described in Section A.2.2. However, as seen in Figure A.3, all locations in 
the real address space do not necessarily correspond to RAM ~ some of the 
locations may correspond to addresses in a read-only memory (ROM), and 
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some others may not correspond to memory addresses at all. Of the addresses 
that do not correspond to memory locations, some may be reserved for I/O 
devices, as we will see later, and some may be unused, with no memory chips 
populating that region of the address space. 

Cache Memories 

The amount of main memory needed in modern processors is quite large, and, 
including the delay in the memory controller and buses, accessing a location 
in such large memories takes many tens or even a few hundreds of processor 
cycles. In order to reduce the observed latency of accessing main memory, 
smaller, faster memories, called cache memories, are employed for holding both 
instructions and data likely to be accessed in the near future. Cache memories 
are designed around the principle of locality. This principle states that data 
or instructions that have been used recently are likely to be used again in the 
near future (temporal locality) or that data or instructions in locations close to 
locations currently being accessed are likely to be accessed themselves in the 
near future (spatial locality). 

A cache memory holds blocks (or lines) of data and instructions that cor- 
respond to recently accessed main memory locations. At any given time, the 
cache memory holds a small subset of all main memory lines. In order to deter- 
mine which main memory lines are located in a cache, the cache is designed 
to be associatively accessed ~ each cache line has an associated tag that indi- 
cates the main memory locations (addresses) from which the cache line came. 
Figure A.4 illustrates a fully associative cache, which is one of the easier cache 
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Figure A.4 A Fully Associative Cache Memory. 
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implementations to understand (although not necessarily the easiest to build). 
In the fully associative cache, a memory address is first compared with all the 
cache tags to see if the contents of the addressed memory location are present in 
the cache. If there is a cache hit, the data or instructions are read from the cache 
and are immediately available to the processor. If there is a cache miss, then 
the contents of the line must be fetched from memory and placed in the cache. 
To make room for the new line, some other line must be replaced, accord- 
ing to a replacement algorithm. Two commonly used replacement policies 
are least recently used (LRU) and first-in-first-out (FIFO). Temporal local- 
ity is exploited by using such a replacement algorithm, while spatial locality 
is exploited by the fact that a cache line typically holds more data items (e.g., 
words or bytes) than the one requested; that is, it contains data items that are 
in a block of contiguous locations adjoining or surrounding the accessed item. 

A.1.3 Input/Output Systems 

In Figure A.1, we saw a typical system with its complement of I/O devices along 
with a variety of interfaces to these devices. This is typical of desktop systems. 
In comparison, server systems typically have fewer types of devices, although 
there may be more devices of certain types (e.g., disks), and the devices in such 
systems are connected using interconnections of much higher bandwidth. 

An I/O system consists of a number of buses that connect the processor and 
memory to the I/O devices. These I/O buses are often standardized, so third- 
party vendors can manufacture new devices that immediately attach to the 
system. An example is the PCI bus in desktop systems. Most devices interface 
to the bus through a controller, and typical devices include disks, tapes (which 
are becoming less common), monitors, keyboards, etc. The bus serves as the 
conduit through which devices (or their controllers) are addressed and given 
commands and through which data is transferred between the processor or 
memory and the I/O devices. 

There are four ways in which I/O is organized on a typical system. These 
are illustrated in Figure A.5. Each organization requires the OS to invoke an 
I/O operation in a distinct way. 

�9 In programmed I/0, shown in Figure A.5a, the OS issues an I/O request 
over the I/O bus and then polls the device controller until the request is 
satisfied. In general-purpose systems, this method is not commonly used 
because it ties up the processor while the I/O operation is being performed. 

�9 The second type of I/O is interrupt-driven I/0, shown in Figure A.5b, in 
which the processor continues with some other task after issuing an I/O 
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request. An interrupt from the I/O controller informs the OS about the 
status of the request, e.g., when it is finished. The granularity of control is 
still quite small: Every unit of data transferred between the controller and 
memory is controlled by the OS. 

The third type, DMA-managed I/0, shown in Figure A.5c, improves on 
the performance of interrupt-driven I/O by allowing the I/O controller to 
access memory directly. The controller can use a series of bus transactions 
to move large blocks of data to or from an I/O device and to interrupt 
the OS only when it completes the entire task. This I/O method is very 
commonly used for devices that transfer blocks of data, such as disks. 

The final type of I/O is a more sophisticated DMA-managed I/O method 
that uses I/0 processors (IOPs), often referred to as channels in mainframe 
computers (see Figure A.5d). An IOP is a special processor that can execute 
software on its own and can therefore manage complex I/O transactions. 
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special-purpose register, general-purpose registers, and floating-point registers. 

The IOP gets its instructions from a program in memory set up by the OS. 
The OS and the IOP communicate through main memory. The IOP can 
buffer transactions for various devices and bundle them to make the best 
utilization of the available I/O resources. 

The User ISA: Computation 

The architecture of a processor, in its basic form, typically defines a set of 
storage resources, e.g., registers and memory, and a set of instructions that 
transform data held in the registers and memory. The definition of the storage 
resources and the instructions that manipulate data are documented in the 
instruction set architecture (ISA) of the processor. In order to ensure software 
compatibility between various implementations of the ISA, it is necessary that 
the description of an instruction be detailed enough to specify the exact opera- 
tions that must occur as a result of executing the instruction. The key elements 
of the architected storage visible to a user program are illustrated in Figure A.6. 
The user memory is the bulk of storage, yet it is the registers that are important 
for performing computation. The register state is more varied, both in format 
and function, than the memory. 
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A.2.1 Register Architecture 

In typical applications the registers that are primarily used are the general- 
purpose registers and a few of the special-purpose registers. The use of other 
special-purpose registers or specially typed registers, such as the floating-point 
registers, varies with the nature of the application. 

General-Purpose Registers 

These registers are often referred to as "working" registers. They are com- 
monly used to hold operands for instructions. They are also used as temporary 
storage for intermediate values of complex operations and for frequently used 
constants or addresses. General-purpose registers often hold different types 
of values. For example, the contents of a general-purpose register may be a 
Boolean variable, a character variable, a string of characters, a halfword, a 32-bit 
integer, a 64-bit integer, or an address in memory. Occasionally a general- 
purpose register may have a special function, for example, as a stack pointer. 

Typed Registers 

It is often convenient to provide separate registers for special types of opera- 
tions. For example, the PowerPC provides separate registers used as operands 
only for floating-point operations and are hence called floating-point registers. 
The IA-32 ISA provides a register type for holding pointers to segments of 
memory. Using multiple register types allows the hardware to be implemented 
more cleanly, with operands being located close to the functional units that 
perform the operation. However, in some cases, it can make the compiler 
writer's job more difficult because it requires keeping track of the register types 
that hold certain data items, and it may occasionally require movement of a 
data item to get it into the right register type. 

Special.Purpose Registers 

The most important of these is the program counter (PC). Other special- 
purpose registers include condition code registers, stack pointers, link registers, 
and loop count registers. Special-purpose registers often tend to be used implic- 
itly by certain instructions; they may not be explicitly specified as operands in 
the instructions that manipulate them. This is often the case with link registers 
used by procedure branches or jumps. As another example, the Intel IA-32 
ISA has a single register, EFLAGS, that holds implicitly set condition code bits 
along with a number of other status bits. 
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Figure A.7 Memory Architecture as Seen by the User. (a) Linear addressing in MIPS R-series; (b) Segmented 
addressing in PowerPC. 

A.2.2 Memory Architecture 

From the perspective of application programs, the logical memory architec- 
ture is fairly straightforward. In some ISAs, main memory appears as a single 
linear address space. In other ISAs, main memory appears as a set of segments 
pointed to by typed segment registers containing their base addresses. The Intel 
IA-32, for example, is architected as a set of segments, though an OS is able 
to make it appear as a single linear space by placing identical values in the 
segment registers (as is done in both Windows and UNIX). The IA-32 memory 
architecture is summarized in Section A.8.2. 

An example of a linear address space is the user-mode address space (kuseg), 
as defined in the MIPS 32-bit ISA and shown in Figure A.7a. The 2GB 
(231bytes) user space starts at address zero, 0x0000 0000, and extends to address 
0x7FFF FFFF. An address will typically be contained in a 32-bit register. The 
contents of such a register will be a valid address only if the high-order bit is 0. 
Any attempt to access memory with any other address causes an Address Error 
exception. 

The PowerPC, on the other hand, divides the user address space into 
segments that each contain 256MB (228 bytes), as shown in Figure A.7b. 
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The architecture allows an application to address a large number of segments, 
even though at any one time only a small number are directly accessible. In the 
32-bit addressing mode, only 16 segments are visible to the program. These 
16 segments are pointed to by segment registers SR0-SR15. The segments that 
are currently visible form a contiguous 32-bit effective address space, with the 
high-order 4 bits of an address indicating the segment register associated with 
the address. Each segment register points to a 256MB segment contained in a 
very large 2S2-byte address space called the virtual address space. 

For management and protection, memory can be divided into regions. Typ- 
ically, the granularity of a management/protection region is a page, containing 
a power-ofo2 number of bytes; 4KB, for example. Within a user's address 
space, different pages may be marked as having different access privileges, e.g., 
some combination of read, write, and execute privileges. The application pro- 
gram is usually not concerned about the exact page size, however; it becomes 
aware of the page size only, for example, when a sequence of accesses crosses 
from a page where accesses are valid to one that disallows such an access. 

A.2.3 User Instructions 

Instructions are the means for transforming data held in registers and memory. 
Table A.1 gives examples of various types of instructions. Instructions are usu- 
ally classified according to the resources, specifically the storage elements and 
functional units, involved in their operation. Thus integer and logical oper- 
ations generally involve the manipulation of general-purpose registers using 
integer arithmetic and logical units (ALUs); memory instructions involve main 
memory; and floating-point instructions involve floating-point registers and 
floating-point units. Besides these, there is a class of instructions that affect the 
flow of control of the program rather than the contents of data resources: the 
branch and jump instructions. 

Table A.1 Example User Instructions 

Memory Instructions Integer Instructions Floating-Point Instructions Branch Instructions 

load byte 
load word 
store byte 
store multiple 
load double 

add 
compare logical 
exclusive-OR 
count leading zeros 
rotate left with carry 

add single 
multiply double 
multiply-add double 
convert to integer 
compare double 

branch 
branch if negative 
branch and link 
jump to subroutine 
return 
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Memory Load and Memory Store Instructions 

These instructions cause the movement of data from a register to memory 
(a store operation) or from memory to a register (a load operation). The mem- 
ory location involved is specified in the instruction by means of its address. The 
address itself is a value derived from adding the contents of one or more regis- 
ters specified in the instruction. Sometimes an immediate field (constant) in 
the instruction may be used in addition to register operands. The value thus 
computed is the address as seen by the user, often referred to as the virtual 
address, the logical address, or the effective address. An address in a segmented 
memory may be split into a portion that specifies the desired segment and a 
portion that specifies the desired offset within that segment. 

Integer Arithmetic, Logical, and Shift Instructions 

These instructions perform basic operations on integer or general-purpose 
registers. In some of the older CISC ~ ISAs, an arithmetic, logical, or shift 
instruction may use a memory location as one (or more) of its operands. 
In this case the processor needs to perform an implicit memory load before 
performing the specified integer operation and/or an implicit memory store 
afterward. Most modern ISAs, especially R I S C  2 ISAs, separate the process of 
loading an operand from memory from the process of performing the actual 
arithmetic, logical, or shift operation. 

Floating-Point Instructions 

These instructions perform floating-point operations. The operands of the 
instructions are generally, but not necessarily, held in typed registers called 
floating-point registers. In the Intel IA-32 instruction set, the floating-point 
registers are arranged as a stack, and most floating-point instructions refer to 
the registers only implicitly via the floating-point stack pointer. The princi- 
pal difference from integer instructions is that the values in the registers are 
interpreted to be in a specified floating-point format. The standard format 
is the IEEE floating-point format, which specifies not only the encoding of 
floating-point data but also the acceptable results of operations performed on 
floating-point data. 

1. Complex-instruction-set computer. 

2. Reduced-instruction-set computer. 
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Branch and Jump Instructions 

While the previous categories of instructions change the contents of the data- 
holding resources within the processor, branch and jump instructions simply 
change the flow of control. In stored-program machines, this change is accom- 
plished by changing the PC, thereby changing the memory location from where 
the next instruction is to be fetched. Conditional branches test values in reg- 
isters and branch based on the outcome. The register to be checked can be a 
general-purpose register or a special condition code register set as a side effect 
of executing other instructions. ISAs also include jump instructions, which 
are similar to branches, except they transfer control unconditionally 3 and are 
often used for transferring control to a logically different piece of code from the 
current one (e.g., to a subroutine or procedure). The targets of jump instruc- 
tions are sometimes not known at compile time; hence jumps can take place 
indirectly through the contents of a register. Some jumps have the side effect 
of saving the location (PC value) of the instruction immediately following the 
jump in a link register. If a procedure is invoked using one of these jump and 
link instructions, a procedure return can be implemented as an indirect jump 
to the PC value saved in the link register. 

While the user portion of the ISA is primarily for getting computational work 
done, the system part of the ISA is for management of system resources. The 
operating system receives requests for accessing or altering resources and ser- 
vices them according to its own well-defined resource-management polices. 
The system ISA contains the actual mechanisms by which the OS communi- 
cates with the underlying hardware in order to carry out its requested services 
and resource-management decisions. 

A.3.1 Privilege Levels 

A modern processor can simultaneously support multiple applications or pro- 
cesses, each of which has access to system resources, including real main 
memory, secondary memory, and other parts of the I/O system. Even though 

3. This distinction between branch and jump instructions is not universal. Some ISAs use only 
one of the two terms, and others interchange their meanings. 
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many user programs may be operating on the machine at the same time, the 
use of resources by any user program should not be seen or affected by the use 
of the same or other resources by any other program, unless it explicitly grants 
this permission to the other program. This protection is made possible by the 
operating system, which also ensures that resources are allocated fairly among 
all user programs. 

To do this, the operating system must enjoy certain privileges not normally 
extended to a user program. These privileges typically involve the allocation, 
accessing, and altering of physical resources within the system. Special privi- 
leges to system resources are permitted by defining modes of operation in the 
ISA. Certain resources can be made accessible in one mode and not in the 
others. Usually an ISA specifies at least two modes of operation, a system mode, 
in which all resources are accessible to software, and a user mode, in which only 
certain restricted resources are accessible. System mode is sometimes referred 
to as supervisor mode, kernel mode, or privileged mode. 

Many operating systems (including UNIX and its derivatives) rely on only 
two privilege levels. On the other hand, the Intel IA-32 ISA supports up to four 
levels, shown in Figure A.8. Both Windows and Linux, when implemented on 
an IA-32, use only the innermost level, level 0, for the OS and level 3 for user 
applications. 

Figure A.8 Privilege Rings in a System. (a) Simple systems have two levels of privilege. (b) Intel's IA-32 allows 
four rings, with the operating system kernel executing in the innermost level, level O, and user 
applications executing in level 3. 
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At any point in time the mode of operation is part of the system state, stored 
in a small special register or as part of a larger special register. When there are 
only two privilege levels in a system, the encoding of the mode requires just one 
bit. Modification of the mode bit(s) must be tightly controlled so that a user 
process cannot arbitrarily change the mode and thereby extend its privileges at 
will. A controlled change of the privilege level, for example, to perform I/O, 
is typically effected either explicitly via a system call instruction or implicitly 
through a trap. A system call instruction transfers control (changes the PC) 
to a special location specified by the ISA, and the OS is designed so that this 
location is part of the OS's code region. In addition to the control transfer, the 
privilege is automatically changed to system mode. 

Some ISAs include instructions that behave differently depending on the 
current privilege level. For example, an instruction that modifies a privileged 
resource could be designed to perform no operation (act as a no-op instruction) 
if the processor is in the user mode. Thus a prohibited operation cannot be 
performed by the user. As described in Chapter 8, however, such instructions 
are problematic from the point of view of implementation of virtual machines; 
it is preferable for the hardware to transfer control of such illegal instructions 
to the operating system via a trap so that the OS can then take appropriate 
action. 

In the following sections we briefly describe those parts of the architected 
state visible only to the more highly privileged operating system and then 
provide more detailed discussion of the way instructions in the system ISA are 
used for managing privileged hardware resources. 

A.3.2 System Register Architecture 

Most ISAs include special registers to assist with the task of managing hard- 
ware resources. These registers are sometimes given only secondary importance 
because they are not exposed to the application and because the compiler usu- 
ally does not use them. However, they are very important in system-level virtual 
machine implementations, because they often are the source of some of the 
thorniest problems that arise in the implementation of such VMs. Some of the 
more important registers are shown in Table A.2. 

System Clock Register 

This register records the number of clock ticks that have elapsed from the last 
time the register was reset to zero. A clock tick may be measured either in time 
(milliseconds) or in processor clock cycles. 
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Table A.2 Typical System Registers 

System Registers 

System clock register 

Trap and interrupt register 

Trap and interrupt mask register 

Translation table pointers 

Examples in PowerPC 

Time base register 

Data storage interrupt register 
Interrupt save/restore register 

Machine state register 

Storage description register 
Address space register 

Examples in IA-32 

Model specific; time-stamp counter in 
newer models; clock in I/O system in 
older models 

None, indirect through interrupt 
table 

Interrupt enable flag in EFLAGS register 

Page directory base address (control 
register 3) 

Trap and Interrupt Registers 

These registers record information about the occurrence of traps and inter- 
rupts so that trap or interrupt-handling code can take the appropriate action. 
Typically, for each trap or interrupt condition, there is a corresponding bit in 
the register that is set when the trap or interrupt occurs. 

Trap and Interrupt Mask Registers 

There are situations when the processor should not be interrupted, for exam- 
ple, when another interrupt is already being handled. Interrupts are typically 
categorized into ordered classes, an interrupt belonging to a higher class hav- 
ing priority over an interrupt belonging to a lower class. At any given point in 
an execution the mask register specifies those classes of interrupts that will be 
ignored. Similarly, software may wish to ignore certain trap conditions, and 
the trap mask register indicates which should be masked off. 

Translation Table Pointers 

The mappings of logical pages and memory segments to real memory are usu- 
ally kept in memory resident tables, and the locations of these tables are pointed 
to by page and/or segment table pointer registers. Because the page/segment 
table pointer registers are used for managing hardware resources, access to them 
must be controlled. While in all cases the writing of these registers must be lim- 
ited to the OS, in many cases user-privilege processes must be prevented from 
reading these registers as well. For example, reading a page table pointer register 
may reveal properties of other processes, and this can potentially contribute to 
security leaks. Also, as discussed in Chapter 8, reading resource-related registers 
in user mode is problematic when constructing system virtual machines. 
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A.3.3 ISA Support for Managing the Processor Resource 

The processor is perhaps the most important system resource, and, like the 
other hardware resources, its use is managed by the operating system. The 
ISA support required for doing this, however, is minimal. First, the operating 
system must be able to give control to a user process. This is done via a system- 
return instruction that causes the transfer of control (a jump) to the desired 
point in the user program and a privilege-mode change to user mode. Second, 
to make sure that it will eventually get back control from the processor, the 
operating system can set an interval timer so that when the time interval elapses, 
there will be an interrupt that returns control to the OS (interrupts are described 
in more detail in Section A.3.6). The interval timer may be an architected 
counter, i.e., one of the system registers that can be read or written in system 
mode. Or it may be built into the I/O system and can be read or written in 
a manner similar to the way an I/O device would be accessed (Section A.3.5). 
Control is also given back to the operating system when a user process executes 
a system-call instruction or when there is a trap or interrupt. 

Hence, the only ISA features needed for managing the processor resource 
are system-call and return instructions and an interrupting interval timer, along 
with a mechanism for setting it. Other traps and interrupts are not necessary 
for managing the processor resource; rather, they are mechanisms by which 
the operating system can be put into a privileged state where it can deal with 
other resource-management conditions. 

A.3.4 ISA Support for Managing the Memory Resource 

By far, the most extensive part of the system ISA is memory related. The 
memory architecture includes relatively elaborate data structures (page and/or 
segment tables) for keeping track of the usage of memory, along with mech- 
anisms for manipulating the data structures. The key issue is that there is a 
limited amount ofreal memory that must be allocated to a number ofprograms, 
each of which has an (often larger) architected amount of logical memory. In 
general, this means that the real memory must be shared, and most of the time 
a given process cannot be given as much real memory as the size of its logical 
address space would allow. 

The system ISA also provides a way of protecting the memory in use by 
one program from the others. That is, the ISA must be able to limit the access 
of a program to only those parts of memory to which it has been granted per- 
mission by the OS, whether to read it, write it, or execute instructions held in it. 
These mechanisms can also be used to protect a program from itself, in a sense. 
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Figure A.9 Logical-to-Real Memory Mapping. Some regions of memory are mapped to real memory; others 
reside on a backing store, usually a disk. 

For example, parts of memory that hold instructions can be protected from 
being accidentally overwritten by a store instruction due to a program bug. 

Figure A.9 illustrates the way real memory resources can be allocated to 
two programs, each with its own logical memory space. Some portions of each 
of the programs have real memory allocated to them, and other portions do 
not. Some of the portions of logical memory that are not assigned real memory 
have their contents held in a backing store, usually a disk. Other portions of 
the logical memory may be unused. The operating system keeps track of the 
portions of the logical memory space in main memory and in a backing store. 
The OS moves memory contents back and forth between real memory and the 
backing store based on its own internal memory-management policies. Thus, 
a particular real memory location could represent different logical memory 
locations at different points in time. 
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With this approach, program memory has become a virtualized resource. 
The user process can directly address memory resources that are defined by 
its own logical address space. However, this logical address space represents 
only a virtual view of memory. The actual real memory resources are assigned 
in a very different manner. It is for this reason that such a system is called a 
virtual memory system and that logical addresses are often referred to as virtual 
addresses. 

For assigning logical memory to real memory, the respective memory 
address spaces are normally divided into blocks. There are two general 
approaches for doing this. In one, the blocks are of arbitrary size and are 
called segments. In the other, the blocks are all of fixed size and are called pages. 
Managing the real memory is simplified if the basic elements for management 
have the same fixed size, so just about all ISAs today use paging. However, as 
we saw in Figure A.7b, some ISAs add segments on top of paging. When this is 
done, each segment is composed of some number of pages. 

When pages are used, a logical address can be interpreted as having two 
parts, a page number and an offset within the page. For example, if 32-bit 
addresses and 4KB pages are used, then the low-order 12 bits identify an offset 
within a page, and the upper 20 bits form the page number. 

Page Tables 

To support logical-to-real memory mapping, a data structure known as the 
page table is used. An example page table that maps logical pages to real pages 
is shown in Figure A.10, with the page number of the virtual address used as 
an index into the table. Page table structures can get more complex, but the 
one shown is adequate for understanding the basic operations. Each entry in 
the table contains information about the real memory location of an accessed 
virtual page. When the virtual memory space is larger than the real memory 
space, as it often is, some of the virtual pages may not be mapped to real 
memory. Hence there is also a valid bit associated with each page entry to 
indicate whether or not the page is mapped. Note that the page table can also 
be used for data that is shared among multiple programs if the same real page 
is mapped into the virtual address spaces of the sharing programs. 

As suggested earlier, in Section A.2.2, it is usually possible to restrict the 
type of access to a location in memory given to an application program. The 
granularity at which such access protection is specified is generally the page, and 
hence each entry in the page table also stores access-protection information. 
These are the "prot" fields in the page table of Figure A.10. The types of 
operations that can be performed on a page may be determined by a program's 
privilege level, e.g., whether it is in supervisor or user mode. The three types 
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Figure A.IO Page Table for Mapping a Linear Address Space. 

of accesses that are commonly controlled are read, write, and execute. Read 
and write accesses are checked during execution of load and store instructions, 
while execute accesses are checked when instructions are fetched for execution. 
One way of specifying the access protection of a page is to provide three bits, 
each corresponding to the read, write, execute (R, W, E) privileges. Note that 
the access protection given to a page is not static. The same real page could 
have one set of protections when the machine is operating in the user mode 
and a different set when operating in the system mode. 

Translation Lookaside Buffers 

The page table is a relatively large structure and is generally held in main mem- 
ory. In theory, the page table is consulted for every load, store, or instruction 
fetch. Actually doing so, however, would be very slow. To make memory 
accesses much faster, a small associative memory structure called a transla- 
tion lookaside buffer (TLB) is used for caching recent address translations, as 
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Figure A.11 Structure of a Translation Lookaside Buffer (TLB). 

depicted in Figure A. 11. The TLB is very much like the cache memory described 
in Section A. 1.2 and similarly relies on the principle oflocality. When an address 
needs to be translated, the TLB is accessed by associatively indexing it using the 
virtual page number of the logical address. On a match, the table returns the 
real page number for the referenced logical page. As the principle of locality 
suggests, the number of distinct pages referenced is typically small and changes 
slowly during the execution of the program. Thus the size of the TLB need not 
be large, and access to the TLB can be relatively fast. Each entry in the TLB also 
contains the page-protection bits copied from the page table. 

There are three possibilities when a page address is presented to the TLB. 

It matches a TLB entry, and the protection associated with the entry permits 
the type of access being requested; i.e., there is a TLB hit. This is the 
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common case, and the address is correctly translated to a real address. In 
many microarchitectures, a cache memory access proceeds in parallel with 
the TLB access, so there is little, if any, performance penalty due to the 
address translation process. 

It could match an entry in the TLB, but the protection bits do not allow 
the requested access type. In this case, an access exception is generated, and 
there is a trap to the operating system. 

There maybe no entry with a matching virtual page number. This is referred 
to as a TLB miss. There are two reasons a reference can miss in the TLB. 
The first is that a mapping exists for the address in the page table but not 
in the TLB. The second reason is that the referenced page is not currently 
mapped to any page in real memory. In the first case, either the hardware or 
the operating system copies the mapping from the page table into the TLB, 
making room, if necessary, by deleting some older TLB entry. In the sec- 
ond case, an addressing exception is generated, and there is a trap to the 
operating system. The operating system uses a page-replacement algorithm 
to replace one of the existing real pages in memory with the requested page 
from the backing store. In doing so, it may have to rewrite the contents of 
the replaced page to the backing store if the page was modified while it was 
in real memory. 

Page Table and TLB Interaction 

Both the page table and the TLB are important parts of the address-translation 
process, and their use involves the interaction between hardware and software. 
The actual architected interface between hardware and software may occur at 
either the page table or the TLB, depending on the ISA. If the TLB is defined in 
the ISA, then the actual implementation of the page table is done in software 
as part of the operating system. If the page table is defined as part of the ISA, 
then the TLB is part of the hardware implementation and is largely transparent 
to the software. In the latter case, occasionally the ISA may provide a "purge 
TLB" instruction that makes the TLB less than completely transparent. The 
two alternatives are shown in Table A.3. 

With an architected page table, the ISA defines a specific method for map- 
ping virtual addresses to real addresses as well as a specific format for each page 
table entry. The page table itself usually resides in memory, and the page table 
pointer register indicates the base (first entry) of the page table. If an accessed 
virtual page is not present in the page table, i.e., if the valid bit is false, a page 
fault is generated and control is transferred to a special location defined in the 
ISA that contains the routine to handle the fault (part of the OS). The ISA 
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Table A.3 Architected TLB Versus Architected Page Table 

Architected TLB Architected Page Table 

TLB entry format Defined in ISA Left to hardware implementation 

TLB configuration Defined in ISA Left to hardware implementation 

Page table entry format Left to OS implementation Defined in ISA 

Page table configuration Left to OS implementation Defined in ISA 

Miss in TLB Causes TLB fault to OS Hardware accesses page table 

Miss in page table Detected by TLB fault-handling software Causes page fault 

New entry in TLB Made by OS Made by hardware 

New entry in page table Made by OS Made by OS 

also specifies where the system should save information regarding the accessed 
page. For example, the address that caused the fault may be placed in a special 
ISA-defined control register. 

With an architected TLB, the ISA defines the specific method format for 
TLB entries as well as the size and access method. The page table is part of 
the OS implementation. The hardware implementation is unaware of the page 
table's presence. There are special instructions in the ISA that allow the oper- 
ating system to read and write TLB entries. If an address is not in the TLB, then 
the hardware undertakes an action similar to a page fault; i.e., it saves the fault- 
ing address in a special control register and traps to an ISA-defined memory 
location. The operating system checks its page table, accesses the page from 
secondary storage if necessary, and, when the page is present in real memory, 
updates the TLB with relevant information. 

For a more detailed description of address translation issues, the interested 
reader is referred to an article by Jacob and Mudge (1998). 

A.3.5 Managing Input/Output Resources 

Typically, the part of an ISA dealing with I/O is relatively small. Because 
of the wide variety of I/O devices and relatively infrequent I/O management 
operations, it is more appropriate to deal with the specifics of I/O in software, 
particularly in the OS software. The ISA needs to provide only a mechanism 
for addressing I/O devices and to transfer information to and from the devices. 

Some ISAs have explicit 1/0 instructions. These instructions usually have a 
form similar to load and store instructions, but the addresses are completely 
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separate from main memory addresses. The address indicates a specific device 
(or a register that is part of the device controller). The execution of an I/O 
instruction causes signals leaving the processor to be activated in a pattern 
that corresponds to the address and/or data values of the I/O instruction. The 
system designer is responsible for using these signals to connect I/O devices 
(e.g., through a bus) and to inform an OS programmer of the I/O signaling 
conventions. The IBM System/360 and its successors, as well as the Intel IA-32, 
are examples of computers that provide such I/O instructions in their ISAs. 

Many recent processors incorporate another form of I/O, called memory- 
mapped I/O, sometimes in addition to I/O instructions. With memory-mapped 
I/O, a specific region of the real memory address space is reserved for accessing 
I/O devices (see Figure A.3). These addresses do not correspond to real memory 
locations; rather, loads and stores directed to these addresses are interpreted by 
the memory controller as commands sent to an I/O device. Different memory- 
mapped locations are used for sending commands to different devices and for 
different types of requests to the same device. 

In order to protect I/O resources in general-purpose computer systems, I/O 
instructions are usually privileged and can only be invoked by the operating 
system. Similarly, with memory-mapped I/O, the real memory addresses used 
for I/O are never mapped to user-accessible pages, so only the OS has access 
to them. Because I/O operations are only available to the OS, user programs 
invoke OS calls that first check to make sure the user program should be able 
to make the requested access and then use I/O instructions to complete the 
request. 

Finally, interrupts are a part of most I/O architectures. They are used by the 
I/O system to get the attention of the OS by forcing a transfer of control into 
OS interrupt handler code. The I/O system may interrupt the OS when it is 
finished with some requested I/O operation or when there is some condition, 
such as a device error, that requires attention. Interrupts are discussed in more 
detail in the next subsection. 

A.3.6 Traps and Interrupts 

Traps and interrupts are an important mechanism for transferring control to 
the operating system when events needing special attention occur. Because they 
often involve changing the privilege mode and crossing protection boundaries, 
they are an important consideration in virtual machine implementations. 

A trap is a transfer of control that occurs as a side effect of an instruc- 
tion's execution. Traps are generally triggered by an exception condition, 
which is typically an unusual condition detected during the execution of an 
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instruction. Examples of exception conditions include arithmetic overflows, 
page faults, violations of memory-access privileges, and illegal or unimple- 
mented opcodes. The ISA usually specifies the exception conditions associated 
with each instruction. 

Interrupts occur due to conditions unrelated to the execution of a specific 
instruction. Interrupts are caused by events occurring external to the process 
currently executing. Examples of such external events include I/O interrupts, 
which occur due to events outside the processor, and timer interrupts, which 
signal the end of a time interval specified by the operating system. 

As described in Section A.3.2, the ISA generally provides a mechanism for 
disabling certain traps or classes of traps. The usual way to accomplish this is 
through the use of bits held in a mask register. Not all traps can be disabled, 
however. For example, it makes little logical sense to disable a page fault, and 
hence there is usually no mask bit associated with a page fault. Also, some 
traps may be disabled in user mode. For example, an application may not want 
any special action to be taken if some arithmetic operation causes an overflow. 
Other traps, for example, a trap to indicate a memory-access violation, may be 
masked only in system mode. Often two different mask registers are used, one 
of which can be written only in supervisor mode and the other which can be 
written in any mode. 

If an exception condition occurs, the corresponding trap bit held in the trap 
control register is set. If the mask bit corresponding to this trap is set, the trap 
is disabled and hence no special action is taken. If the mask bit is not set, a 
sequence of events follows. 

1. Instruction execution temporarily ceases and the processor places itself 
in a "precise" state with respect to the trapping instruction: 

�9 All instructions prior to the trapping instruction are completed and 
make all their specified register and memory modifications. 

Depending on the specification in the ISA, the instruction causing the 
exception either completes, as in the case of overflow exceptions, or 
does not cause any change of state, as in the case of page faults. 

None of the instructions following the trapping instructions modify the 
process state (registers or memory) in any way. 

2. After a precise state is achieved, the program counter of the executing pro- 
gram is saved in an ISA-specified location, either in a control register or in a 
special memory location. Some or all of the registers (both general-purpose 
and control registers) may also be saved by the hardware implementation. 
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Modern RISC processors leave the job of saving registers to the trap- or 
interrupt-handling software. 

3. The processor is placed in a privileged mode and control is transferred 
to a memory location that is specified as part of the ISA. Ordinarily, this 
location is in the operating system, so at this point the OS gains control of 
the processor. 

4. The operating system saves any remaining critical parts of the state of the 
trapping process that have not already been saved by hardware, e.g., the 
registers. 

5. The OS code at this point may directly handle the trap, or it may analyze 
the situation further in order to determine the address of the code that 
specifically handles the trapping condition. This trap-handling code may 
be OS code, or in some cases, as in arithmetic overflows, it may be user 
code. In those cases where the user process has defined a trap handler, the 
OS passes control back to the user trap handler. 

6. After trap handling has been completed, the OS (or user trap handler) 
restores the process's precise state, which had been saved earlier, and jumps 
back to the location in the user program that caused the exception. 

Constructing the precise state of the system at the time of the exception is 
a way of ensuring deterministic behavior of the program. This requirement, 
however, introduces significant complexity in most implementations of an 
ISA, including VM implementations. Some ISAs relax this requirement for 
certain types of exceptions. For example, the PowerPC does not require precise 
state to be produced in the case of floating-point exceptions under normal 
operation. For debugging purposes, however, it does provide a mode in which 
these exceptions are precisely reported. 

ISAs also provide instructions whose principal function is to give control 
to the operating system via a traplike mechanism. Like branches, such traps 
may sometimes be conditionally invoked. One important type of explicit trap 
is invoked by the system-call instruction. A system-call instruction is executed 
when a program needs some service from the operating system, e.g., an I/O 
operation. The actions taken during a system-call-invoked trap are similar to 
those described earlier; the main additional feature is that the user may specify 
arguments and parameters in registers or in a block ofmemory so that the oper- 
ating system knows exactly what service is requested. This specification is not 
part of the ISA but part of the application binary interface (ABI) of the system. 

Interrupts are treated in a manner similar to traps. The precise state of the 
processor must be produced in the case of an interrupt. However, because the 
interrupt is externally caused, there is some flexibility in an implementation 
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regarding the exact point at which the currently running process is stopped 
and control returned to the operating system. 

Interrupts, like traps, can also be disabled through mask bits held in a 
special control register. Masking interrupts is useful because there are times 
when the system software is unable to cleanly handle the interrupt condition. 
Such a situation arises, for example, when another interrupt has just occurred 
and software is still in the process of handling it. Masks can also be used to 
help establish priorities of interrupt conditions; lower-priority interrupts can 
then be masked off by high-priority interrupts. As in the case of traps, certain 
interrupts related to the real environment of the processor, such as a "power 
fail" interrupt or a "high-temperature" interrupt, are not maskable, for they 
need immediate attention. Most other interrupts related to I/O are maskable. 

Ao4 Operating System Organization 

Operating systems are complex pieces of software that are responsible for man- 
aging system resources and for handling requests from programs for services 
utilizing the resources. A typical OS is divided into major components that 
handle processor scheduling, memory management, and I/O. Figure A.12 
shows the major blocks of the Linux operating system with its various inter- 
faces, including the system-call interface and the device-driver interface. The 
following subsections describe the ways an OS manages the major system 
resources. 

A.4.1 Processor Management 

The operating system time-multiplexes a computer system's processor(s) 
among several processes that may be active in the system. It does this using 
a scheduling algorithm, often based on priorities, that determines which pro- 
cesses should run and for how long. The scheduler maintains a ready queue 
that holds information regarding processes that are ready to run. When a pro- 
cessor becomes available, the scheduler selects a process from the ready queue, 
sets the interval timer according to the amount of time the scheduler decides it 
should have, and jumps to the process. 

If the application process generates an enabled trap condition or performs a 
system-call instruction, control is given back to the OS. Otherwise, the interval 
timer will expire, and there will be an interrupt to the OS. In the event of a 
trap, the OS will invoke the appropriate trap handler (or may terminate the 
process). If there is a system call or some other condition that requires service 
from the OS, e.g., an I/O request or a page fault, the OS will set up the needed 
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Figure A.12 Linux Architecture. 

I/O operation and remove the process from the ready queue. When the service 
completes, e.g., when an I/O device completes its operation, an interrupt is 
generated, and the OS puts the process back on the ready queue. 

A.4.2 Memory Management 

Memory management involves the sharing of real memory among the pro- 
cesses running on the system. The memory manager interacts between the 
hardware and the user process via the page table and/or TLB, as described ear- 
lier, in Section A.3.4. When a process generates a page or TLB fault, the OS 
takes over and either updates the TLB from the page table if the TLB is archi- 
tected or handles the fault by scheduling a disk I/O operation to the backing 
store in order to retrieve the page. In many cases, the OS also prefetches a 
number of adjacent pages and keeps them in a buffer cache in anticipation of 
their immediate need. 
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The OS relies on the locality principle and attempts to give each run- 
ning process those pages that are actively being used, also referred to as its 
working set. Good page-replacement algorithms, for example variations of the 
least-recently-used (LRU) algorithm, help to control the number of page faults 
incurred by a process. 

A.4.3 Input/Output Management 

As noted earlier, an operating system abstracts most of the details of hardware 
devices and makes these I/O devices accessible through well-defined interfaces. 
As shown in Figure A.13, there are really two major interfaces that come into 
play when an application invokes an I/O service. The service is invoked using 
a system call, which transfers control to the operating system. The operating 
system itself uses an interface to a set of software routines that convert generic 
hardware requests into specific commands to hardware devices. This layer is 
referred to as the device driver layer, and the interface to this layer is through 
device driver calls. 

Application 

system calls 

Operating System 

driver calls 

M Virtual (~/0 Drivers) em mgr) 

physical memory and I/0 operations 

Hardware 

Figure A.13 Interfaces Are Related to I/0 Operation. 
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The device driver approach is the common technique for conducting inter- 
actions between the operating system and a hardware device. The device driver 
takes care of device-specific aspects of performing an I/O transaction. For 
example, when a file system uses a block-device interface to write to a disk, the 
device driver converts a device-independent request to appropriate requests 
specific to the type of disk controller chip that is physically attached to the 
system. These specific requests are then conveyed to the I/O device via I/O 
instructions or memory-mapped loads and stores. 

There are two types of device drivers in Linux, character device drivers 
and block device drivers. Character device drivers communicate directly with 
the user program, with no buffering in between. A terminal is an example of 
a character device driver; communication between the device driver and the 
hardware is performed a character at a time. In contrast, the communication 
between the driver and the hardware is at a much higher granularity in the case 
of block device drivers, like those for disks. In this case, user programs access 
information through an area reserved for the transfer of a block of data. 

We now consider ways in which running processes request service or manage- 
ment functions from the operating system. To do this, we focus our attention 
on interfaces 2 and 3 depicted in Figure 1.4. Combined with the user-mode 
portion of the ISA, these two interfaces form the ABI and the API. The ABI is 
of most interest because it is the direct interface into the OS. However, the API 
is also of interest because most user programs access the ABI only through calls 
to the libraries that make up an API. 

Many of the functions specified in an ABI involve the management of 
hardware resources by the operating system. As discussed earlier, entry into 
the operating system can occur either through traps and interrupts or through 
a system-call instruction. The abstraction of traps and interrupts in the ABI is 
commonly referred to as a signal, to be described in Section A.5.4. An example 
of a system call in the Linux operating system as it is invoked through an API 
is shown here: 

# include <syscal l  .h> 

extern i n t  s y s c a l l ( i n t  . . . .  ) ;  

i n t  f i l e _ c l o s e ( i n t  f i l e d e s c r i p t o r )  
{ 

return syscal l  (SYS_close, f i l e d e s c r i p t o r )  ; 
} 
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The first argument in a system call is a unique identifying number. The 
Linux kernel uses this number as an index into a table of system-caU entry 
points. Each entry in the table points to the location where the specified system 
call resides in memory, along with the number of arguments that should be 
passed to it. The number of arguments supported by a system call in the ABI 
often depends on the ISA. On Intel's IA-32 architecture, for example, the 
number of hardware registers available limits the number of arguments to five, 
in addition to the first argument, which is the system-call number. However, 
a register can point to data structures in main memory that hold additional 
argument-related information. Different system calls can be categorized by the 
nature ofthe hardware resource they manage. We next describe these categories 
along with some examples from the Linux operating system. 

A.5.1 Process-Management System Calls 

This class of system calls either helps create new processes, terminate processes, 
or manage various aspects of processes running on the system. A Linux fork () 
system call, for example, creates a new process, called a child process, that is an 
exact copy of the parent process except for its identifying process ID number. 
An exec() system call (or one of its several variations) is used to load and 
execute a program in the current virtual address space. So starting a new process 
generally involves a fork immediately followed by an exec. A process continues 
execution until it terminates either voluntarily, through an ex i t  () system call, 
or involuntarily, by receiving a signal (to be discussed later). The parent process 
can determine whether a child process has terminated using the wait () system 
call. Other process-related system calls include s l eep(), which can be used 
by a process to voluntarily relinquish use of the processor for a specified time, 
or wakeup (), which supplies a signal to wake up a sleeping process. There are 
other system calls, such as setpriority() and getrusage(), that either set 
parameters of a process or provide information about the resources being used 
by the process. 

A.5.2 Memory-Management System Calls 

Each process is provided with its own virtual address space, which the OS 
manages. Even though the virtual address space belongs to the user process, 
the management of the space is largely controlled through the operating sys- 
tem. The user may request a block of memory, for example, by using the 
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real ] oc () API routine, which employs sophisticated algorithms to make opti- 
mum utilization of the address space. The real ]oc()  call actually invokes a 
system call, sbrk() ,  to ensure that the size of the data region, also referred 
to as the heap, is sufficiently large to perform the allocation successfully. The 
user invokes another library routine, f r ee ( ) ,  which frees the region pointed 
to by an argument in the call. The user can also change the protections of 
a set of pages in its space using the mprotect () system call. For example, an 
application that wishes to protect itself from writing over a region of data could 
invoke mprotect () on the page containing the data and designate that page 
RO (read-only). 

Multiple processes that need to communicate with each other often do so 
by sharing sections of memory. System calls such as shmget () allow a memory 
segment in the virtual address space of one process to be mapped in the virtual 
address space of another process. That is, both processes map the same memory 
regions in their page tables. 

A.5.3 Input/Output System Calls 

A program running under the control of an OS does not invoke the routines in 
the device driver directly; rather, it makes a device-independent request such 
as open() or read() through a system-call interface. The separation of the 
responsibilities of the operating system from the device driver, as shown in 
Figure A.13, enables the addition of new devices to a computer system without 
changing the operating system. 

User programs in Linux communicate with the kernel using generic file- 
system commands such as open(), read(),  wr i te ( ) ,  and c lose() .  The 
open() command associates a file descriptor with a device that has been 
installed in the system with a file-system name like /dev/abc. A program 
called the Virtual Filesystem Switch registers the device and enables the map- 
ping of the read() request, for example, with the appropriate routine in the 
device driver associated with/dev/abc,  as shown in Figure A.14. 

A.5.4 Signals: Abstracting Exception Conditions 

An ISA supports traps and interrupts, as described earlier. In Linux and 
other UNIX systems, these are made available to a process via a set of signals 
that are delivered asynchronously to an application through signal handlers. 
Default signal handlers defined by the system take some default action on 
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Figure A.14 Linux I/O Programming Interface. 

receipt of a signal. The default action may stop the process, may terminate 
the process, perhaps with the generation of a core (memory) dump, or may 
ignore the signal. However, the application program can override the default 
action through the use of the si gvec () system call. If the application program 
decides to take specific action, it invokes a signal handler, which specifies the 
action. Almost any signal can be ignored by the process. The only exceptions 
are the SIGSTOP and SIGKILL signals - -  these signals provide a way for the 
user or the system to stop or terminate a runaway process. 

There are two ways in which a signal gets posted to a process. It may be 
due to a hardware trap or interrupt, or it may be generated in software by 
another process, for example, through the ki 11 () system call. Like hardware 
interrupts, signals may be masked by a process. If a signal arrives and it is in the 
masked set, it gets recorded in a list of pending signals, but no action is taken 
until the signal is unmasked. A signal can be added to the masked list using the 
si gb] ock () system call, while the entire set of masks can be set together using 
the si gsetmask () system call. Normal execution is resumed after a signal has 
been handled by using the si g r e tu rn ( )  system call. 

System Initialization 

An often-overlooked aspect of an ISA is system initialization, beginning with 
power-up or system reset to the point at which an application program is ready 
to run. However, this is an important aspect to be considered in the design of 



A.6 System Initialization �9 5 8 7  

system virtual machines, because these exact operations have to be reproduced 
whenever a new guest system VM is brought to life by a host. 

The term used to describe the process of initializing the system is bootstrap- 
ping (the system lifts itself up by its bootstraps). Bootstrapping involves a series 
of actions, each action bringing to life a capability that allows the next action to 
be performed, until eventually the entire system is brought to life. The process 
of bootstrapping is a highly privileged operation because it involves the initial- 
ization of many important resources in the system. Here is a brief chronology 
of the actions that take place during a system initialization. 

1. A processor "reset" is activated through a pin or a signal that enters the 
processor. 

2. Some ofthe architected resources are loaded with ISA-defined initial values. 
For example, 

�9 The program counter is set to an initial value, e.g., all zeros. 

Control registers are set to initial values so that initial program exe- 
cution can proceed; for example, all traps and interrupts will be 
masked off. 

�9 Page translation is turned off. (It will be turned on as part ofthe software 
initialization process.) 

�9 Some, possibly all, of the general-purpose registers are set to initial 
values. Since addresses to memory locations are computed using values 
in registers, registers have to be loaded in order to gain addressability 
to memory. 

3. Instruction fetch begins at the initial location stored in the program 
counter. This location usually contains a hardwired set of instructions. 
Typically these instructions are in a block of read-only memory referred to 
as the boot ROM. The code contained in the boot ROM is small and is just 
sufficient to initialize a boot device from which more code can be brought 
in. This device may be a tape reader or a floppy disk or the first track of a 
hard drive. 

4. Initializing code is brought in from the boot device and executed. The 
execution of this code allows other critical aspects of the system to be 
initialized. For example, the keyboard and monitor are enabled. This code 
is also able to access larger storage areas, most importantly, a hard drive 
(or other device) that contains the operating system. 

ft. The operating system is loaded, and control is transferred to it. 
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6. The operating system initializes various internal tables, turns on page map- 
ping, locates other I/O devices by activating the I/O buses, performs a 
cursory check of the file system, and prompts the user to log in. 

7. The system is now ready for running an application program. 

Some interesting aspects of the boot process follow. 

�9 It is becoming common to initialize network connectivity early in the pro- 
cess of bootstrapping so that the rest of the initialization proceeds using 
data and code from a remote system. 

�9 With increases in ROM density, many of the functions that were loaded 
from floppy disks or CD-ROMs can be accommodated in the boot ROM. 

�9 Many systems also perform a self-test early in the bootstrapping process to 
ensure that critical hardware elements are functioning properly. 

Ao7 Multiprocessor Architecture 

Computers are generally capable of handling multiple processes simulta- 
neously. Uniprocessors achieve this through a technique called multipro- 
gramming. In multiprogramming, only one process runs on the processor 
at a specific point in time. The appearance of parallel execution of processes 
is achieved by running each process for a maximum period of time, typically 
around 10 msec. At the end of this "time slice," the processor state is saved in 
memory, and the context of another process is brought into the processor's reg- 
isters. Thus there is a performance degradation of a process due to this sharing 
of resources with other processes, though this degradation can be reduced by 
scheduling the context switch at points in the computation where the process 
would have to wait for some external event such as I/O. Figure A. 15a shows the 
multiplexing of processes in a conventional uniprocessor multiprogrammed 
system with a single hardware processor and operating system. The multiple 
user processes run on the same OS, which time-multiplexes the processor and 
other hardware resources among these processes. 

Multiprocessors, on the other hand, employ multiple processors to achieve 
parallel execution of processes. The multiplicity of program counters, hard- 
ware registers, execution units, caches, and sometimes even memory are used 
to handle multiple processes. If each process is designed to run on a single 
processor, there is no degradation of performance of the process as a result 
of executing other processes on the other processors. However, there are pro- 
grams that are designed in such a way that the multiple processes running on 
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Comparison of Activity over Time in a Multiprogrammed System and a Clustered Multiprocess- 
ing System. (a) In multiprogramming, several tasks or processes running under a single operating 
system are multiplexed in time. (b) In multiprocessing, the processes are distributed among multiple 
processors; however, the number of operating systems cannot exceed the number of processors. 

the different processors need to communicate with each other, for example, to 
share data values or to signal events. The performance of the program is often 
determined by the efficiency of implementation of this communication. 

Further parallelism in execution can be obtained by implementing multi- 
programming on each of the processors of a multiprocessor system, as shown 
in Figure A.15b. The figure illustrates the case where an operating system and 
its application processes are dedicated to a specific processor in the multipro- 
cessing system. It is also possible to design the multiprocessor with just one 
operating system that controls the allocation of processes to processors. In 
this case, a process may run on one processor at one time and on another at 
another time. 

Historically, many systems have been designed around a single processor, 
and such uniprocessor systems remain an important system class. Today, how- 
ever, multiprocessors are in widespread use as servers and are well on their way 
to becoming commonplace for high-end desktop computing. For server imple- 
mentations, multiprocessor systems with large main memories, disk systems, 
and high-bandwidth network facilities provide important economies of scale 
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as well as improved opportunities for balancing resources among a large num- 
ber of simultaneously active application programs. System software employs 
systemwide data structures for managing processor, memory, and commu- 
nication resources. When an application thread is initiated, system software 
assigns it resources from the pool of available processors, and, as it runs, system 
software provides it with memory, disk, and communication resources. 

A.7.1 Types of multiprocessing 

There are two main paradigms for supporting multiprocessing: clustered com- 
puting and shared-memory multiprocessing. In many server environments, e.g., 
Web or database servers, the individual application processes are often inde- 
pendent of each other. This type of workload works well on clustered systems, 
where the hardware associated with each processor, including the memory and 
sometimes the disks, is separated from the hardware of other processors on the 
system. System software in this case typically consists of different copies of an 
operating system running on each processor, as shown in Figure A.15b. 

There are other multiprocessor applications where a single program actu- 
ally consists of a number of closely cooperating parallel processes. Many sci- 
entific and engineering applications are multithreaded in this way, as are 
compute-intensive commercial applications such as data mining. Many other 
commercial database applications also are structured with multiple processes 
sharing data, and they are best implemented on a multiprocessor system with 
a single operating system. The operating system manages the memory in the 
system as one large structure shared symmetrically among all the processors 
and hence the name shared-memory processing, or SMP. The shared memory 
acts like a bulletin board and may be used either to pass data values from one 
process in the system to another or to signal the occurrence of an event to other 
processors that may be waiting for that event to occur. Reliable management 
of this communication of data and events needs special synchronization prim- 
itives to be supported by the ISA. The two types of multiprocessor systems are 
illustrated in Figure A. 16. 

There also are systems that are hybrids of the clustered and shared-memory 
forms of multiprocessing. For example, distributed shared memory (DSM) sys- 
tems are implemented like clustered systems but are capable of supporting 
a single operating system image across the multiple processors. It is hard to 
achieve as low a latency of communication on such a system as on a shared- 
memory system. A lot of research has been conducted in this area, and several 
different hardware and software techniques have been proposed to improve 
or hide the communication latency. But this form of computing did not gain 
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popularity, possibly because of the high sensitivity of the performance of appli- 
cations to the way the algorithms are written and data structures are laid out 
in memory. 

On the other hand, a different type of hybrid appears to be emerging as an 
important p l a y e r -  SMP clusters. Many server systems today are clusters of 
nodes, where each node itself is a small shared-memory multiprocessor. Com- 
munication between processors in a node is through shared memory, while 
communication between nodes is through messages. Unlike the distributed 
shared-memory paradigm, there is no effort made in hardware to improve the 
communication latency between nodes; consequently, operating systems are 
not expected to span multiple nodes in an SMP cluster. 

A.7.2 Clustered Systems 

The most common form of cluster is simply a network of computers. Users 
access the cluster through terminals. Terminals may be simply devices that 
allow the user to type in requests and receive information to be displayed 
on a screen. More commonly, terminals are complete workstations or PCs 
comprising processors, memory, disks, and peripherals. When connected to a 
network, the terminal can access data located at other nodes in the network. 
The network itself may be spread over a large area or may be quite compact, 
with high-speed interconnections. A degree of isolation is achieved on a cluster 
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by the fact that applications generally run on the processor at a local node 
and cannot easily be affected by applications running on other nodes in the 
network. 

Besides the terminal nodes just described, the network in a cluster typi- 
cally also has various types of servers attached to it. We have already seen the 
need for file servers that are repositories of data for users of a cluster. There 
can also be Web servers, which are nodes that serve as access points to the 
World Wide Web, mail servers, which are nodes that provide mail services, 
acting as a repository for new and old mail, and print servers, which service 
printing jobs from other nodes. 

Clustering is also common in very large server systems. Here each node in a 
cluster may be a large shared-memory multiprocessing system, for example, a 
32-way (processor) or 64-way system. Multiple nodes of this type are intercon- 
nected by a fast, high-bandwidth, optical network, as shown in Figure A.17. 
In the largest of such systems, the high-bandwidth interconnection may be a 
switch rather than a bus. Examples of such clusters are the IBM Parallel Sysplex 
system for the mainframes (Nick et al. 1997) or the HP Superdome Hyperplex 
system (Charlu 1999). Originally these systems provided a solution to expand 
beyond the capabilities of a single box. Their attractive features include a 
suite of software system management tools that allow workload balancing and 

Figure A. 17 Typical Large Database Cluster. The coupling facility provides hardware support for synchroniza- 
tion and coherence between nodes of the cluster. The system timer ensures that the clocks on all nodes 
are synchronized. The data storage, typically on large disks, is shared between nodes and accessed 
through a high-bandwidth fiber-optic switch. 



A.7 Multiprocessor Architecture - 593 

Figure A.18 

P P 

I I I 
I I 

M 

Keyboard and monitor connections 

To keyboard 

P P P P P 

I I I I 

I/0 I/0 

I[ I Ethernet connection I I 

Switch ] 

To monitor 

A Cluster of SMP Nodes. Beowulf clusters are typically built using inexpensive off-the-shelf tower- 
type desktop computers connected together through Ethernet and sharing a single monitor and 
keyboard for the use of the system administrator. 

graceful degradation from failures. Additionally, communication routines are 
provided to enable an application to use resources associated with multiple 
nodes in a cluster. 

The availability of inexpensive commodity uniprocessor systems has led 
to various architectures that combine commodity components to build inex- 
pensive multiprocessor systems. The nodes in some cluster systems, such as 
the Beowulf cluster systems (Ridge et al. 1997), are off-the-shelf uniprocessor 
or small-scale SMP system boxes with off-the-shelf disks, connected together 
through commodity networks such as 100Mb/sec Ethernet and running an 
inexpensive (or free) operating system such as Linux (see Figure A.18). A 
denser form of the Beowulf cluster, called the blade server, is rapidly gaining 
popularity. Blade servers essentially sacrifice I/O expandability, eliminate the 
monitor, keyboard, case, and power supply of desktop boxes, and put the 
uniprocessor or SMP subsystem in a thin package called a blade. These blades 
are then slid into standard racks, where a backplane provides the Ethernet 
connection and other wiring as well as power. 

From a programming point of view, the distinction between shared- 
memory and clustered types of multiprocessor systems arises from the way 
processes communicate with each other. In shared-memory systems, two pro- 
cesses communicate by writing to or reading from memory locations accessible 
to both. In clustered systems, processes communicate by sending messages, 
and hence they are also referred to as message-passing muttiprocessor systems. 
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Unlike a shared-memory system, a clustered system presents more of a chal- 
lenge to an application programmer. In both cases, the programmer is required 
to organize and partition a program into threads of computation, each to 
be executed on a different processor. In the cluster case, the programmer is 
also responsible for the task of synchronizing the computation using messages 
passed between the threads. Clustered systems would not have gained as much 
popularity as they have were it not for the software tools and libraries that have 
been introduced to help develop applications for such systems. Message passing 
has been recognized as a technique applicable to both closely coupled clusters 
and more loosely coupled distributed multiprocessor systems. This has led to 
the development of standard interfaces that allow a programmer to abstract the 
communication between processors in both types of environments. One of the 
more widely used interfaces of this type is the message-passing interface (MPI) 
(Pacheco 1996), which specifies a set of library routines that enable processes 
to communicate with each other and to exchange data. Portability of applica- 
tions between systems that implement MPI is one of the biggest strengths of 
the interface. 

A.7.3 Evolution of Shared-Memory Systems 

Many commercial applications benefit from having a shared-memory para- 
digm rather than a clustered design. The shared-memory paradigm is more 
convenient to reason with and to write programs for, but the hardware needed 
to support these systems is more complex and specialized as compared to those 
for message-passing systems. The complexity in hardware arises from the need 
to maintain coherence in memory locations, especially in modern memory 
hierarchies, where memory elements can reside at various levels of cache. 
Message-passing systems avoid this complexity by shifting this responsibility 
to the application programmer or to library routines. 

The ease of programming shared-memory systems, along with innovative 
hardware techniques, has led to the development of larger and larger SMP sys- 
tems over the last decade. Today, we find large shared-memory multiprocessor 
systems having 128 or more processors. 

The ISA of most processors today includes special conventions for the access 
of shared-memory locations. As with all aspects of an ISA, these conventions 
represent a contract between the programmer and an implementation of the 
ISA. A programmer writes a program assuming that accesses to variables 
shared among processors obey certain rules, while the hardware designer (the 
processor designer or the system designer) ensures that the rules used by the 
programmer are indeed guaranteed by the implementation. 
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Memory Coherence Models 

Memory coherence refers to the visibility of a write to a given memory loca- 
tion by all other processors in the system. Ideally, one would like the value 
written to a memory location to be instantaneously visible to all other proces- 
sors, meaning that a subsequent read to that location by any other processor 
should see the new value. This "instantaneous" solution is impractical, how- 
ever, because of the several layers in the memory hierarchy of most modern 
systems. So a more practical definition of coherence is adopted ~ memory 
coherence is said to be implemented on a multiprocessor system if the order 
of writes to a given location by one processor is maintained when observed 
by any other processor in the system. Notice that this definition gives flex- 
ibility to a hardware designer to delay the observation of changes made by 
one processor on the other processors. Over the years, there have been several 
implementation protocols developed to facilitate coherence. These protocols 
are largely implementation alternatives and are typically not part of an ISA 
specification. 

Consider the example of Figure A.19. Assume that processors 1 and 2 
both have write-through caches. When each processor writes to location 50, 
it does so to a cached version of location 50. As a result, a read following a 
write will reflect the value in the cached version of location 50. Because the 
caches are write-through, the value gets written out to memory, though it takes 
longer for processor 2's write request to reach the memory. In the meantime, 
the cached value in processor 2 is evicted. When the value of location 50 is 
requested the next time, both processors get value 1. After a sufficiently long 
time, when processor 2's write reaches memory and neither processor has a 
cached copy of location 50, both processors read value 2 from memory. Thus, 
assuming a starting value of 0, processor 1 sees a transition from 0 to 1 to 2 
in location 50, while processor 2 sees the transition from 0 to 2 to 1 to 2 for 
the same location. This is a violation of the memory coherence rule because 
it would never be possible for processor 1 to see the 0-2-1-2 order of values 
observed for processor 2. We note here that such a situation would not have 
occurred either on a multiprogrammed system or on a multiprocessor system 
having instantaneous access to memory ~ models that most programmers are 
comfortable working with 

There are several ways to avoid such memory coherence violations. One 
way is to ensure that when a value is written to the cache of a processor, copies 
of that location cached in all other processors are invalidated and, additionally, 
to ensure that any read request by a processor is satisfied from a cache that 
has the most recent valid copy, if the memory itself has not yet received the 
valid copy. The reader is referred to Culler and Singh (1999) for a study of 
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Figure A. 19 Violation of Memory Coherence. The bottom part of the figure shows a write followed by three reads of 
location 50 by processor 1, while the top part shows the same sequence for processor 2. The shaded region 
indicates the time when the memory contains value 1, while the hatched region indicates the time when it 
contains value 2. Note that the values read from the caches are different from the values in memory. The 
sequence of values returned for processor I due to reads is 0-1-1-2, while that returned for processor 2 is 
0-2-1-2. 

various cache coherence protocols that have been designed to ensure memory 
coherence. 

Memory Consistency Models 

Memory consistency characterizes the order in which accesses by one processor 
to different locations in memory are observed by another processor. This is 
in contrast to memory coherence, which deals with the order of writes to a 
single location by a processor. Memory consistency concerns itself not only 
with accesses to different locations but with both types of accesses, reads, and 
writes. In general, the more constraining the consistency rules are, the easier 
it is for a programmer to develop and debug a program but the harder it is 
for a hardware designer to produce a high-performance implementation of the 
processor. An implementation that forces all processors to wait until a written 
value is visible to all processors in the system provides a maximum level of 
consistency but is uninteresting because of its high overhead. The frequent, 
and long, waits would negate a lot of the parallelism benefits expected from 
executing the application on such a multiprocessor system. 

The sequential consistency model, described first by Leslie Lamport (1979), 
is an elegant and natural model. A multiprocessor system maintains sequential 
consistency if the set of observable memory access orderings made by a mul- 
tithreaded program is a subset of the observable orderings when the program 
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is run on a multiprogrammed uniprocessor system. It is a natural definition, 
and it is restrictive but still flexible enough to allow the exploitation of most 
of the benefits from multiprocessing. Even in a multiprogrammed execution 
of a multithreaded program, the set of observable access orderings is large, 
with the variation in ordering arising from the variation of points in time that 
context switches occur and the variation in allocation of waiting threads to the 
processor. This is illustrated in Figure A.20. 

We will simply state here, without proof, that a sufficient condition for 
sequential consistency in a multiprocessor system is the following: For every 
pair of accesses to memory by any one processor, the first access in program 
order is observed by all other processors before the second access is observed. 
Any implementation that satisfies this condition guarantees sequential consis- 
tency in the system. 

Processor designers are always looking for ways to improve the single-thread 
performance in their implementations. Modern superscalar implementations 
attempt to increase throughput by performing independent operations in the 
instruction stream in an order that may be different from the original program 
order. Sequential consistency can get in the way of designing fast uniprocessor 
implementations. The general philosophy in these implementations is that pro- 
grammers generally know the exact points in their programs where they would 
like ordering preserved, and hence it is not necessary to force an implemen- 
tation to maintain sequential consistency always. Let us now examine some 
possible relaxations. 

When a pair of memory accesses is made by a processor, various conditions 
in the hardware, specifically the latency of completing these accesses, may 
cause the second operation to appear to occur before the first. This potential 
violation of pair order is referred to as a hazard. There are four kinds ofpossible 
hazards. 

�9 A read-read (RR) hazard: This means that if there are two reads that 
occur in program order, the second read is seen to occur after the first 
read. One would assume that when there are no intervening writes, such a 
reordering of reads should not pose any problem. This is indeed the case 
with single-threaded programs. However, in multithreaded programs on 
a multiprocessor system, there is the possibility that a processor accessing 
one of these locations for writing causes the values read to be different from 
the values read in an alternative implementation that forces a read-to-read 
ordering. 

�9 A write-read (WR) hazard" This refers to a reordering of memory accesses 
such that a read occurs before a write, even though program order requires 
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Sequential Consistency. If the program shown in (a) were executed in a multiprogrammed environment, 
the only possible results are those shown in (b) through (e). Hence any sequentially consistent system must 
produce one of these results. In particular, it is impossible for the values read to both be 0 at the end of 
these sequences. 
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the read to be after the write. A processor is always designed to avoid such 
a hazard when the locations addressed by the write and read operations are 
identical. 

�9 A read-write (RW) hazard: This occurs when a write occurs before a read, 
even though program order requires the write to be after the read. 

�9 A write-write (WW) hazard: Such a hazard occurs when two writes are 
performed in an order opposite to what was required in the program. Once 
again, correct execution on a single thread ensures that such a hazard cannot 
take place when the two referenced locations are identical. 

An ISA that disallows all four types of hazards in any of its implemen- 
tations is said to support a strong consistency model. Most processor ISAs 
specify consistency rules that are weaker than such a strong model. Both 
the IBM System/390 and the IA-32 processors originally specified one such 
relaxed ordering rule, referred to today as processor consistency. This rule allows 
the relaxation of the WR ordering; i.e., it permits operands of an instruction 
to be fetched even before the result of a previous instruction is written all the 
way to memory. In the absence of such a relaxation, pipelining of operations 
in a processor would be seriously hampered because instructions would not be 
allowed to start access of operands even when these operands are independent 
of the values written by immediately preceding instructions. 

Figure A.21 illustrates how a multiprocessor system implementing a pro- 
cessor consistency model can produce results that are not possible if the system 
followed the sequential consistency model. The program example is taken from 
Figure A.20. In the example, if both processors perform the reads before the 
writes, then it is possible for both processors to see old values simultaneously at 
the end of the program segment. On the other hand, as Figures A.20b through 
e illustrate, at least one of the processors must see a new value if the system 
implemented sequential consistency. 

With the advent of superscalar processors that decouple memory access 
from instruction execution, memory models began to specify even weaker 
consistency rules. For example, release consistency (Gharachorloo et al. 1990), 
which is now supported by many modern architectures, relaxes all memory- 
ordering requirements except for explicit synchronization operations. The 
responsibility for correctness in the execution of a multithreaded program 
is thus shifted completely to the programmer. Special instructions, called 
memory barrier instructions, are provided to allow the programmer or the com- 
piler to impose ordering relationships wherever desired. Examples of memory 
barrier instructions include the MEMBAR instruction in Sun's SPARC archi- 
tecture and SYNC in the PowerPC architecture. Both of these ensure that the 
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I n i t i a l  s t a t e :  A = O, B = 0 

Processor  1 Processor  2 

W r i t e  A = 1 W r i t e  B = 1 

Read B Read A 

(B reads O) (A reads 0) 

(a) 

Figure A.21 Sample Program to Illustrate Processor Consistency. In processor consistency, the reads are allowed to 
go ahead of preceding writes as long as they are not to the same location. I f  this occurs, the reads result 
in a value of 0 for both A and B. This combination is not one of the possibilities shown in Figures A.20b 
through e. 

results of operations after the memory barrier are not seen before the results 
of operations that occur earlier than the memory barrier have been recorded. 
Thus, if a strict ordering is desired in the example in Figure A.2 l a, a memory 
barrier placed between the writes and the reads would prevent the load instruc- 
tions from being completed before the results of the store instructions have 
been recorded. 

Ao8 Example Instruction Set Architectures 

Most of the examples in this book involve the use of either the PowerPC ISA 
or the IA-32 ISA. Hence we will describe some of the salient characteristics of 
these two architectures in the rest of this appendix. 

A.8.1 PowerPC ISA 

The PowerPC architecture (IBM 1994) was defined as a joint effort by IBM, 
Apple, and Motorola in 1993. However, it was very closely derived from the 
earlier IBM POWER ISA. Currently PowerPC is used by IBM in its pSeries, 
eSeries, and iSeries lines of computers and by Apple in its Macintosh line. 
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Versions of the PowerPC architecture are also used in embedded systems 
developed by IBM and Motorola, in the game machines sold by Nintendo, 
in the Sony-Toshiba-IBM (STI) Cell processor, and in the IBM BlueGene 
supercomputer. 

The PowerPC ISA is an example of a RISC ISA. The original 32-bit ISA was 
extended to a 64-bit ISA because of the need to address larger memories and 
because of the performance advantages of operating on larger units of data. We 
begin with a description of the state (registers and memory architecture) and 
then summarize the actual instruction set. 

Registers 

The PowerPC register set is illustrated in Figure A.22. There are 32 general- 
purpose registers and 32 floating-point registers. The floating-point registers 

Figure A.22 PowerPC Register Set. Shaded areas indicate registers that change size from 32 bits to 64 bits when going 
to 64-bit mode. 
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are 64 bits wide, while the general-purpose registers are 32 bits or 64 bits, 
depending on the version of the architecture implemented. Both versions can 
be simultaneously supported in an implementation, in which case the physical 
registers are 64 bits wide, while only the lower 32 bits will be active when 
operating in the 32-bit mode. 

The main special-purpose registers used by an application are the link reg- 
ister and the count register, each 32 or 64 bits wide, depending on the mode, 
and the 32-bit condition register, divided into eight independently address- 
able fields, one of which is set as a side effect of executing certain instructions. 
The fixed-point exception register contains fields set or used by fixed-point 
instructions, while the bits in floating-point status and control register allow 
the monitoring of certain conditions resulting from the execution of floating- 
point instructions. Both these registers contain "summary" bits that can be set 
implicitly by the execution of an instruction but must be reset explicitly. These 
bits provide summary information about whether a certain event occurred 
since they were last reset. 

The remaining registers are generally not used during the compilation of 
a user program. These include a machine state register, MSR, which provides 
information about the current state of the machine, for example, whether 
it is in 32-bit mode or 64-bit mode, whether it is in privileged state, and 
whether address translation is on. There are two registers, SRR0 and SRR1, 
the machine state status and restore registers, respectively, that are used to 
save and restore information on interrupts. Other special-purpose registers 
include the data storage interrupt status register, DSISR, which provides infor- 
mation about the cause of storage and alignment interrupts, and a set of 
software-use registers SPGR0-3, specially designated for use by the operating 
system. 

Memory Architecture 

The address used by a PowerPC application is generally called the effective 
address. The term virtual address refers to a larger flat address space that includes 
the effective address spaces of all processes active on the system. Finally, the 
term real address is used in the conventional way to mean locations in real 
memory. 

The PowerPC memory architecture implements segmentation, with seg- 
ments that contain up to 228 bytes (256MB). Pages are 212 bytes (4KB) in size. 
The effective address space is 232 bytes in 32-bit mode and 2 64 bytes in 64-bit 
mode. The real address space is also limited to either 232 bytes in 32-bit mode 
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o r  2 64 bytes in 64-bit mode. The virtual address space is much larger, up to 
252 bytes in 32-bit mode or 2 s~ bytes in 64-bit mode. 

In the 32-bit mode, there are 16 segment registers, SR0-15, that hold 
the locations in virtual memory of the 16 segments available in the effective 
address space. The top four bits of a 32-bit effective address point to one of 
the segment registers, which contains the top 24 bits of the segment address 
(refer to Figure A.23). This 24-bit virtual segment ID (VSID) along with the 
16-bit page index from the effective address forms a 40-bit virtual page number 
(VPN). The VPN is then converted to a real page number (RPN) by referring to 
the page table whose location in real memory is determined using the storage 
descriptor register, SDR1. 

The PowerPC has an architected page table; that is, the format of entries 
in the page table is defined in the ISA. In order to make references to the page 
table more efficient, the table is accessed associatively via hashing. The VPN 
is hashed in two different ways to arrive at two pointers, each of which points 
to an entry group (PTEG) consisting of eight page table entries. A page fault 
occurs only if the required page cannot be found in either page table group. 
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The probability of a page fault depends on various factors, including the 
hashing function used, the number of PTEGs implemented, and reference 
characteristics of the application. 

The PowerPC architecture does not mandate the use of a translation look- 
aside buffer. However, it does provide instructions to maintain a TLB if one 
is implemented (as it always will be, practically speaking). For example, the 
t l b i e  instruction can be used to invalidate an entry in the page table when 
an entry is replaced in the hashed page table. All entries in the TLB can be 
invalidated (flushed) simultaneously using a t l b i  a instruction. 

In 64-bit mode, the effective number of segments supported is 2 36 instead 
of 16. The mapping of an effective segment ID to a virtual segment ID is done 
by means of a segment table pointed to by a special register called the address 
space register (ASR). Once again, in order to make accesses to this table more 
efficient, two hashed pointers are used to access two sets of segment table 
entry groups (STEGs), each set having eight segment table entries. A miss here 
causes a segment fault. A segment lookaside buffer (SLB) is used for avoiding 
a translation on each reference. Instructions (s] bie  and s] bi a) are provided 
to invalidate a single SLB entry or the entire SLB. 

Instruction Set Summary 

PowerPC uses a RISC instruction set that has fixed 32-bit-width instructions. 
All storage operations are conducted through load and store instructions. Thus 
there are no instructions that perform arithmetic or logical operations on the 
contents of memory. Any such operation requires that the operand be brought 
in from memory into one of the registers before being manipulated. 

The PowerPC divides the user instruction set into three groups: the branch 
processor instructions, the fixed-point processor instructions, and the floating- 
point processor instructions. 

The branch processor handles instructions that set or use the condition reg- 
ister, CR, or that change the flow of control modifying the program counter to 
deviate from the sequential execution of instructions. These latter instructions, 
the branch instructions, have one of the two following formats. 

b target 

bc cond, target 

Branch to target address obtained by adding the address of the current 
instruction with the 24-bit offset specified in the instruction. 

Branch conditionally to target obtained by adding the address of the 
current instruction with the 14-bit offset specified in the instruction. 
The condition for branching is determined by condition register bit 
BI and field BO in the instruction. 
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A useful variant of the branch instruction is the branch-and-link instruc- 
tion. When the LK bit in the branch instruction is set, it indicates that a side 
effect of executing either the b or the bc instruction is to place the address of 
the immediately following instruction into LR, the link register. This is a useful 
way of saving the return address while branching to subroutines. 

bl target 

bcl target 

Branch to target and save return address in link register. 

Conditionally branch and link to target. 

The branch processor includes instructions that allow various logical and 
transfer operations on individual bits or fields of the CR instruction. Another 
important instruction in the branch processor is the system-call instruction. 

Branch to a special location determined by the contents of the MSR, and 
save state information in SRR0 and SRR1. The processor enters system 
mode after executing this instruction. 

The fixed-point processor executes instructions that involve use of the 
general-purpose registers, GPR0-31. Load and store instructions use the 
general-purpose registers to specify the address of the memory location 
involved and hence also involve the fixed-point processor. Here are examples 
of load and store instructions. 

ld rt, d(ra) 

ldx rt, ra, rb 

lwz rt, d(ra) 

lwzx rt, ra, rb 

stw rt, d(ra) 

stwx rt, ra, rb 

Load register rt with the contents of memory addressed by (ra) + d. 
The d field is treated as a signed quantity. 

Load register rt with the contents of memory addressed by (ra) + (rb). 

Load lower 32 bits of register rt from contents of memory addressed by 
(ra) + d; zero out the upper 32 bits of register rt. 

Load lower 32 bits of register rt from contents of memory addressed by 
(ra) + (rb); zero out the upper 32 bits of register rt. 

Store the 32 low-order bits of register rt in the memory location addressed 
by (ra) + d. The d field is treated as a signed quantity. 

Store the 32 low-order bits of register rt in the memory location addressed 
by (ra) + (rb). 

The remaining fixed-point instructions are largely similar to those found in 
most RISC ISAs. The arithmetic and logical instructions operate on operands, 
both of which may be in general-purpose registers, or one of which may be a 
constant defined in the instruction. Instructions are nondes t ruc t ive -  the 
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result register may be different from both operand registers. Examples 
follow. 

add rt, ra, rb 

subfi rt, ra, rb 

Add the contents of ra and rb and put the result in rt. 

Subtract the contents of ra from rb and put the result in rt. The dot in the 
mnemonic indicates that as a side effect of the instruction, bits in field 0 
(first four bits) of the condition register must be set according to whether 
the result is negative, zero, or overflowed. This is called a record-form 
instruction, because it sets the record bit in the instruction. 

Because branches are taken conditionally on the contents of the condition 
register, the compiler must either use a record form instruction or set any of 
the fields in the CR explicitly using a compare instruction. Here's an example. 

cmpl 3, ra, rb Compare the contents of registers ra and rb, treating them as unsigned 
integers, and set field 3 (bits 12-15) of the condition register according 
to whether ra is less than rb, rb is less than ra, or both are identical. 

The PowerPC also has a rich set of rotate and shift instructions. These 
instructions optionally perform a mask operation during the shift process, 
which allows a wide variety of common operations in compilers and inter- 
preters to be performed in a single instruction. An example is the following 
instruction. 

rlwimi ra, rs, sh, 
mb, me 

rlwinm ra, rs, sh, 
mb, me 

Rotate the contents of rs left by the amount specified in sh, and merge 
the masked part into register ra. The part of ra that is changed is 
determined by a mask of l's extending from the mb position 
to the me position. 

Rotate the contents of rs left by the amount specified in sh, and use 
mask to extract a part of the rotated value to be transferred to ra. 

A.8.2 The Intel IA-32 ISA 

The IA-32 ISA (Intel 1999), informally known as the x86, descended from the 
Inte18086 through the 286, 386, 486, and Pentium series. The 8086 started as a 
16-bit microcontroller chip, primarily for use in embedded systems. An 8086 
derivative, the 8088, was selected by IBM for the first PCs in 1981, and soon the 
x86 ISA evolved to a 32-bit general-purpose architecture. Recently, it has been 
further extended to 64 bits. Currently the IA-32 is probably the most widely 
used general-purpose architecture, with applications ranging from laptops to 
desktops to servers. 
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The IA-32 ISA is an example of a CISC ISA. The instruction set is more 
"cluttered" than "complex," there having been several instructions sets that are 
fundamentally more complex. The clutter comes from its evolutionary history 
and extensions, coupled with the need to maintain backward compatibility 
at each step. In this book we feature the 32-bit IA-32 architecture; the earlier 
16-bit version of the ISA and the newer 64-bit version are not used in this book. 
Just as we did with the PowerPC description, we will begin with a description 
of the state (registers and memory architecture) and then summarize the actual 
instruction set. 

Registers 

The IA-32 register set is illustrated in Figure A.24. There are eight general- 
purpose registers, six segment registers, and a floating-point stack with eight 
elements. The general-purpose registers are 32 bits wide, the segment registers 
are 16 bits wide, and the elements of the floating-point stack are 80 bits wide. 
For executing 16-bit instructions, the low-order 16 bits of the general-purpose 
registers are used. Some of the general-purpose registers have the special uses 
for certain instructions, some of which are listed below. 

eax ~ Accumulator for operands and results 

e b x  ~ Pointer to data held in the DS segment 

General-Purpose Registers 
eax 
ebx 
ecx 
edx 
ebp 
esi 
edi 
esp 

Segment Registers 
CS 
DS 
SS 
ES 
FS 
GS 

Special Registers 

I I I  IIII MSW IIIIII 
unused 

page fault linear address 
page directory base I III 

reserved IIIIIII 

I flags 
interrupt descriptor pointer 

Floating-Point Stack 

ST(0) 
ST(l) 
ST(2) 
ST(3) 
ST(4) 
ST(5) 
ST(6) 
ST(7) 

CR0 
CR1 
CR2 
CR3 
CR4 

EFLAGS 
IDTR 
EIP 

Figure A.24 IA-32 Register Set. Registers shown are for 32-bit protected-mode operation. 



608 Appendix A~Real Machines 

e c x  ~ Counter for string operations and loops 

e d x ~  I/O pointer 

e s i  ~ Pointer to data held in the DS segment; source pointer for string 
operations 

e d i ~  Pointer to data held in the ES segment; destination pointer for string 
operations 

e s p  ~ Stack pointer-in the SS segment 

e b p  ~ Pointer to data held in the stack 

The special-purpose registers consist of five control registers, CR0-4, that 
contain a number of status and enable bits. For example, when a page fault 
occurs, CR2 is specified to hold the address causing the fault, while CR3 points 
to the page table. There are three other special-purpose registers, the EFLAGS, 
EIP, and IDTR registers. The EFLAGS register contains a number of sta- 
tus flags, including condition codes used by conditional branch instructions. 
The EIP is the program counter (referred to as the i n s t r u c t i o n  p o i n t e r  in Intel 
terminology). The IDTR, or the interrupt descriptor table register, points to a 
table in memory that holds interrupt vectors. 

Memory Architecture 

The IA-32 memory architecture (Figure A.25) is based on segments, somewhat 
similar to the PowerPC, but it is often used in a special configuration that 
presents a flat, linear model to software. The IA-32 ISA supports up to 64K 
segments, each of which can be up to 4GB. The segments map into a single, 
contiguous 32-bit linear address space (4GB), though at any given time only 
six of the segments can be addressed via six segment registers. 

Like the PowerPC, a logical load or store address specifies one ofthe segment 
registers and an offset of up to 32 bits. Some instruction encodings can only 
specify one of the first four segments. The logical address points to a location 
in the linear 4GB address space. When the offset value is computed, typically 
by adding the contents of a general-purpose register to a displacement value, 
the segment register is not changed. This is in contrast to PowerPC, where the 
segment pointer is in the upper bits of the effective address and can be affected 
by address arithmetic. 

When used in its most general form, a segmented memory model can be 
constructed as shown in Figure A.25a. However, by setting all the segment 
registers to point to the base of the 32-bit linear address space, a simpler linear 
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32-bit linear 
address space 

32-bit linear 
address space 

Segment Registers 

CS 
DS 
SS 
E S ~  
FS - - ~  
GS 

Figure A.25 

Code 
Segment 

Data 
Segment 

Stack 
Segment 

Data 
Segment 

Data 
Segment 

Segment Registers 

CS 

SS 
ES 
FS 
GS 

Data 
Segment 

7- 

(a) (b) 
Virtual memory Models Supported by IA-32. (a) Segmented memory modeh (b) flat memory model. 
The IA-32 also supports a real address model which is not shown. 

memory model can be constructed, as in Figure A.25b. It is this model that is 
used by most UNIX systems. 

The linear address space is divided into 4KB pages, irrespective of the seg- 
ments. The flat linear address space is then mapped onto a real memory that 
may have up to 4GB. As with the PowerPC, the Intel IA-32 has an architected 
page table, and hence the format of entries in the page table is defined in the 
ISA. The page table is similar to the one shown in Figure A.10, but it contains 
two levels rather than one. The 20-bit page number field of a virtual address is 
divided into an upper 10-bit directory pointer and a lower 10-bit page pointer. 
The directory pointer points to an entry in a 1K page directory. Each directory 
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Figure A.26 

IPre"xesl O0c~ O0c~176 s'Blo's0'acemen' ,mme0,ate I 
0 to 4 optional optional optional O, 1,2,4 bytes O, 1,2,4 bytes 

General Format for IA-32 Instructions. 

pointer points to a separate 1K entry page table, which is accessed using the 
lower 10-bit page pointer. The page directory is located at an address specified 
in CR3, which acts as the page directory base pointer. 

Instruction Set Summary 

The IA-32 ISA has variable-length instructions, from one to fifteen bytes, 
although most of the commonly used instructions are relatively short. Instruc- 
tion operands, including instructions that perform common arithmetic, 
logical, or shift operations, may come from either registers or memory. This 
is in contrast to RISC instruction sets, where the only instructions that take 
operands from memory are the load and store instructions. 

Figure A.26 illustrates the general form of an IA-32 instruction. It consists 
of from zero to four prefix bytes. The prefix bytes indicate various special cases, 
for example, if there is repetition for string instructions and/or if there are 
overrides for addressing segments, address sizes, and operand sizes. Following 
the prefix byte(s) (ifany) is an opcode byte, which may be followed by a second 
opcode byte, depending on the value of the first. Next comes an optional 
addressing-form specifier, ModR/M. It is present only for certain opcodes and 
generally indicates an addressing mode and register. The SIB byte is present 
only for certain ModR/M encodings and indicates a base register, an index 
register, and a scale factor for the indexing. The variable-length displacement 
field is present only when certain addressing modes are specified. The last field 
is a variable-length immediate operand, present only if required by the opcode. 
When needed, a segment register can be specified with some of the opcode bits 
or by the ModR/M byte. 

The IA-32 ISA divides the user instruction set into three major cate- 
gories: integer instructions, floating-point instructions, and MMX (multi- 
media instructions). In this brief overview and in examples used in this book, 
we restrict ourselves primarily to the integer instructions. Within the cate- 
gory of integer instructions are jumps (both conditional and unconditional), 
load/store instructions, and a wide variety of ALU instructions. However, as we 
noted earlier, the ALU instructions can specify one or more memory operands, 
so, in effect, many of them also perform load/store operations. 
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Jump instructions include all control transfer instructions, regardless of 
whether they are conditional or unconditional. The conditional jumps test 
condition code bits that are held in the EFLAGS register. These bits are set as a 
side effect of many instructions. 

imp reg 

jz target 

jmp target 

Jump indirect to the memory location held in reg. 

Jump conditionally to target if the zero-condition code bit in the 
EFLAGS register is set to 1. 

Jump unconditionally to target. 

Procedure calls and returns are performed using instructions that push and 
pop the return address to/from the stack, pointed to by esp. 

call target 

ret 

Push the program counter of the next instruction onto the stack 
and jump to the target address. 

Pop the return address from the stack and jump. 

Load and store operations, when not combined with arithmetic or logical 
operations, are performed by move instructions. 

mov regl, disp(reg2) 

mov disp(regl), reg2 

Load register regl with the contents of memory addressed by 
(reg2) + disp. The disp field is treated as a signed quantity. 

Store register reg2 into memory addressed by (regl) + disp. 
The disp field is treated as a signed quantity. 

Most of the ALU operations can take operands from a combination of 
registers and memory locations. Some representative examples follow. 

addl regl, disp(reg2) 

sub regl, immed 

xorl regl, reg2 

Add the contents of regl and the memory operand at address 
reg2 + disp. The result is placed in regl. Condition codes in the 
EFLAGS register are set according to the result. 

Subtract the contents of the immediate value immed from regl and 
place the result in regl. Condition codes in the EFLAGS register 
are set according to the result. 

Exclusive-OR the contents of regl and reg2 and place the result 
in regl. Condition codes in the EFLAGS register are set according 
to the result. 
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208-218 

Same-ISA emulation, 63-64 
Sampling-based profiling, 162-163 
Sandbox. See Security and 

protection 
Scalar replacement, 317 
Scheduling algorithm, 192-199 
Security, 501 

binary rewriting, 515-519 
intrusion-detection systems, 

502-505, 508-511 
logging, 505-506, 511-515 
monitoring and recovering from 

attacks, 505-506 
role of virtual machines, 506-520 

Security and protection, 230, 
232-237, 286-294 

basic, 286-287 
enforcement, 290-291 
enhanced model, 291-294 
intraprocess, 287-290 

Segment sharing, 423 
Self-modifying code, 62, 107-114, 

278-279, 337-339 
Self-referencing code, 62, 107-114, 

278-279, 337-339 
Sensitive instructions, 385-386, 430 
Serializability and reflection, 

263-265 
SETI@home project, 545 
setrlimit(), 133 
Shade System simulation, 63, 

77-79, 137, 153 
Shadow page tables, 399 

bypass assist, 423 
Shadow stack, 68 
Shared-memory processing (SMP), 

446, 447, 590, 594-600 
Side tables, 87 

epilog, 205-206 
prolog, 206 
reverse translation, 124-125, 138 

Signals, 585-586 
Signature detection, 510-511 
Signing, 292 
SIGSEGV, 104, 105 
Simulation, Shade System, 63, 

77-79, 137, 153 
Slots, Java stack, 243 
Software indirect jump prediction, 

66-67 
Software pipelining, 47 
Software translation tables, 97-100 
Source program counter/code 37, 

54, 56 
locating, 124-126 

tracking, 59-60 
SPARC ISA, 70, 74 
Spatial locality, 167 
Specialization, 312-313 
Spool files, 421 
Stack(s) 

architected, 314 
implementation, 314 
inspection, 293-294 
replacement, 313-316 
structure, Java, 243-244, 282 
tracking, Java, 251-254 

Staged emulation, 116-119, 
151-153 

Stanford Collective, 526-532 
Start Interpretive Execution (SIE), 

424-426 
Start point, trace, 172 
Start threshold value, 175 
Start-up time, 115 
State management, 375-377 
State mapping 

codesigned virtual machines and 
register, 333-337 

compatibility issues, 101-102 
direct, 200-101 
memory address, 96, 97-102 
process virtual machine, 89, 

95-102 
register, 50, 51-52, 69-70, 96, 

333-337 
Static basic block, 56-57 
Static predecoding, 52-53 
Static translation, 52-53 
Steady state performance, 115 
Stopping condition, superblock, 

172 
Storage, Java data, 243-246 
Streams, MSIL, 271 
Strength reduction, 201,205 
Sun Microsystems 

HotSpot, 306 
Java VM architecture, 17 
physical partitioning, 455 
Wabi system, 119, 133 

Superblocks, 118, 150 
continuation set, 175-176 
dynamic formation, 173-178 
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inter-, optimizations, 205-206 
most-frequently-used method, 

175, 176, 177 
most-recently-used method, 

175, 177-178 
starting points, 174-175 
stopping points, 176-177 
versus traces, 199-201 

Super_Class, Java, 258 
System call interface, 8, 408, 410 
System clock register, 568-569 
System virtual machines, 11-12, 

17-22 
applications, 370-373 
codesigned, hardware 

optimization, 21-22 
development of, 17-18, 369 
IBM System/370, 381-382 
implementation of, 19 
input/output virtualization, 

404--415, 431-435 
Intel VT-x (Vanderpool), 

436-442 
logical partitioning and, 464-465 
memory virtualization, 396-404, 

435 
native and hosted virtual 

machines, 379-381 
performance enhancement, 

415-426 
processor virtualization, 

382-396, 429-431 
recursive virtualization, 390-391 
resource control, 377-379 
state management, 375-377 
VMware Virtual Platform, 

426-435 
whole (emulation), 19-21 

Tail duplication, 173 
Target program counter 37, 54, 56 
Technology-independent machine 

interface, 358 
Temporal locality, 167 
Terra system, 519 
This_Class, Java, 258 
Threaded interpretation, 29, 32-38 

for CISC ISA, 44-46 

direct, 37-38, 80, 81-82 
indirect, 80, 81 
predecoding, 34-37 

Threads, Java, 265-267 
Timer, virtual interval, 418-4 19 
Time sharing, 369 
Tokens, MSIL, 271-272 
Traces, 171-173 

superblocks versus, 199-201 
Translated code, profiling, 

165-166 
Translation blocks, optimizing 

improving locality, 167-171 
superblocks, 173-178 
traces, 171-173 
tree groups, 178-180 

Translation lookaside buffer (TLB), 
78-79, 338, 350-351,399, 
402-404 

architected, virtualization 
402-404 

hit, 575-575 
miss, 575 
page tables and, 575-576 
partitioning, 466-469 
role of, 573-575 

Translation tables, software, 
97-100 

direct, 100-101 
pointers, 569 

Transmeta Crusoe, 22, 24, 331,338, 
353, 354-357 

Transparency, complete, 88 
Traps 

compatibility, 182-183 
detecting, 120-121 
handling, 577-580 
precise, 62, 344-351 
process virtual machine, 86 
registers, 569 
use of term, 119 

Tree groups, 178-180 
Trigger, 166 

UNIX, 104-105 (See also Linux) 
User ISA, 8, 561-566 
User-managed state mapping, 89 

VAX ISA, 39 
Very long instruction word 

(VLIW) processors, 186, 
331,555 

VirtualCenter, VMotion, 532-535 
Virtual disks, 405 
Virtual-equals-real virtual machine, 

422-423 
Virtual-ISA, 222 

summary of features, 275-279 
Virtualization, 3-4, 10 

See also Multiprocessor systems 
partitioning 

architected page table, 399-402 
devices, 404-407 
input/output, 404-415, 

431-435 
memory, 396-404, 435 
network, 410-412 
para-, 422 
processor, 382-396, 429-431 
recursive, 390-391 
translation lookaside buffer 

(TLB), 402-404 
with different guest and host, 

485-496 
Virtual Machine Communications 

Facility (VMCF), 421 
Virtual machine monitor (VMM), 

11,331-332 
See also System virtual machines 
allocator, 386 
assists, 418-419 
components of, 386-387 
dispatcher, 386 
interpreter routines, 386-387 
partitioning and, 452 
properties of, 387 

Virtual machines (VMs) 
See also under type of 
applications, 12-13 
assists, 416-419 
basics of, 9-13 
process, 10-11, 13-17 
role of, 4-6 
system, 11-12, 17-22 
taxonomy, 22-23 
versatility of, 23-24 
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VMotion, 532-535 
VMware Virtual Platform, 426-435 
Volatile memory location, 

187-188 
VT-x (Vanderpool), 436-442 

Wiggins/Redstone system, 209 
Windows operating system, 

130-132 
Win32, 133, 141 
World Wide Grid Forum, 540 

Wrappers, 9 
Write barriers, 302 
Write-protect table, 338 

Xen system, 422 


