
Intel® Technology Journal | Volume 17, Issue 2, 2013

Publisher Managing Editor Content Architect
Richard Bowles Stuart Douglas Daniel Aarno
 Jakob Engblom

Program Manager Technical Editor Technical Illustrators
Stuart Douglas David Clark MPS Limited

Technical and Strategic Reviewers
Daniel Aarno
Jakob Engblom

Intel® Technology Journal | 1

Intel Technology Journal

Intel® Technology Journal | Volume 17, Issue 2, 2013

2 | Intel® Technology Journal

Copyright © 2013 Intel Corporation. All rights reserved.
ISBN 978-1-934053-62-1, ISSN 1535-864X

Intel Technology Journal
Volume 17, Issue 2

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Publisher, Intel Press, Intel
Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-5961. E-Mail: intelpress@intel.com.
This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher
is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject
matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.
Intel may make changes to specifications, product descriptions, and plans at any time, without notice.
Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company, product, or event.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel, the Intel
logo, Intel Atom, Intel AVX, Intel Battery Life Analyzer, Intel Compiler, Intel Core i3, Intel Core i5, Intel Core i7, Intel DPST, Intel Energy Checker, Intel
Mobile Platform SDK, Intel Intelligent Power Node Manager, Intel QuickPath Interconnect, Intel Rapid Memory Power Management (Intel RMPM), Intel
VTune Amplifier, and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
†Other names and brands may be claimed as the property of others.
This book is printed on acid-free paper. ∞

Publisher: Richard Bowles
Managing Editor: Stuart Douglas

Library of Congress Cataloging in Publication Data:

Printed in China
10 9 8 7 6 5 4 3 2 1

First printing: October 2013

Intel® Technology Journal | Volume 17, Issue 2, 2013

Intel® Technology Journal | 3

Notices and Disclaimers

ALL INFORMATION PROVIDED WITHIN OR OTHERWISE ASSOCIATED WITH THIS PUBLICATION INCLUDING, INTER ALIA, ALL SOFTWARE
CODE, IS PROVIDED “AS IS”, AND FOR EDUCATIONAL PURPOSES ONLY. INTEL RETAINS ALL OWNERSHIP INTEREST IN ANY INTELLECTUAL
PROPERTY RIGHTS ASSOCIATED WITH THIS INFORMATION AND NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHT IS GRANTED BY THIS PUBLICATION OR AS A RESULT OF YOUR PURCHASE THEREOF. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THIS INFORMATION
INCLUDING, BY WAY OF EXAMPLE AND NOT LIMITATION, LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR THE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT ANYWHERE IN THE WORLD.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

For more information go to http://www.intel.com/performance

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE
OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or
go to: http://www.intel.com/design/literature.htm

Table of Contents | 5

Intel® Technology Journal | Volume 17, Issue 2, 2013

Articles

INTEL® TECHNOLOGY JOURNAL
SIMICS UNLEASHED – APPLICATIONS Of VIRTUAL PLATfORMS

foreword Simics*—The Early Years .. 7

Simics* Overview .. 8

Using Virtual Platforms for BIOS Development and Validation .. 32

Simics*–SystemC* Integration.. 54

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation
and Migration to a Software-Defined Network (SDN) ... 66

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors .. 84

Early Hardware Register Validation with Simics* ... 102

Software Power and Performance Correlation on Simics* ..114

Simics* on Shared Computing Clusters:
The Practical Experience of Integration and Scalability ... 126

Device Driver Synthesis ... 138

Using Simics in Education .. 160

Sim-O/C: An Observable and Controllable Testing framework for Elusive faults ... 180

Intel® Technology Journal | Volume 17, Issue 2, 2013

When I interviewed for an internship at the Swedish Institute of Computer Science (SICS) in 1991, the project was to write
a parallel-computer simulator for the Data Diffusion Machine (DDM) research effort being led by Seif Haridi and Erik
Hagersten. I was hired by Andrzej Ciepielewski and Torbjörn Granlund and the project was supposed to take six weeks. It took a
little longer than that.

Back in the 1980s, it was common for computer architecture research to be entirely based on simulations running computationally
intensive workloads—traditional high performance computing. The best practice in the field was summarized by the release of the
Stanford Parallel Applications for Shared Memory (SPLASH) benchmark suite—which coincidentally also occurred in 1991.

However, at the time (late 1980s, early 1990s), a number of research groups recognized that much of parallel-computer usage
was not compute-intensive as much as it was data-intensive—for example, transactional workloads, better represented by
benchmarks like TPC-C. But these workloads were generally commercial software, large parts of which were only available in
binary. They also heavily relied on the underlying operating system.

So a project was conceived to develop a simulator to both support the computer architecture work around the DDM project and
also support porting an operating system to the prototype. An existing, groundbreaking simulation environment developed by
Robert Bedichek at the University of Washington was extended to support a multiprocessor system and to mimic real devices.

(As a curious aside to the reader, Robert’s work on simulation began at his time at Intel in the late 1980s, so Simics now being an
Intel product closes the loop.)

The six weeks grew. Some six calendar years, twenty man years, and several hundred thousand lines of code later, in 1997, the
simulation group in the Computer and Network Architectures (CNA) group at SICS finally succeeded in the original goal:
booting a commercial operating system (Solaris* 2.6) on a simulated Sun Microsystems server (sun4m architecture). This
was the first known occasion of an academic group running an unmodified commercial operating system in a fully simulated
environment. The “full system simulator” was born.

The simulation group at SICS eventually grew to five people, all of whom became founding employees of Virtutech in 1998:
Magnus Christensson, Fredrik Larsson, Peter Magnusson, Andreas Moestedt, and Bengt Werner. Our first customers were Sun
Microsystems, Ericsson, and HP. To the original SPARC* V8 architecture, we added SPARC V9, x86, x86-64, Power, ARM,
Itanium®, and so on. We invented a number of new technologies and tools along the way, making Simics by far the most capable
tool in its field.

With the launch of Simics 3.0 and the Hindsight* technology in 2005, all the core elements that I remember scoping out on a
whiteboard around 1993 were in place, and several I hadn’t imagined. So in some sense, it became a software project that literally
took over 100 times longer than originally planned.

In the process I became convinced (and still am) that this is by far the best way forward to improve software development
environments, since, once inside a deterministic simulator, you can do some very interesting things.

Peter S. Magnusson,
Engineering Director, Google, Inc.

foreword | 7

Foreword Simics*—The Early Years

8 | Simics* Overview

Intel® Technology Journal | Volume 17, Issue 2, 2013

Contributor

This article provides an overview of Wind River Simics*, a full-system simulation
framework jointly developed by Intel and Wind River. Simics technology has
been used to help develop complex software and hardware systems for more than
two decades. This technical overview describes what Simics is, its main design
goals and principles, and how it works. The article also describes the overall
simulation landscape, and how Simics fits into the big picture.

Introduction
A full-system simulator (FSS) like Simics[7] is a model of a digital system that
is complete enough to run the real target’s software stack and fast enough
to be useful for software developers. The speed and full-system simulation
capabilities of Simics differentiates it from most simulation tools provided
by the electronic design automation (EDA) industry[8], which are typically
extremely accurate from a hardware perspective, but too slow to be practical for
operating system (OS), application, or systems software.

In an FSS, there are models of processors, memories, peripheral devices,
networks, and so on, making up a model of the target machine. The key goal of
the simulation is that as far as the software running on the target is concerned,
it could just as well be running on physical hardware. Often this means that
the simulation solution includes more than just the computer components.
The simulation also integrates various simulators for the external environment
that the computer system is operating in.

The main users of Simics are software and systems developers, and their main
problem is how to develop complex systems involving both hardware and software.
Virtual Machine Monitors (VMMs) like VMWare* or Virtualbox* also run
complete software stacks—but for a runtime use case, not for the complete product
lifecycle. In addition a VMM only simulates a generic, simplified hardware platform,
whereas Simics can ensure binary compatibility with an actual real-world machine
such as a specific Intel chipset (PCH) and processor variant.

Target Systems
The target systems simulated with Simics range from single-processor aerospace
boards to large shared-memory multiprocessor servers and rack-based
telecommunications, data communications, and server systems containing
thousands of processors across hundreds of boards. The systems are often
heterogeneous, containing processors with different word-length, endianness,
and clock frequency. For example, there can be 64-bit Intel Architecture (R)

“A full-system simulator (FSS) like

Simics is a model of a digital system

that is complete enough to run the real

target’s software stack and fast enough

to be useful for software developers.”

“The main users of Simics are software

and systems developers, and their main

problem is how to develop complex

systems involving both hardware and

software.”

Daniel Aarno
Software and Services Group,
Intel Corporation Line break
Jakob Engblom,
Wind River

SImICS* OVeRVIeW

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 9

processors running control software, alongside 8-bit microcontrollers managing
a rack backplane, talking to data processing boards containing dozens of 32-bit
VLIW DSPs. The target systems are typically built from standard commercial
chips along with some custom FPGAs or ASICs.

Often, target systems are networked. There can be networks of distinct systems and
networks internal to a system (such as VME, I2C, PCIe, and Ethernet-based rack
backplanes). Multiple networks and multiple levels of networks are common.

Simulation runs can cover many hours or days of target time and involve
multiple loads of software and reboots of all or part of the system. Even a
simple task such as booting Linux and loading a small test program on an
eight-processor SoC can take over 30 billion instructions. Profiling and
instrumentation runs can take tens of billions of instructions.

Simics can be used to model future processors and chipsets well in advance
of hardware availability. Such “early hardware” deployment of Simics allows
BIOS, OS, and application software development to be performed long before
even prototype silicon is available.

Simics is often used with models of hardware that are also available in silicon.
Some models started life as early hardware models, and others have been
created after the hardware was commercially available in order to directly
support the main software and system development effort.

It is not uncommon for Simics to be used to model old hardware. Many
embedded systems have lifespans covering decades, and development boards
and tools tend to become exceedingly scarce over time. In such circumstances,
Simics can provide an easily accessible, convenient, and available tool to keep
up the maintenance of software for the systems.

Simics Use Cases
Full-system simulation can be applied during the complete product lifecycle as
shown in Figure 1. It helps to define systems, by providing an executable model
of the hardware interface and hardware setup. FSS supports hardware and
software architecture work, and it validates that the hardware can be efficiently

“Simulation runs can cover many

hours or days of target time and involve

multiple loads of software and reboots of

all or part of the system.”

“Simics can be used to model future

processors and chipsets well in advance

of hardware availability.”

Product lifecycle timeline
(for one product generation)

Test &
Integration

Design
Deploy &
Maintain

Platform
Development

Application
Development

Figure 1: Product lifecycle
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

10 | Simics* Overview

used from the software stack. FSS is used to develop system software, including
debug and test. The software development schedule can be decoupled from the
availability of hardware when using FSS and it improves software development
productivity by providing a better environment than hardware.

Figure 2 illustrates the concept of “shift-left”, where software, drivers and
BIOS development, integration, and test efforts are performed much earlier
in the development process. This not only reduces products’ time to market,
it also reduces the cost of fixing defects when discovered earlier in the product
lifecycle and increases product quality and customer satisfaction.

“The software development schedule

can be decoupled from the availability

of hardware…”

The article “Using Virtual Platforms for BIOS Development and Validation”
by Steve Carbonari describes the development of BIOS code on Simics models
in advance of hardware availability, as well as how Simics is being used after
silicon becomes available.

The article “Post-Silicon Impact: Simics Helps the Next Generation of Network
Transformation and Migration to Software Defined Networks (SDNs)” by Tian
Tian describes a high-level view of how Simics has been used for early hardware
access for Intel communications chips, developing software stacks and drivers.

The article “Early Hardware Register Validation with Simics” by Alexey Veselyi
and John Ayers describes a lower-level use case, where Simics is used to validate
the register design of hardware very early in the design process.

A particular use of Simics is to change the simulation target during a simulation
run in order to test software behavior. Simics can add and remove boards, bring
new processors online, reconfigure network topologies, introduce faults in
networks and hardware devices, and plug and unplug hot-pluggable hardware.
The software will perceive these events like it would on physical hardware,
allowing users to test and develop all aspects of the software stack, including
automatic configuration, load balancing, fault detection, and fault recovery.

Simics can be used in tasks outside the immediate realm of development and
engineering. For example, Simics has been used to demonstrate new products to

“Simics can add and remove

boards, bring new processors online,

reconfigure network topologies,

introduce faults in networks and

hardware devices, and plug and

unplug hot-pluggable hardware.”

Figure 2: Shift-left of the product lifecycle
(Source: Wind River, 2011)

Software
Software

Integration
and Test

Integration
and Test

Traditional Product Life Cycle

Time and Risks Time and Risks

Product Life Cycle with Simics

Product
Quality

Reduced Time-to-
Market Increased

Revenue

Hardware Hardware

Resources
Costs
Risks

E
ng

in
ee

rin
g

R
es

ou
rc

es

E
ng

in
ee

rin
g

R
es

ou
rc

es

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 11

prospective customers and to procurement agencies involved in large programs.
Simics is also a training tool, both to train and educate users in general concepts
(using Simics instead of hardware to make the training more efficient), and to train
users of particular systems (typically developed using Simics to begin with).

As a system matures and the next generation begins development, Simics can
be used to smoothly move from the current generation to the next generation.
By setting up a model containing a mix of old and new hardware components
(such as different generations of boards in a rack-based system), software can
gradually be updated to match the next hardware generation. As part of this
process, new boards can be tested in a system containing existing legacy boards.
This is represented by the arrow back to the start in Figure 1.

Important Features of Simics
The feature set of Simics has been developed and adjusted for more than twenty
years in order to meet the needs of system developers (the first code in what was
to become Simics was written in 1991). In this section, we describe the most
important Simics features and why they were designed into the product.

Run Unmodified Real Software
A key design goal of Simics has always been to run the real software stack, as
found on the target system. This includes the boot code or BIOS, operating
system, drivers, and the applications and middleware running on top of that.
Over the years, Simics has managed to run most types of software, including
hypervisors with guest operating systems, small MMU-less embedded operating
systems and bare-metal code, desktop and server operating systems like
Windows* and Linux*, and real-time operating systems (RTOS) like VxWorks*.

Running real unmodified software stacks has many benefits. Since Simics is
primarily used for software development, running the actual software that
is being developed makes eminent sense. The software is compiled using the
same tools and compilers that are used with the hardware target, avoiding
inconsistencies and deviations introduced by host compilation or other
approximations or variant builds for simulation and quick tests.

Unmodified software also means unmodified build systems, and thus there is
no need for users to set up special builds or build targets for creating software
to run on Simics. There may be portions of the system where only machine
code is available, such as proprietary libraries, drivers, or operating systems, and
in such cases running the real binary code is the only way to get a complete
software system running.

Using unmodified software also means that software can be managed and
loaded in the same way as on a real system, making Simics useful for testing
operations and maintenance of the target system.

The article “Using Virtual Platforms for BIOS Development and Validation”
mentioned earlier describes how Simics is used to develop, test, and debug

“…Simics can be used to smoothly move

from the current generation to the next

generation.”

“A key design goal of Simics has always

been to run the real software stack,…”

MPS018
Highlight
PUB: We have fix the ellipsis as per previous edn. Please check.

Intel® Technology Journal | Volume 17, Issue 2, 2013

12 | Simics* Overview

low-level BIOS code, which is probably the most difficult type of software to
run on a simulator.

The article “Using Simics in Education” by Robert Guenzel describes how
Wind River makes use of the ability to run unmodified software to train users
in topics like device driver development and network management.

Modularity
Simics is modular; each device model, processor, or other Simics model or
feature is shipped in its own self-contained dynamically loaded object file (as
shown at the bottom of Figure 3). This fine-grained structure makes it possible
to supply the exact set of models and features needed for any specific user. The
object file and its associated command files are referred to as a Simics module.

“Simics is modular; each device model,

processor, or other Simics model or

feature is shipped in its own self-

contained dynamically loaded

object file…”

Simics models can be distributed as binary-only modules, with no need to
supply source code to the users. Binary distribution simplifies the installation
for end users, as they do not have to compile any code or set up build
environments. It also offers a level of protection for intellectual property when
different companies exchange models. By obfuscating the names of hardware
registers and limiting the amount of metadata included in the modules it is
possible to safely distribute models of very sensitive future hardware designs to
external users. It makes it possible to limit the information disclosure by the
model to precisely that of the documentation provided, even if the model itself
needs to contain undocumented and secret registers to make BIOS and low-level
firmware code work correctly.

“Simics models can be distributed as

binary-only modules,…”

Figure 3: Simics architecture
(Source: Wind River, 2011)

Device Network CPU Core Memory Feature

M
odules

Eclips GUI
Ethernet

Serial
Keyboard

Mouse
Debuggers

...

Component
Package

External
World

Connections

CLI

Internal
Debugger

Scripting

Python

User Program User Program

Memory

Simics

Simics
Core

Target ISA Decoder

Configuration
Management

Interpreter

Processors

Target Machine(s)

VMP

Core Services
API

Networks
and IO

Devices

Event Queue
and Time

Multithreading
and Scaling

JIT
Compiler

Inspection

Control

Features

Middleware

Target Operating System

Target Hardware Drivers Target Boot Code

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 13

Simics modularity enables short rebuild times for large systems, as only
the modules that are actually changed have to be recompiled. The rest of
the simulation is unaffected, and each Simics module can be updated and
upgraded independently.

A Simics model exposes an arbitrary set of interfaces to other models in other
modules, and objects can call any model interface in any module. Interfaces are
used both to model hardware communications paths and to implement other
simulator functionality and information flows, such as getting the current
cycle count of a processor or finding the address of a variable from the debug
module. Unlike SystemC*, an object can implement an interface multiple
times using named ports and the bindings are not made at compile time. Some
interfaces are unidirectional, but bidirectional interfaces (like network send
and receive) are common and simply implemented as two complementary
interfaces, one in each direction.

Simics uses the C-level ABI and host operating system dynamic loading
facilities. The C++ ABI varies between compiler versions and compiler vendors,
and is thus not usable in the interface between modules, even though C++
can be used internally in modules. The Simics framework provides bindings to
write Simics modules using DML (see below), Python, C, C++, and SystemC,
but users can actually use any language they like as long as they can link to C
code. For example, a complete JVM has been integrated into Simics, running
modules written in Java.[1]

Scalability
As discussed above, Simics target systems can potentially be very large.
To efficiently simulate such large systems, Simics makes use of several
techniques which are described in more detail in the section “Simics
Performance Techniques.” Scalability has been an important attribute of
Simics since the very first commercial deployments, originally relying on
distributed simulation[7], and evolving into a multithreaded (and distributed)
implementation.[8]

The article “Simics on Shared Computing Clusters: The Practical Experience
of Integration and Scalability” by Grigory Rechistov describes a use case where
Simics was scaled up and scaled out to run a simulation of more than one
hundred Intel® Xeon® server boards, containing 1792 target processors.

Multiple User Interfaces
From the very beginning[7], Simics was designed as an interactive tool that
could also be used in automated batch runs. Given the wide range of users and
usage scenarios, both command-line and GUI interfaces are needed. Today,
the primary user interface for new users to Simics is the Eclipse-based GUI,
but the command line is still there for more advanced tasks. Figure 4 shows
a screenshot of the Simics 4.8 Eclipse GUI, running two simultaneous, but
separate, simulation sessions (clockwise from top-left: simulated serial text-
terminal, Simics Eclipse GUI, simulated graphical console).

“…Simics was scaled up and scaled

out to run a simulation of more

than one hundred Intel® Xeon® server

boards, containing 1792 target

processors.”

“From the very beginning[7], Simics was

designed as an interactive tool that could

also be used in automated batch runs.”

MPS018
Highlight

Intel® Technology Journal | Volume 17, Issue 2, 2013

14 | Simics* Overview

Simics can also be run from a normal command-line shell, on both Linux and
Windows hosts. This makes it possible to run Simics without invoking the
Eclipse GUI and is useful when it comes to automating Simics runs from other
tools. Simics behaves just like any other UNIX-style command-line application
when needed.

As illustrated in Figure 3, the Simics architecture separates the function of the target
hardware system from the connections to the outside world. The target consoles
shown in Figure 4 are not part of the device models of the serial ports and graphics
processor unit, but rather provided as generic functions by the Simics framework.
This means that all consoles behave in the same way and provide support for
command-line scripting, record and replay of inputs, and reverse execution.

In addition to the Simics console windows, a common way to interact with a
Simics target machine is via a network connection. In this case, Simics opens
up a network connection from the virtual network inside of Simics to the host
machine or other machines on the network. This feature is known as “real
network” in Simics. Users can then connect to Simics with the same tools as
they would use to connect to a physical system on their network. Typically,
ssh or telnet is used to get to a target command line, and remote debug
protocols are used to control a target from an agent on the target machine.

“…the Simics architecture separates the

function of the target hardware system

from the connections to the outside

world.”

“…Simics opens up a network

connection from the virtual network

inside of Simics to the host machine or

other machines on the network.”

Figure 4: Simics eclipse GUI and target consoles
(Source: Wind River, 2013)

MPS018
Highlight

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 15

As illustrated in Figure 5, network connections from Simics to the outside
world are accomplished indirectly. The target system is connected to a virtual
network, and that virtual network can in turn add a connection to the real
world. There can be other virtual target systems on the virtual network, and it
is quite common to add features like traffic generators and inspection modules
to a virtual network to inspect and affect the target system behavior.

Figure 5: Simics network simulation
(Source: Wind River, 2013)

Physical
Network

Connection

Ethernet
Device

PHY

Simics

Service Node
(DNS, DHCP, ftp,

NFS, ...)

Real Network

Inspection and Fault
Injection

Virtual
Network

Traffic Generator

Other Virtual
Board

Virtual Board

Visibility and Control
The Simics GUI, CLI, and the Simics API provide deep and rich access to
the state of the target system and the simulation itself. It is easy to look inside
any part of the system and check the state of hardware devices, processors,
memories, and interconnects. Figure 6 shows an example of how the Simics
GUI can be used to inspect various aspects of the state of the target system.
The target software is executing inside a serial port driver in the Linux kernel,
as can be seen from the stack trace in the upper left portion of the window.
Other views display the device registers, memory contents, processor registers,
and disassembly at the point of current execution.

As well as passively observing the state of the target system, Simics users can
change it. This is used for fault injection or to quickly set up a system to make
software run without necessarily having all boot code in place.

Scripting
Simics scripts work the same way in a Simics simulation started from Eclipse, in
an interactive command-line session, and in an automated batch run on a remote
compute server. Basic scripts are written in the Simics CLI command-line language,
and for more complex tasks there is a full Python environment embedded in
Simics. The Python engine has access to all parts of the simulated system and can
interact with all Simics API calls. CLI and Python scripts can exchange data and

“It is easy to look inside any part of the

system and check the state of hardware

devices, processors, memories, and

interconnects.”

“…there is a full Python environment

embedded in Simics.”

MPS018
Highlight

Intel® Technology Journal | Volume 17, Issue 2, 2013

16 | Simics* Overview

variables with each other, and it is common to find snippets of Python embedded
inside of Simics scripts. Users can create their own custom CLI commands in order
to automate or simplify common tasks peculiar to their system or environment.

A typical Simics scripting example is shown in Code 1. It is a script that opens a
Simics checkpoint and then runs a command on the target. The parameters to the
command are sent in as Simics CLI variables to this script, but are also provided
with default values in case nothing is provided. The script branch at the end is a
construct that lets script code run in parallel to the target system and react to events

“Users can create their own custom

CLI commands…”

Figure 6: Simics target system inspection
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 17

in the simulation. This makes it very easy to automate and script systems containing
many different parts where the global order of scripted events is unknown before
the simulation starts. Separate scripts can be attached to the different parts.

Parameters to run:

if not defined opmode { $opmode = “software_byte” }

if not defined generations { $generations = 100 }

if not defined packet_length { $packet_length = 1000 }

if not defined packet_count { $packet_count = 1000 }

if not defined thread_count { $thread_count = 4 }

if not defined output_level { $output_level = 0 }

Ensure stall mode to enable cache analysis

sim->cpu_mode = stall

Load existing checkpoint

$prev_checkpoint_file = (lookup-file “%script%”) +

“/after-ca001-booted-and-setup.ckpt”

if not (file-exists $prev_checkpoint_file) {

 interrupt-script “Please run ca001 script first

to establish the checkpoint!”

} else {

 read-configuration (lookup-file $prev_

checkpoint_file)

}

$system = viper

$con = $system.console.con

Script branch that will run the program and wait

for it to complete

by watching the target serial console

$prog_name = “/mnt/rule30_threaded.elf”

$cmd = (“%s %s %d %d %d %d %d \n” % [$prog_name,

$opmode, $packet_count, $generations, $packet_

length, $output_level, $thread_count])

script-branch {

 local $system = $system

 local $con = $con

 local $cmd = $cmd

 local $prompt = “~]#”

 add-session-comment “Starting run”

 $con.input $cmd

 $con.wait-for-string $prompt

 add-session-comment “Run finished”

 stop

}

Code 1. Example Simics Target Automation CLI Script
Source: Wind River, 2013

Intel® Technology Journal | Volume 17, Issue 2, 2013

18 | Simics* Overview

Using Simics scripts, it is easy to automate and replicate the setup of even the
most complex target systems. Multiple machines, boards, and networks can all be
set up, configured, and reliably reproduced. Compared to configuring hardware
lab setups for even small networks, Simics can save hours and days of setup time.

The article “Using Simics in Education” mentioned earlier describes how
network topologies are automatically generated in order to support networking
training, providing a typical example of the power of Simics scripting to
automate system setups.

Another use-case enabled by automation is testing of code as it is being built
or checked into version control. With Simics, it is quite easy to launch an
actual target machine (for any target architecture), load the software, and
test it. Physical hardware would be much harder to invoke on-demand and
automatically in this fashion.

“Using Virtual Platforms for BIOS Development and Validation” mentioned
earlier describes how BIOS code is tested on check-in, both before and after
the availability of silicon.

OS Awareness and Debugging
Simics includes a very powerful full-system debugger, based on Eclipse CDT
and some Wind River extensions. The debugger functionality is equally
accessible from the Simics command line, providing the ability to automate
debug tasks and to control the debugger from the CLI while looking at the
state of the system in the GUI.

The Simics debugger obviously supports reverse debugging, as well as user
operations that arbitrarily change the target’s state and time. Simics has the
ability to trace or put breakpoints on aspects of the target that are inaccessible
on the hardware, such as hardware interrupts, processor exceptions, writes
to control registers, device accesses, arbitrary memory accesses, software task
switches, and log messages from device models. In Simics it is possible to
single-step interrupt handling code and to stop an entire system, consisting of
multiple networked machines, synchronously.

As Simics models the actual hardware and runs the OS code just like the physical
hardware would, it does not directly know anything about the OS. Indeed, it is
not necessary to run an OS on a Simics model, “bare-metal” code is commonly
used for low-level tasks. Thus, for Simics to be able to provide advanced features
based on the OS running on the target a feature known as OS awareness is
necessary. OS awareness provides the user with a full software perspective of the
system, in addition to the hardware perspective. OS awareness allows Simics
investigate to the state of the target system and resolve the current set of executing
threads and processes. The OS awareness module for a particular OS knows the
layout and structure of things like process descriptor tables and run queues, and
can provide the debugger with information about the currently running processes
and threads. OS awareness lets the Simics debugger, scripts, and extensions act
when programs and processes are started, terminated, or switched in and out.

“Compared to configuring hardware

lab setups for even small networks,

Simics can save hours and days of

setup time.”

“The Simics debugger obviously

supports reverse debugging,…”

“OS awareness provides the user

with a full software perspective of the

system,…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 19

The debugger leverages OS awareness to allow debugging of individual
applications and threads, as well as stepping up and down through the software
stack layers. Symbolic debug information can be attached to processors
for bare-metal debug and to software stack contexts (like a kernel or user
application) for debugging only a certain part of the software system.

The Simics debugger is a full-system debugger, meaning that it connects to the
entire target system and not just a single processor or board. In Figure 7, we
see two target machines inside a single debug session (server_p and server_a),

“The debugger leverages OS awareness

to allow debugging of individual

applications and threads, as well as

stepping up and down through the

software stack layers.”

as well as OS awareness digging down to a certain thread inside the program
called “rule30_server.e” and doing source-level debug on this particular
program in the context of the overall system.

Checkpointing
Simics has been designed from the ground up to support checkpointing of
the simulation state. This gives Simics the ability to save the complete state
of a simulation to disk and later bring the saved state back and continue
the simulation without any logical interruption from the perspective of the
hardware model and the target software.

“Simics has been designed from the

ground up to support checkpointing of

the simulation state.”

Figure 7: Simics debugger
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

20 | Simics* Overview

Checkpoints contain the state of both the hardware and the software (which is
implicit in the hardware state as it is described by the contents of memory, disks,
CPU registers, and device registers). Based on our experience, Simics checkpoints
are portable across time and space, and let users do things like the following:

 • Restore the simulation state from a previous run for the same user on the
same machine as the checkpoints were taken. This helps an individual user
work more efficiently.

 • Restore on a different host machine. This means that checkpoints can be
shared between users, enabling all kinds of collaboration.

 • Restore into an updated version of the same simulation model. This makes
it possible to use checkpoints taken with older versions of a model, making
them portable across time.

 • Restore into a completely different simulation model that uses the same
architectural state. For example, a detailed clock-cycle driven model
initialized from a fast Simics run.

 • Replay a particular sequence of inputs captured in one simulation session
into a second simulation session.

Checkpointing can be used to support workflow optimization, such as a
“nightly boot” setup where target system configurations are booted as part of a
nightly build, and checkpoints saved. During the workday, software developers
simply pick up checkpoints of the relevant target states, with no need to boot
the target machines themselves.

Another important use of checkpointing is to package bugs and communicate
them between testing and engineering, between companies, and across
the world. Simics checkpoints make the reproduction of the bug and the
environment needed to reproduce the bug trivial.[2]

Simics checkpoints can contain an embedded history of asynchronous
inputs. This makes it possible to communicate a slice of time, and not just an
instantaneous state of the target machine. Alternatively, a checkpoint of a single
point in time can be used along with a script that drives the simulation in a
deterministic way to achieve the same effect.

Repeatability and Reversibility
Simics has been designed from the bottom up to be a repeatable and
deterministic simulator, with the exact same simulation semantics regardless
of the host machine. As long as asynchronous input to the simulator is being
recorded, any simulation run can be repeated precisely on any host at any time.
Note that determinism does not mean that the simulation always runs the same
target software in the same way. If the timing of any input, or any part of the
initial state changes, the simulation will execute differently.

Determinism does not prevent a user from exploring variations in target
software behavior. Rather, the user remains in control and can repeat any
simulation run where the variations triggered some interesting behavior.

“Checkpoints contain the state of both

the hardware and the software…”

“…package bugs and communicate

them between testing and engineering,

between companies, and across the

world.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 21

Based on repeatability, Simics also implements reverse execution and reverse
debugging, where the user can go back into the history of the system execution.
Reverse execution was incorporated in Simics 3.0 and launched in March of
2005, which makes it the first usable reverse execution implementation. This is
a powerful tool for software debugging, especially for intermittent and timing-
dependent bugs, which are difficult to reproduce on hardware using classic
iterative debugging. Note that Simics reverse execution applies to a complete
target system, including multiple processors, boards, and operating-system
instances. Network traffic, hardware accesses, and everything else going on in
the system is reversed, not just a single user-level process as is targeted by most
other reverse execution approaches such as gdb.[3]

A key enabler for determinism, checkpointing, and reverse execution is that
Simics simulation models do not normally use resources outside the simulator;
notice that the target machine is internal to Simics in Figure 3 and how the
network is isolated from the model in Figure 5. Hardware models live in
a completely virtual world and do not open files on the host or drive user
interaction directly. All external interaction is handled by the Simics kernel
and special infrastructure modules for text consoles, graphical consoles, and
network links. In the case that the outside world needs to be connected
to a model, Simics provides a recorder mechanism that can reliably replay
asynchronous input under reverse execution.

The article “Landslide: A Simics Extension for Dynamic Testing of Kernel
Concurrency Errors,” by Ben Blum, David A. Eckhardt, and Garth Gibson,
provides an example of a creative use of reverse execution. It is employed to
implement a backtracking search through the execution space of a concurrent
software stack.

Dynamic Configuration and Reconfiguration
A Simics simulation can be reconfigured and extended at any point during a
simulation. New modules can be loaded and new hardware models and Simics
extensions added. All connections can be changed, and simulation models
deleted or disconnected from the running system.

Such changes are done from scripts, the Simics command-line, and the System
Editor in Eclipse at will. This dynamic nature of a system is necessary to
support system-level development work and to support the dynamic nature of
the target systems discussed in the introduction.

Extensibility and Programmability
Simics is an extensible and programmable system. Any Simics user is able to
build not just new device models and system configurations, but also arbitrary
Simics extensions. With the Extension Builder product, users have access to the
complete Simics API and can basically implement any functionality they want
to. New functionality often starts out as scripts, but over time it migrates into
custom Simics modules in order to make the setup more robust and to achieve
higher performance.

“…Simics reverse execution applies

to a complete target system, including

multiple processors, boards, and

operating-system instances.”

“Any Simics user is able to build not

just new device models and system

configurations, but also arbitrary

Simics extensions.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

22 | Simics* Overview

The article “Software Power and Performance Correlation on Simics” by Parth
Malani and Mangesh Tamhankar describes an implementation of a power
estimation tool inside of Simics, quite radically extending the kinds of data that
can be collected from Simics.

The article “Sim-O/C: An Observable and Controllable Testing Framework for
Elusive Faults,” by Tingting Yu, Witawas Srisa-an, and Gregg Rothermel, and the
article “Landslide: A Simics Extension for Dynamic Testing of Kernel Concurrency
Errors,” mentioned earlier both provide examples of how custom Simics modules
can be used to build powerful software verification tools on top of Simics.

External World Connectivity
A simulator used for system development and software development often
needs to include more than just the computer system and its software. In some
way, the outside world needs to be introduced into the system.

The most basic connections are the serial and graphics consoles provided with
Simics to allow a user to interact with the simulated computer system. It is also
quite common to connect Simics simulated machines to the real world via Ethernet
networks and serial ports, using various real-network systems to bridge between the
physical world and the virtual system (as illustrated in Figure 5). In this way, Simics
target systems have been used in hardware-in-the-loop simulations.

Today, it is very common to use simulation of the physical world during the
design of products like vehicles, space crafts, and engines. Such environment
simulators can be integrated with Simics, creating holistic models that encompass
all aspects of the target system. Essentially, hardware-in-the-loop is replaced by
simulation-in-the-loop, making it possible for any developer to have a complete
cyber-physical system on their desk for software testing and debugging.

Figure 8 shows how such a setup is achieved. On the Simics computer side, there
need to be models of the actual devices the computer uses to sense and control
its environment. Then, the environment model is either run inside of Simics, or
(more commonly) in a separate process communicating with a proxy module in
Simics over a network socket or other inter process communication mechanism.

Simics Performance Techniques
Simics is designed from the ground up to be a fast simulator in the tradition of
software-oriented simulators going back to the 1960s.[4] The key design goal is
that it is better to run a whole software stack with a low level of timing fidelity,
rather than run a very small piece of software with a high level of timing
fidelity. For most software, detailed hardware timing simply does not matter
much, and Simics takes advantage of this to create a very fast simulator.

Transaction-Level Modeling
Simics is built on the ideas that are now generally known as transaction-
level modeling. All memory accesses in Simics are performed as synchronous
transactions that pass through the entire hierarchy of memory maps, call a
device function, and return immediately.

“…making it possible for any

developer to have a complete cyber-

physical system on their desk for

software testing and debugging.”

“For most software, detailed hardware

timing simply does not matter much,

and Simics takes advantage of this to

create a very fast simulator.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 23

The Simics memory model is similar to the SystemC TLM 2.0 loosely
timed (LT) model[5] in that a memory access is a blocking call. However, the
Simics model is a special case of the LT model with a zero time delay; this is
sometimes referred to as software-timed (ST) or programmer’s view (PV). The
different common timing models are illustrated in Figure 9.

Figure 9: Simics TLm abstraction
(Source: Intel Corporation, 2013)

Software Timed (ST) Zero Delay Transaction

Clock

Simulation Event Atomic Uninterruptable Chunk

Bus Cycle Accurate (BCA) Request RequestData Data Data Data Data

Approximately Timed (AT) RequestRequest Data

Loosely Timed (LT) Data

Figure 8: Simics and physics simulators
(Source: Wind River, 2013)

Simics

Host OS

Physics
Simulator

Application

Environment
Simulation Module

Environment
Simulation Proxy

Target OS

Sensor Input

Actuator Output

Host Hardware

Target HW

Intel® Technology Journal | Volume 17, Issue 2, 2013

24 | Simics* Overview

Often, immediate completion of an operation when a device register access
occurs is sufficient for modeling a device. When hardware units need to raise
completion interrupts or change status registers after a significant time, events
are used. The device model posts an event for some point in the future and
then completes the current operation. When the time for the event comes, the
device model gets a callback and it can set status bits, trigger interrupts, and
complete work that should not be observed by the software until that time.
Simics devices do not use threads to model time, only events. This principle
is applied to all types of communication in Simics, including networks,
serial lines, and buses connecting hardware units. It opens up for a host of
optimizations in the core simulation system.

Still, it is possible to connect more detailed models into Simics. Typically,
most of the system runs at the standard Simics level of abstraction in order to
maximize speed, with a few units replaced with detailed models driven by the
software running on the fast Simics models.

The article “Simics–SystemC* Integration” by Asad Khan and Chris Wolf
describes how detailed SystemC models can be integrated into Simics, creating
a hybrid setup with a good balance between performance and simulation
detail. It is also common to connect Simics with hardware emulators.

Temporal Decoupling
Temporal decoupling is a standard technique for improving the performance of a
simulation containing multiple concurrent units. Rather than switching between
the units at each step of the simulation, such as a clock cycle, each unit is allowed
to run for a certain amount of virtual time, its time quantum, before switching to
the next unit. Temporal decoupling has been in use for at least forty years in the
area of computer simulations[5] and is a crucial part of all fast simulators today[6].
Experience shows that using a fairly large time quantum is critical to achieving
really high simulation speeds. In our experience, performance typically increases
by a factor of 100 from a time quantum of 10 cycles to a time quantum of
100,000 cycles. As far as the software is concerned, time quanta below 100,000
cycles tend to be unnoticeable.

Fast Processor Simulation
Simics CPU models employ JIT simulation techniques where the target CPU
code is translated into code for the host CPU. This allows Simics to reach
speeds in excess of 1000 MIPS when simulating compute bound code on
nonnative instruction sets such as a Power Architecture target on an Intel®
architecture host.

For Intel architecture targets, Simics also takes advantage of the Intel®
Virtualization Technology (Intel® VT) found in Intel processors to run the
target code directly on the host. This makes it possible to achieve performance
close to native speeds.

Another important processor simulation technology is hyper-simulation, where
the processor model skips through idle time in a single simulation step, rather

“…detailed SystemC models can be

integrated into Simics, creating a hybrid

setup with a good balance between

performance and simulation detail.”

“This allows Simics to reach speeds in

excess of 1000 MIPS…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 25

than going through it cycle by cycle. For example, if an Intel architecture
processor executes the HALT instruction, it will not do anything until the next
interrupt. Since Simics knows when the interrupt will happen, time is advanced
immediately. This is enabled by the architectural isolation of targets from their
environment, as illustrated in Figure 3. Simics hyper-simulates defined idle
instructions, but can also automatically detect loops that do nothing except wait
for an event and immediately skip forward to the loop exit condition. This means
that hyper-simulation applies to many operating system idle loops, even when
such loops do not make use of power save or idle instructions.

Multithreaded Simulation
Simics makes use of multiple host processor cores to simulate the target system.
When running in multithreaded mode, Simics still implements precisely
the same target semantics and behavior as when running single threaded.
This means that the simulation behavior is independent of the host, and
that simulation repeatability is maintained as checkpoints and setups are
communicated between Simics users.

When the processor power (or memory) of a single host is insufficient to run a
large system, Simics can also use distributed simulation. In such a setup, multiple
Simics processes running on different hosts are connected into a single coherent
and time-synchronized simulation system. Multithreading lets Simics take
advantage of scale-up of individual hosts, and distribution takes advantage of
scale-out as more simulation hosts are added. See the article by Rechistov for an
example of scaling up and scaling out Simics to run a very large target system.

System Modeling
Getting a model in place for a relevant target system is a prerequisite to
using Simics. Without some virtual hardware to run on, software will not be
particularly interesting.

Using Existing Models
The simplest way to get a model is to use one that already exists. This is a fairly
common case in practice, since Intel and Wind River have a substantial library
of existing models that can be used. For example, Intel has created models of
quite a few modern Intel hardware platforms, and such platform models can be
used with very little work. Over time, platform models (typically of reference
boards) tend to be customized to become models of the actual boards used in a
particular system.

For other users, a standard system might be sufficient. Simics ships with Quick
Start Platforms (QSP), which provide a simple idealized multicore system that
runs Wind River Linux and VxWorks by using customized BSPs. The QSP
provides serial ports, Ethernet ports, timers, and disks. The QSP will not run
the same bootrom and OS image as a real board, but it will in general run user-
level application binaries compiled for the real system. In this way, they provide
a system that gets a user started quickly and that is entirely sufficient for using
Simics features to debug, test, and analyze software applications.

“Simics makes use of multiple host

processor cores to simulate the target

system.”

“…Intel and Wind River have a

substantial library of existing models

that can be used.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

26 | Simics* Overview

Device Modeling
If a model does not exist, Simics provides the tools necessary to quickly
and efficiently develop new models that can be easily integrated into
existing targets. The core of building models of new hardware in Simics
is the modeling of the device found in the new hardware. As mentioned
above, Simics provides a C API and ABI meaning that models written in
almost any language can be integrated into Simics. However, Simics also
provides its own domain specific language, the Device Modeling Language
(DML), which is specifically developed to allow rapid development of
robust device models for Simics. Besides DML, the other most commonly
used languages for creating device models are C, C++ (including
SystemC), and Python.

DML essentially wraps snippets of C code inside a language designed to make
it easy to express device register maps and other common hardware modeling
constructs. DML is based on the view that modeling is programming, and tries
to make the code required to describe a device model as short and concise as
possible.

Key features supported by DML include expressing register maps, bit
fields in registers, bit-endianness, byte-endianness, multiple register banks,
simulator kernel calls such as event posting, and the connections between
cooperating device models. Templates, not to be confused with C++
templates, are used to provide reuse for repeated patterns of code. DML
cuts down on repetitive coding and makes device model code easier to write
and maintain. DML can also be used to wrap existing C and C++ models
of algorithms and core hardware functionality into a register map and
Simics model, enabling their use inside of a Simics virtual platform. DML
separates declarations and definitions, allowing reuse of artifacts from the
hardware design by automatically converting register descriptions to DML
declarations.

The article “Device Driver Synthesis” by Mona Vij et al. describes a creative use
of the device models created for Simics. They use DML models of hardware
created as part of the hardware design process as an input to a tool that creates
device drivers.

The article “Using Simics in Education” mentioned earlier contains an example
of using DML to create a device for the purpose of training in device driver
development.

No matter how device models are programmed, the recommended
methodology in Simics is to build functional tests that test a device in isolation
before integrating it into a system. For this purpose, a test framework written
in Python is provided, along with an Eclipse GUI to make running and
inspecting tests a natural part of the development flow.

Figure 11 shows some of the Eclipse views provided by Simics to aid
modeling. We can see the Test Runner in the upper right-hand corner, and

“…Simics provides the tools necessary

to quickly and efficiently develop new

models that can be easily integrated into

existing targets.”

“DML is based on the view that

modeling is programming,…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 27

Figure 11: Simics modeling in eclipse
(Source: Wind River, 2013)

the Sample Device browser below it. The Eclipse “New Sample Device”
wizard creates new devices, and other modules, based on the examples
provided with Simics. The Sample Device view lets you look at the
example code without necessarily creating a new device model in your own
workspace. This is quite convenient when borrowing functionality from an
example.

Component System
To aid configuration and management of a simulation setup, Simics has the
concept of components. Components describe the aggregations of models
that make up the units of a system, such as disks, SoC, platform controller
hubs, memory DIMMs, PCI Express* cards, Ethernet switches, and similar
familiar units. They carry significant metadata and provide a natural map of
a system.

Figure 12 shows a stylized example of a component hierarchy, where a system
is built from two boards connected by an Ethernet network. At each level
of the hierarchy, device models can be present, as well as components. The
component system provides both structure to the models and a hierarchical
namespace for the running simulation, making it easy to reuse components and
devices without any risk of names clashing.

“The component system provides

both structure to the models and

a hierarchical namespace for the

running simulation,…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

28 | Simics* Overview

Figure 12: Simics component system
(Source: Wind River, 2013)

F
la

sh

F
P

G
A

PHYPHY
etc...Eth link

PICCPU CPU

Ser PCI Time Eth

Component

DeviceEth

Ethernet Board 2Board 1

System

SoC

D
D

R
 R

A
M

CPU complex

Components encapsulate the details of connections between parts of the
system, creating abstractions like DDR memory slots, PCIe slots, and Ethernet
ports. Components can be used to change the simulation configuration both
during initial setup and at runtime.

Figure 13 shows an example of the system editor view in Eclipse with an
instantiated real component hierarchy from a simple target called “Viper.”
The Viper target has a model of an Intel® Core™ i7 processor and an Intel®
X58 chipset, and it can be seen how it is hierarchically constructed from
components reflecting the logical hierarchy of the physical hardware.

Components usually have parameters like the number of processor cores
to use in a processor, the size of memories, the clock frequency of a core,
or the MAC addresses of an Ethernet controller. Components provide the
standard way to create Simics simulation setups, and a normal Simics
setup script simply creates a number of components and connects them
together.

Summary
In this introductory article, we have presented the Simics technology along
with some of its use cases and features. The following articles in this issue of the
Intel Technology Journal will describe particular ways in which Simics has been
used at Intel, Wind River, and in academia.

“Components usually have parameters

like the number of processor cores to

use in a processor, the size of memories,

the clock frequency of a core, or

the MAC addresses of an Ethernet

controller.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* Overview | 29

References
[1] Introspection of a java virtual machine under simulation, Tech.

Rep. SMLI TR-2006-159, Sun Labs 2006.

[2] Engblom, Jakob: Transporting Bugs with Checkpoints, in
System, Software, SoC and Silicon Debug Conference (S4D 2010),
Southampton, UK, September 15–16, 2010.

[3] Engblom, Jakob: A review of reverse debugging, in System,
Software, SoC and Silicon Debug Conference (S4D 2012), Vienna,
Austria, September 19–20, 2012.

[4] Kazuhiro Fuchi, Hozumi Tanaka, Yuriko Manago, and Toshitsugu
Yuba. 1969. A program simulator by partial interpretation.
In Proceedings of the second symposium on Operating systems
principles (SOSP ‘69). ACM, New York, NY, USA, 97–104.
DOI=10.1145/961053.961092 http://doi.acm.org/
10.1145/961053.961092

Figure 13: example of a component hierarchy
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

30 | Simics* Overview

[5] IEEE Standard for Standard SystemC Language Reference
Manual, IEEE Std 1666, 2011.

[6] Cornet, J., Maraninchi, F., Maillet-Contoz, L. 2008. “A method
for the efficient development of timed and untimed transaction-
level models of systems-on-chip.” DATE ’08: Proceedings of the
conference on Design, automation and test in Europe, pp. 9–14. doi
http://doi.acm.org/10.1145/1403375.1403381

[7] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg,
G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full
system simulation platform. Computer 35(2), 50–58 (2002).

[8] Jakob Engblom, Daniel Aarno, and Bengt Werner, 2010. “Full-
System Simulation from Embedded to High-Performance
Systems”. Processor and System-on-Chip Simulation, Rainer
Leupers and Olivier Temam (ed), Springer New York Dordrecht
Heidelberg London, ISBN 978-1-4419-6174-7,
DOI 10.1007/978-1-4419-6175-4.

Author Biographies
Daniel Aarno is an engineering manager in Intel’s Software and Services
Group where he leads a team working on the Simics full system simulation
product. Daniel joined Intel in 2010 through the acquisition of Virtutech.

Daniel holds a master’s degree in electrical engineering and a licentiate’s degree in
computer science. Prior to joining the Simics team at Virtutech, Daniel was doing
research at the Centre for Autonomous Systems at the Royal Institute of Technology,
focusing on human-machine collaboration. During this time he took part of the
PACO+ consortium within the 6th framework for research in the EU.

Jakob Engblom is a technical marketing manager for tools at Wind River,
with an emphasis on product management for Simics as a commercial product
(for end users outside of Intel). He has been working with Simics since 2002,
when he joined Virtutech right after getting his PhD in Computer Systems
from Uppsala University, Sweden. He also holds a master’s degree in computer
science from Uppsala University. Over the years, he has worked with Simics in
a variety of roles, including outbound marketing, inbound marketing, sales and
field engineering, managing the academic program, and product management.
He has written and presented more than 100 articles, papers, and talks on a
variety of embedded systems topics since 1997. Currently, his main interests
are in computer simulation, general simulation, programming, and debugging.
He has a personal blog at http://jakob.engbloms.se, and blogs regularly on the
Wind River tools blog at http://blogs.windriver.com/tools/.

32 | Using Virtual Platforms for BIOS Development and Validation

Intel® Technology Journal | Volume 17, Issue 2, 2013

Creating a simulation environment for the purpose of BIOS debugging and
validation requires in-depth simulation models. A separation of initialization
versus runtime models is required to optimize performance, improve
simulation initialization accuracy, and the debugging environment. The
usage model for BIOS debugging and validation can be broken up into two
categories: pre-silicon (before initial hardware is available) and post-silicon
(after initial hardware is available). Specific debugging features are required to
debug BIOS programs due to the large volume of interaction with the system
hardware, its impact to the simulation environment, and a desire to replicate
the power-on environment interfaces. Specific attention should be given
to signaling a software programming error as soon as possible. In addition,
specific simulation techniques need to be applied for BIOS memory reference
code support. Lastly, using the simulation for validation requires configuration
flexibility and fault injection to fully validate all paths within the BIOS being
validated. This article describes the high level concepts and additional depth of
modeling used to approach debugging and validating BIOS with simulation
tools. Although the context of the article is BIOS development and validation,
the concepts can be applied to simulation for any firmware project.

Introduction
BIOS (Basic Input/Output System) refers to the software that runs after initial
power is applied to the computer platform. BIOS’ primary function is to
initialize all hardware components to enable the computer platform to run
higher level software (such as an operating system). Developing, debugging, and
validating BIOS using software simulation demands additional functionality
and simulation depth. Particular attention needs to be given to signaling errors
at the time of register write, platform configurability, and mechanisms for fault
injection. This article describes the basics of separating simulation runtime
versus initialization, pre-silicon versus post-silicon usage models, development
and debugging in the context of BIOS (specifically memory and processor
interconnect initialization code), and BIOS validation requirements.

Initialization versus Runtime
To fully understand the demands that BIOS places on a simulation tool, an
understanding of the differences between hardware initialization and runtime
environments must be understood. When hardware is first powered on, only
the minimal amount of components have power. Low-level firmware initializes
the minimal amount of hardware components to enable BIOS to execute.

“BIOS demands additional

functionality and depth from software

simulation.”

USIng VIrTUal PlaTfOrmS fOr BIOS DeVelOPmenT anD ValIDaTIOn

Contributor

Steve Carbonari
Intel Corporation

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 33

This initial state of platform hardware prior to BIOS execution will be referred
to as the initialization state. The BIOS executes to initialize the rest of the
hardware in preparation for the operating system to run. The state entered
after BIOS has executed and prior to the operating system is running will be
referred to as the runtime state. Refer to Figure 1.

In the initialization state only minimal hardware components are initialized.
The goal is to enable hardware components required to enable fetching and
executing BIOS, such as:

 ● CPU cores are initialized
 ● A path to the BIOS flash is established
 ● Processor interconnects are initialized and available in slow speed mode

with minimal routing

In the runtime state the hardware is fully functional for use by an operating
system. All hardware components are discovered and configured. In this state
several interfaces are transparent to the operating system and hidden by the
system memory map:

 ● Socket interconnects
 ● Memory channels and interleaving
 ● Memory type and speed
 ● Hardware testing interfaces

Many software simulation tools can provide a platform-level simulation interface
to support operating system and driver development. However, to support
BIOS development the simulation tool must simulate the initialization state to a
sufficient depth to support the configuration of a variety of hardware components

“1) In the initialization state only

minimal hardware components are

initialized.

2) In the runtime state the hardware is

fully functional for use by an operating

system.”

figure 1: Initialization vs. runtime States
(Source: Intel Corporation, 2013)

Function-Based Simulator

Runtime StateInitialization State

Inter-Processor
Interconnect Initialization

Platform-Based
Memory-Mapped

Routing

CPU Initialization

Memory Initialization

BIOS
Operating

System

Intel® Technology Journal | Volume 17, Issue 2, 2013

34 | Using Virtual Platforms for BIOS Development and Validation

that are not required (transparent) during the runtime state. In addition,
to support a seamless boot with optimal performance the transition from
initialization state to runtime state must be transparent to software and BIOS.

The Wind River Simics* implementation of memory spaces[1] provides a
mechanism that supports the transition of components from initialization to
runtime. When instructions are executed they access addresses. These addresses
are resolved using Simics memory spaces. If the address does not exist in the
Simics memory space infrastructure, an error is reported. The dynamic nature
of memory spaces allow them to be added and removed during the simulation
run. This provides the ability to only add memory spaces after the underlying
components have been fully initialized. More detail on how this mechanism
is used to support BIOS development will be described in the section
“Development and Debugging BIOS.”

Key to transitioning between initialization and runtime states is verifying the
initialization is completed per the hardware specification. In many cases registers
can be written with incorrect values that will not be discovered on real hardware
until much later, making debugging difficult. For example, hardware decoders are
programmed by BIOS to enable access to memory. The hardware does not check
to see if the decoders are programmed correctly. Consequently, if BIOS programs
a memory decoder to point to nonexistent memory it will not be discovered
until an application accesses the memory region resulting in a hardware machine
check and system halt. Therefore, just modeling the components exactly matching
hardware behavior is insufficient. The simulator must also add specific checks to
verify registers were programmed correctly prior to switching to the runtime state.

Usage Models
The two primary usage models for BIOS development are pre-silicon and post-
silicon. Both environments present unique requirements on the simulation tool
used.

Pre-Silicon Usage Model
Pre-silicon validation is the activity of validating software prior to silicon
availability. In a pre-silicon environment a variety of tools are available for
BIOS development and debugging:

 ● Software simulation—Simulation tools focus on the functional model and
interfaces of the hardware platform. They are fast and easy to update to
accommodate the latest hardware changes. However, they usually do not
model timing characteristics and are less accurate.

 ● RTL (resistor-transistor logic) emulation—RTL emulator’s use
programmed field-programmable gate arrays (FPGAs) to emulate the
hardware based on the RTL. These are very accurate models. However, they
are slow, expensive, and take time to update to the latest hardware changes.

 ● Pre-power on platforms—Pre-power on systems use interposers on
existing platforms to allow for testing of components that have completed

“The implementation of memory spaces

provides a mechanism to transition from

initialization to runtime states.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 35

development. These systems are expensive, available in limited quantities,
and require BIOS changes to use.

 ● BIOS support applications—These are applications developed by BIOS teams
for specific point testing and data gathering. The primary function is to gather
BIOS behavioral and flow information to be evaluated by design engineers for
correctness (for example, an application that uses simple text file formats to
take register input values and capture register output values from BIOS).

Consequently, due to cost and availability, the primary tool used for BIOS
development and debugging in the pre-silicon environment is functional
software simulation.

In this environment, hardware interfaces and feature sets can change
frequently, requiring maximum flexibility in the simulation tool to quickly
adapt to hardware specification changes. In addition, the development of the
simulation tool is based on the same specifications as the BIOS development.
Those specifications are usually not complete, so staged development is
required and close coordination with the BIOS development team regarding

“The development of the simulation

tool is based on the same specifications

as the BIOS development.”

BIOS Development Release

Yes

Yes and No

Update Register and Simulation
Models

BIOS Development Using Simulator

BIOS Nightly Build
Validation Using Simulator

BIOS Design Validation Using
Simulator

Register or Spec
Change?

Figure 2: Pre-silicon BIOS development flow
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

36 | Using Virtual Platforms for BIOS Development and Validation

feature set development and timelines is required (See Figure 2 for pre-silicon
BIOS development flow). In this stage:

 ● The simulator is the primary BIOS development tool
 ● The functionality of the simulation tool is focused on supporting the

hardware power-on configurations
 ● Validation teams use the simulator to pre-validate BIOS as well as the

validation tests that will be run on hardware
 ● The BIOS team uses the simulator as a check-in criteria test for software

check-in

To facilitate smooth BIOS development in a simulated environment, a
mechanism is implemented to communicate between the BIOS and the
simulator. The mechanism enables the BIOS to recognize it is running in a
simulated environment and allow it to tell the simulation it is skipping sections
of BIOS that are not developed. The mechanism consists of using an offset in
PCI configuration space of a valid bus/device/function but where no register
exists in real hardware. When queried on real hardware the register will return
0 per the PCIe specification requirements. However, on the simulator it will
return a nonzero value to indicate the BIOS is running on the simulator. It also
provides bit fields that can act as a means to communicate between BIOS and
simulator-specific feature enabling.

This mechanism is used:
 ● To increase performance of BIOS boot by skipping delay loops required for

booting on real hardware.
 ● To recognize a variety of environments, such as simulation and emulation.
 ● To work around features not yet developed in BIOS or the simulation on a

temporary basis.
 ● To enable a single BIOS binary build that can run on hardware and the

simulation.
 ● To provide a convenient mechanism to test a simulator’s ability to run an

unmodified BIOS at any time.

Post-Silicon Usage Model
In the post-silicon environment hardware is available in limited quantities and
configurations. The use of pre-power on systems is stopped and RTL emulation
is slowed down. Early during the post-silicon phase the hardware availability
and supported hardware configurations are limited. Consequently, the use of
simulation continues:

 ● For those configurations not yet available in hardware
 ● In lieu of hardware availability
 ● Due to cost of power-on hardware
 ● In day-to-day BIOS development

“Early during the post-silicon phase the

hardware availability and supported

configurations are limited.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 37

The simulation tool flexibility and availability of a variety of debug and
inspection tools provides a cost-effective and useful environment throughout
the post-silicon phase. See Figure 3 for post-silicon BIOS development flow.

As more hardware becomes available and more complex configurations of
hardware are supported, the use of the simulation tool will gradually diminish.
In this stage:

 ● The development shifts from supporting basic configurations to supporting
complex configurations.

 ● The validation teams continue to use simulation to prepare tests for more
complex configurations.

 ● The simulator is the primary BIOS development tool, but power-on
systems are increasingly used.

 ● The BIOS team continues to use the simulator as a development tool
and as a check-in criteria test for software check-in due to low cost and
accessibility.

Sync Register Model to Silicon
Release

BIOS Development Using Simulator
and Hardware

BIOS Nightly Build
Validation Using Simulator and

Hardware

BIOS Design Validation Using
Hardware

BIOS Development Release

New Silicon
Release

Yes

Yes and No

figure 3: Post-silicon BIOS
development flow
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

38 | Using Virtual Platforms for BIOS Development and Validation

Development and Debugging BIOS
The simulation tool is used heavily during early development and debugging
of BIOS. Ideally the simulation tool will model the platform with enhanced
features specific for debugging BIOS. However, for the specific case of
BIOS development and debugging, many areas of the platform need not be
simulated:

 ● Specific new processor instructions
 ● Registers that are not used by BIOS during boot or execution (such as

performance measurement registers)

In addition, some of the BIOS requirements can be simulated in a fashion not
necessarily true to the platform but still providing the necessary functionality
for debugging. Memory channel level interleaving configurations can be
supported without having to support the actual interleaving of reads and
writes to memory. This allows memory accesses to be supported in a simple
linear fashion, providing the best performance. Consequently, a simulation
tool can provide a functionally complete simulation to satisfy BIOS pre-silicon
validation requirements without simulating the entire platform.

In Simics the implementation of memory spaces enables the separation of
memory channel interleaving configuration and application reads and writes.
Memory channel interleaving is configured prior to memory being made
available to the application level via a Simics memory space. As registers for
channel interleaving are written the values are checked with the simulated
memory configuration to confirm a valid interleaving configuration. If the
configuration is invalid then an error is reported. The memory space for
DRAM memory space is enabled later as a linear address space when the BIOS
programs the decoders.

Understanding the specific BIOS requirements for platform simulation can
allow a tool to focus on areas of most importance first when supporting
BIOS pre-silicon validation. To demonstrate specific requirements for BIOS
development and debugging we will examine the requirements in the context
BIOS Memory Reference Code (MRC) and Intel® Quickpath Interconnect
code (Intel® QPI).

Register Modeling
BIOS development starts when initial specifications and register definitions are
available. The initial register definitions and specifications are incomplete and
change frequently during the pre-silicon phase. Consequently, to avoid delays
in BIOS development and minimize frequency of simulator releases, specific
aspects of register modeling needs to be user configurable, such as:

 ● Default values
 ● Attributes (Read/Write, Read Only, Sticky, and so on)
 ● Field definition
 ● Offset (where in PCI space the register resides)

“1) Simulation can provide a

functionally complete simulation to

satisfy BIOS requirements without

simulating the entire platform.

2) The initial register definitions are

incomplete and change frequently.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 39

Memory register sets can be very large and complex. In addition, due to
the relatively fast pace of technology changes the register interface changes
frequently. BIOS software must adapt to the register changes during the
hardware design. As the design changes, giving the BIOS engineer the ability to
change register values or get an updated release with new registers in a timely
manner is critical. Ideally the simulator should provide a user configurable
mechanism to change all the register values prior to starting the simulation.
For example, a user-editable file that contains register definitions is read and
configured at simulation startup.

In addition, to aid the BIOS with discovering register issues, the simulator tool
must provide flexible logging of all register accesses.

In Simics, default values are made user configurable via the attribute
mechanism, and a variety of logging register mechanisms exist. However, the
other register requirements are not user configurable. To mitigate this for BIOS
development, scripting has been developed to take register definition files in
XML format and convert them to Device Modeling Language (DML) register
definition code[2]. This enables a very quick turnaround and rerelease of the
simulator for register updates.

To support frequent updates of simulator packages, a utility was developed
outside of the standard Simics product that automates simulator package updates,
providing a simple yet effective method to update several different packages at once.
The update utility examines what is installed on the system, queries the package
repository server (location is configurable), and updates all packages selected in an
automated fashion with very little required interaction from the user. See Figure 4.

Signaling an Error or Warning on Register Access
The BIOS configures many hardware systems during the initialization state. In
many cases, the BIOS programming of the hardware system cannot be verified
until much later during the runtime state. If the BIOS incorrectly programs
the Source Address Decoders (SADs) to point to nonexistent memory, it
will not be discovered until the memory is accessed, usually later during
the runtime state. The SAD in hardware is responsible for mapping address
requests to the correct hardware component. Consequently, the simulation
tool must detect incorrect programming of registers (like the SAD) when
the register is configured by BIOS so the issue can be detected and easily
debugged. To achieve this goal the simulation tool must provide extra checking
that the hardware normally does not provide.

Simulation model enhancements should be made in the following areas to
support prompt error messages on register write:

 ● Register side-effect code is updated to check the values of the register write
to confirm the BIOS values are correct.

 ● Memory spaces are not added until it can be verified that the underlying
simulated hardware components have been initialized properly.

“BIOS software must adapt to the

register changes during the hardware

design.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

40 | Using Virtual Platforms for BIOS Development and Validation

 ● Interfaces between the register side effects and internal component modules
are defined so the register side effects can query the state of the underlying
component.

Several key enhancements to a simulation model SAD register write side effect
can be made to specifically support BIOS debug:

 ● Simulation memory spaces are mapped (enabled) only when BIOS writes
the SAD register and sets the enable bit.

 ● The values written to DRAM decoders by BIOS are checked to confirm the
underlying memory has been initialized. The simulator has knowledge of
the amount of memory available so when the BIOS programs a SAD for
greater than the amount of memory available, the simulator signals an error

figure 4: Simics package installer screenshot
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 41

at the time of register write to the SAD. Note that it is perfectly legal to
program the SAD for less memory than what is available.

 ● Processor interconnect routes from the source processor’s SAD being
programmed to the destination processor is verified using a query interface
to the processor interconnect simulation module. This mechanism enables
processor isolation and bring-up of complex multiprocessor topologies.

Modifying the simulator SAD implementation provides the following key
benefits to BIOS development and debug:

 ● Decoder programming errors are discovered at the time of register write.
 ● Processor interconnect paths are validated as result of decoder

programming.
 ● Uninitialized memory is exposed if an attempt is made to program a

DRAM decoder to a region that is not yet initialized.
 ● Application access to invalid memory regions are based on BIOS

programming of the memory regions.
 ● BIOS access to invalid memory regions is exposed because regions are

mapped only when BIOS enables them, modeling the hardware enabling
sequence.

Depth of Model to Support Initialization
Many hardware components require specific steps to initialize. Enforcing the
specific steps for hardware initialization of a component requires a finite state
machine (FSM) to be implemented in the simulator. FSM modeling is critical
to BIOS pre-silicon validation. This includes proper input register modeling,
state machine enforcement, and output register modeling. Furthermore, output
register data should be customizable to allow for a variety of results defined
by the user. Some state machines can have significant reuse from platform to
platform, such as, Double Data Rate (DDR) or Dual Inline Memory Module
(DIMM); some may need modification (Intel® QPI) and have to be rewritten
due to platform changes (memory controller).

Modeling for Memory Initialization
The BIOS MRC refers to the BIOS module responsible for discovering and
initializing the memory subsystem of the platform. BIOS MRC goes through
three basic high level stages:

 ● Memory discovery: BIOS uses out of band interfaces to discover what
memory and type are available.

 ● Memory training or DDRIO: BIOS configures the memory channels for
optimum speed and efficiency.

 ● Memory consolidation and enabling: BIOS consolidates the memory from
all sockets, configures reliability and performance features (DIMM sparing,
interleaving), and programs the system decoders to allow access to the memory.

To effectively debug BIOS MRC the simulation tool must implement specific
finite state machines. Memory initialization is the largest BIOS component

“1) Processor interconnect routes are

verified using an interface to the

processor interconnect simulation

module.

2) Some state machines can have

significant reuse from platform to

platform.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

42 | Using Virtual Platforms for BIOS Development and Validation

that changes from one platform to the next. The initialization of memory
encompasses several stages from reading basic DIMM data over SMBus, DDR
initialization, initializing clocks and timing parameters, to programming SAD.
The initialization of memory must be done with specific steps in a specific
order. This ordering can be at the DIMM level, channel level, and memory
controller level. Consequently, in-depth state machines are required by the
simulation to enforce any required memory initialization ordering. In addition
the state machines may cross component boundaries. Applying power may
require interfacing with a power control unit on the board instead of the
memory controller directly. Simulation of the following is required for BIOS
memory initialization:

1. Configurable memory topologies and programmable SPD data files.

2. DIMM discovery.

3. I/O modeling state machine: validation of I/O programming for memory
with error injection and programmable results.

a. DDR I/O programming: (CS, CKE, ODT, and so on). This programs
the I/O timings via the DDR bus. This includes enforcement of I/O
programming state machine, returning random, pseudo-random, or
preprogrammed training results values. With the DDR I/O model,
having the ability to fail or pass read and writes is based on strobe
delay values.

b. SMI I/O programming: This programs voltage, electrical, and some
timing parameters. Line equalization (EQ), voltage swings, and
electrical parameters are programed. The SMI I/O model, including
training, impedance and resistance (Icomp/Rcomp) compensation,
and other FSMs on the I/O side.

4. DDR State Machine as specified in the DDR specification. Refer to the
DDR specification for the full state diagram.[3] See Figure 5 for a simplified
DDR state diagram.

a. DDR states: Power, Reset Procedure, Initialization, ZQ Calibration,
Idle, MPR/MRS Write Leveling (MPR 1/2/3), Self-Refresh,
Refreshing, Pre-Charge Power Down, Activating, Active Power Down,
Bank Active, Reading, Reading A, Writing, Writing A, Pre-Charging.

b. DDR transitions commands: Active(ACT), Pre-Charge(PRE), Pre-
ChargeAll(PREA), Mode Register Set(MRS), Refresh(RE), ZQ
Calibration Long(ZQCL), Read, Read A, Write, Write A, Reset, ZQ
Calibration Short(ZQCS), Enter Power Down(PDE), Exit Power
Down(PDX), Self-refresh entry(SRE), self-refresh exit(SRX), Multi-
Purpose Register(MPR).

To support the specific needs of BIOS MRC the following should be simulated
in the model:

1. Configurable memory topologies and a variety of DIMM Serial Presence
Detect (SPD) data files. This is implemented using the configuration tool as
described in the section “Configuration Flexibility.”

“The initialization of memory must

be done with specific steps in a specific

order.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 43

2. SMBus interfaces for platform DIMM SMBus topologies are implemented
to enable BIOS MRC DIMM discovery. The implementation must include
the support for memory buffering technology.

3. Training results for DDR I/O and SMI I/O are the driving factors in
the BIOS execution flow. The simulator should provide a mechanism to
customize the waveform pattern returned as a result of the BIOS pattern
programming and the training stage. The values to define a waveform

Power
Applied

From any State
RESET

ZQCL

ZQ
Calibration

ZQCS,ZQCL

MRS

MPR,
Write Leveling

Vref, DQ
training

Self
Refreshing

SRX

REF

PreCharge
Power
Down

Activating

Active
Power
Down

ACT
PDX

PDX

PDE
Bank
Active

PRE,
PREA

PRE,
PREA

PRE,
PREA

Reading

Reading

Automatic Sequence

Command Sequence

Precharging

Reading

Read

ReadA

Write

WriteA

Writing

PDE

Idle Refreshing

SRE

Power
On

Reset
Procedure

Initialization

Figure 5: Simplified DDR state diagram[3]

(Source: From JESD79-3, Copyright JEDEC. Reproduced with permission by JEDEC.”)

Intel® Technology Journal | Volume 17, Issue 2, 2013

44 | Using Virtual Platforms for BIOS Development and Validation

pattern (period, phase, dutycycle, noisewidth) can be assigned via variables
or attributes for the simulation memory model. In addition, attributes to
define bit lane and nibble based skew are available to further customize the
pattern across the lines on the DDR bus depending on the DDR training
phase currently being executed.

4. A DDR state machine. The simulator should implement a finite state
machine modeling the DDR state machine and enforces compliance
on a per DDR rank basis during memory initialization. DDR memory
training addressing is on a per rank basis. DDR DIMMs can have one or
more ranks per DIMM (for example, a quad rank DDR DIMM has four
ranks). As training commands are created and sent, a standard interface
communicates with the simulator DDR model on a per rank basis to keep
track and advance the DDR state machine.

5. The MRC training algorithms are in many cases defined late in the
development cycle. Consequently, to enable debug and development
of other BIOS features it is required to skip the memory training phase
of boot. The BIOS needs to communicate to the simulator that it is
skipping memory training so the simulator will not enforce the training
state machines and cause a simulation halt. The simulator implements a
mechanism for BIOS to communicate a specific feature is not developed,
in this case memory training (mechanism detail is described in the section
“Pre-Silicon Usage Model”). This allows other features of BIOS to continue
development when memory training algorithms are not defined.

Timing and Analog Considerations:
In some cases even a functional simulator must provide timing-related information
to aid in development and debugging of software. The BIOS memory reference code
puts significant demands on a software functional simulator due to the timing-
related nature of its process. The programming of the memory interfaces requires
several stages of timing-related testing and programming commonly referred to as
DDRIO. The DDRIO stage presents significant problems for a simulation tool.
Due to the analog nature of the process and complex flows, significant detail and
depth is required from the simulation tool.

The analog results for DDRIO are usually provided in results registers. The
simulator must provide support for the BIOS engineer to customize the results of
the registers holding the analog data. A key advantage of using a simulation tool
over hardware is the ability to change hardware return values. In the case of BIOS
memory code, the ability to provide user-customizable data to the simulation to
return invalid and boundary condition values for analog data provides an effective
means to test the BIOS memory training code in ways that cannot be done on
hardware. See the sections “Configuration Flexibility” and “Fault Injection.” The
interface should be easy to use and understand due to the complexity inherent in the
several stages of analog training of the BIOS MRC performs.

The extent of simulator support related to BIOS MRC validation and timing is
localized to platform registers that return timing information for the purposes of
hardware initialization.

“1) The simulator should implement a

finite state machine modeling the DDR

state machine.

2) Even a functional simulator must

provide timing-related information.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 45

Modeling for Intel® Quickpath Interconnect Initialization
Intel® QuickPath Interconnect provides a high speed inter-processor
communication link.[4] The Intel QPI architecture supports a variety of
topologies. See Figure 6. In conjunction with low-level firmware (FW) the
BIOS is responsible for Intel QPI initialization across all topologies. The Intel
QPI fabric initialization at a high level consists of[5]:

1. Path establishment: Hardware or microcode initializes a path from the
System Bootstrap Processor (SBSP) to the location of the BIOS code. The
SBSP is responsible for the overall platform initialization.

2. Topology discovery: The BIOS running on the SBSP controls the overall
flow of topology discovery. However, it depends on firmware running on
each Processor Bootstrap Processor (PBSP). The PBSP is responsible for
initialization localized to the socket. After topology discovery the range of
resources available are determined.

3. Link initialization: BIOS running on the SBSP with support from PBSPs
programs the interconnect link registers to initialize the fabric for the
topology discovered. A reset is performed for the values to take effect.

“The Intel QPI architecture supports a

variety of topologies.”

Skt0

1S 2S 2S

Skt0 Skt1 Skt0 Skt1

Skt1

Skt1 Skt1Skt5 Skt5 Skt7

Skt1 Skt2Skt2

Skt2 Skt2

Skt1

4S Fully Connected4S Ring3S Ring

6S 8S

Skt2

Skt0Skt0 Skt3 Skt0

Skt0 Skt0

Skt3

Skt3 Skt4 Skt6Skt4Skt3

figure 6: examples of Intel® QPI topologies
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

46 | Using Virtual Platforms for BIOS Development and Validation

4. Route initialization: BIOS programs the interconnect routing tables and
buffers to optimize path lengths and performance between sockets.

5. Decoder initialization: Once the Intel QPI fabric is initialized the decoders
are programmed to enable cross-socket access.

To support Intel QPI initialization the following must be simulated:

1. Customizable Intel QPI topologies.

2. The firmware role in Intel QPI initialization. A significant portion of the
Intel QPI initialization is driven by embedded firmware. The flows of the
embedded firmware must be modeled to enable validation of BIOS flows
for Intel QPI initialization.

3. Inter-processor access constraints prior and after processor interconnect
links have been initialized.

4. The Intel QPI initialization state machines that encompass both the BIOS
and firmware flows.

5. Validation of BIOS route programming.

To support Intel QPI initialization flows, the simulation model should
implement the following:

1. The configuration tool as described in the section “Configuration Flexibility”
is used to define a variety of Intel QPI topologies based on the platform.

2. A simulation module that represents the firmware role of Intel QPI
initialization. This module initializes to the state after power-on but
immediately before BIOS starts execution. A communication mechanism
between the firmware simulation module and the processor interconnect
simulation module allows the processor interconnect simulation module to
query state of the firmware.

3. An interface between the processor interconnect simulation module and the
decoder simulation module is implemented to allow the decoder simulation
module to query the processor interconnect simulation module prior to
enabling a decoder that would require traversing the processor interconnect
fabric to get to the destination processor. A route checking algorithm should
be implemented that checks route existence using the BIOS programmed
routes. This facilitates reporting errors at the time of decoder initializing.

4. Several small state machines are implemented to support Intel QPI
initialization, link parameter exchange, and facilitate BIOS error checking.

5. As routes are programmed by the BIOS, the processor interconnect
simulation module validates that the destination processor ID exists and is
connected as defined in the route table entry.

Debugging Tools
The primary tool used by BIOS engineers for platform debugging after
hardware power-on (post-silicon) is ITP (In-Target-Probe). An ITP is a tool
used to control the target hardware at the register level. The ITP tool allows
full control of the target hardware with access to all chipset registers, processor

“A significant portion of the Intel QPI

initialization is driven by embedded

firmware.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 47

registers, and instructions. In addition, the ITP tool provides standard
debugging features such as breakpoints and code stepping. Consequently, it is
required that at a minimum the simulation supports the ITP debugging tool
interfaces, so long as it supports all the standard ITP commands and features
required by the BIOS. This allows the BIOS engineers to validate test scripts as
well as BIOS code prior to hardware availability.

In addition, support of an advanced source-level debugger is desired. Simics
support of the Eclipse debugging environment advances BIOS debug capability
beyond the support of existing debug tools.

The key requirements of debugging tools used for BIOS debugging are:

 ● break on register read/write
 ● break on specific register value read/write
 ● break on memory location read/write
 ● break on I/O port read/write
 ● conditional break at a specific location in code
 ● access both Machine Status Registers (MSRs) and Chipset Status Registers

(CSRs)
 ● examining processor state (for example, dump processor status registers)
 ● stack trace
 ● source level debug, code stepping, variable examination, and so on
 ● support of microcode update
 ● read/write MSRs or CSRs manually
 ● read/write I/O ports
 ● ability to examine current memory map

Multiprocessor Support
In large multiprocessor systems there are many components that are initialized
in parallel. A simulation tool must provide multiprocessor support to enable
testing of parallel flows.

Most multiprocessor systems today contain multiple memory controllers to
support balanced system performance. To enable faster boot times, the BIOS
MRC executes memory initialization in parallel across the memory controllers
in the system. A key component to the BIOS MRC parallel execution
is consolidation and communication between the separate BIOS MRC
initialization threads. To support testing of this key performance component
the simulator must support multiprocessor execution and BIOS MRC parallel
execution.

Simics supports multiprocessor environments in a deterministic manner using
well-defined time slices. This can restrict the developer’s ability to find parallel
execution bugs. It is possible to find timing bugs with Simics, but special care
must be taken to systematically look for them.[6] To debug multiprocessor

“Key to BIOS MRC parallel execution

is communication between the BIOS

MRC initialization threads.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

48 | Using Virtual Platforms for BIOS Development and Validation

issues in Simics, parameters are modified in a methodical approach to alter
the execution flow and carefully change the behavior. A testing framework
(Sim-O/C) has been developed to address discovery and debugging of parallel
execution faults.[7].

Validation of BIOS
Validating BIOS using simulation tools in both pre-silicon and post-silicon
environments requires specific features to be provided by the simulation tool.
The goals of the features are to provide mechanisms to maximize code coverage
of the BIOS and automated backend testing.

Configuration Flexibility
To support the validation of BIOS all possible supported configurations must
be supported. In addition, an efficient simple interface must be provided so
configurations can quickly be changed during development and testing.

A Python-based tool was developed using the Simics Extension Builder
package to provide a graphical user interface to easily configure Simics based
on parameters in a platform-specific configuration file. The tool creates a
customized Simics session script based on the parameters set by the user.
Options displayed are based on the platform-specific configuration file to
ensure only supported configurations are configured. The tool supports
changing:

 ● Platform
 ● Number of processors
 ● Number of cores
 ● Number of threads
 ● Memory topologies
 ● Memory DIMM types, sizes, and so on
 ● Processor interconnect topology
 ● Specialized modes (such as manufacturing mode)

The tool updates available options based on other selections. For example,
depending on the platform selection, the available options for processor, cores,
and so on will automatically be updated. See Figure 7.

Fault Injection
Validation requires the ability to inject faults into the system as part of BIOS
regression testing. These faults can range from PCIe parity errors, network
errors, and memory errors, to disk failures, processor interconnect link failures,
and power and thermal issues.

The Simics memory space infrastructure can be used to create a fault injection
module without affecting runtime performance under normal circumstances.[8]
In this case, a private memory space is created for the specific device into which

“To enable BIOS validation all

possible supported configurations must

be supported.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 49Using Virtual Platforms for BIOS Development and Validation | 49

you wish to inject the error that is attached to the main memory space. The
private memory space goes through a fault injector module prior to issuing
the request. Scripting can be used to map or de-map the private memory
space. The injection module can be implemented with scripts or as a DML
module. A DML module is preferred since it will support checkpointing and
reverse execution.

A second methodology is to create a fault injection module that resides in
the data path for the device and can be interacted with via scripts. In this
case the fault injection module receives all the data. It is not selective and
will cause some performance degradation. However, it has more flexibility
in what type of errors can be injected (such as, for example, spurious data
anomalies like line noise).

“Scripting can be used to map or

de-map the private memory space.”

Figure 7: Configuration tool screenshot
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

50 | Using Virtual Platforms for BIOS Development and Validation

BIOS’ primary function is hardware initialization. Consequently, the ability to
inject faults in the initialization environment is required. Injecting errors into
the initialization environment requires support of server management modules
and system error interfaces:

 ● Machine Check Architecture (MCA), including System Management
Interrupt (SMI) support. An SMI is raised when an error condition occurs.
BIOS’ SMI handler then interacts with the MCA to determine the type of
error and take action if necessary.

 ● Baseboard Management Controllers (BMC) simulation: Ideally running the
BMC firmware in conjunction with BIOS would provide the most benefit.
When a management controller is present BIOS’ role in error recording
and recovery is limited and the management controller and firmware take
on the primary responsibility.

 ● A centralized tool that allows injection of errors in a dynamic fashion.

Automation
The simulation tool must support the ability to configure and run a variety
of configurations in an automated fashion. This enables automated regression
tests to be run as part of the BIOS nightly builds and supports validation teams
that are creating validation suites for hardware.

In conjunction with the configuration tool mentioned in the section
“Configuration Flexibility” and the Simics session script architecture,
automated testing infrastructure can run a variety of configurations with ease.

To improve the overall BIOS stability and enable the detection of defects
earlier in the BIOS development schedule, a server farm can be used to
automate simulator testing on every BIOS check-in. The implementation
incorporates a source control system, build infrastructure, database subsystem,
test launch and monitoring infrastructure, and a simulator server farm running
on multiple virtual machines (VMs). See Figure 8.

The flow of the simulator test server farm is:
1. A user checks in code into the source control system.

2. The build system is triggered by the check-in. The BIOS binary for a variety
of targets is built and the binaries are placed on a file server with the status
of the build recorded in a database.

3. The test launch service finds that a job is available in the database and
initiates a request to the test server to run a simulator test on a specific VM.
A monitoring agent is activated to manage the request.

4. The test server receives the request and queues the job for the specified
VM. When the VM becomes available, the test server pushes the job to the
simulator and updates the database with the status of the job and VM.

5. The test monitor on the specific VM receives the test request and kicks off a
simulator automated test.

“The simulator must support selection

of a variety of configurations in an

automated fashion.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Virtual Platforms for BIOS Development and Validation | 51

figure 8: Simics test server farm
(Source: Intel Corporation, 2013)

Network

Bridge Server
Storage

File Server
(storage)

Active
Directory

(DHCP DNS)

VM 1
Test Client

Simics

VM 1
Test Client

Simics

VM 3
Test Client

Simics

VM 3
Test Client

Simics

VM 4
Test Client

Simics

VM 4
Test Client

Simics

VM 2
Test Client

Simics

VM 2
Test Client

Simics

Xen Client 2

Xen Manager
Test Server

Xen Client 1

Webserver

Bug Tracking

DB

DB

Source Control

Lab Network

Build Server

6. The simulator performs all the tasks of the specified job request initiated
from the test server.

7. After the job is complete, the simulator pushes the logs to the file server for
examination by the test server.

The infrastructure can use the package update utility tool described in the
section “Register Modeling” and the configuration utility described in the
section “Configuration Flexibility” to update packages and create session scripts
for automated Simics runs.

A server test farm is critical in both pre- and post-silicon development to
ensure a high quality BIOS. In addition, in a post-silicon environment it can
expose differences between the simulation and the initial power-on hardware
that may be due to simulation bugs, discrepancies in specifications, BIOS bugs,
or hardware bugs.

Summary
Creating a simulation tool to support development, debugging, and validation
of BIOS presents specific requirements. BIOS requirements change depending
on whether development is in the pre-silicon or the post-silicon environment.

“A server test farm is critical in both

pre- and post-silicon environments.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

52 | Using Virtual Platforms for BIOS Development and Validation

The initialization state that the BIOS runs in requires more features, depth,
and debugging aids than the runtime-state–based software like an operating
system.

Simics’ open architecture provides the means to create Simics enhancements
in the area of utilities and core simulation behavior to meet the specific
requirements of BIOS pre- and post-silicon development.

References
[1] Virtutech. Modeling your System in Simics. 2009. Revision 3004

http://www.virtutech.com/files/manuals/modeling-your-system-in-
simics_0.pdf

[2] Alexey Veselyi, John Ayers. “Early Hardware Register Validation
with Simics” in Intel Technical Journal 60, 2013.

[3] JEDEC® Solid State Association, September 2012. JEDEC®
Standard DDR4 SDRAM. Reference number JESD79-4 http://
www.jedec.org/

[4] Intel Corporation. “An Introduction to the Intel® Quickpath
Interconnect.” 2009. Document number 320412-001US

[5] Gurbir Singh, Robert J. Safranek, and Robert A. Maddox.
Weaving High Performance Multi-Processor Fabric: Architectural
Insights to the Intel® QuickPath Interconnect. Intel Press, 2009.

[6] Jakob Engblom. Simics and Multicore Systems Development.
Virtutech, 2009.

[7] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. “Sim-O/C:
An Observable and Controllable Testing Framework for Elusive
Faults” in Intel Technical Journal 60, 2013.

[8] Jakob Engblom. Blog – Making a Faulty Serial Port. - Virtutech,
2012. http://blogs.windriver.com/tools/2012/01/making-a-faulty-
serial-port.html

Author Biography
Steve Carbonari is a senior software engineer at Intel. He is currently working
on architecting Simics simulation environments for BIOS development and
debugging. He has ten years’ experience in UNIX kernel development and over
ten years’ experience in system software and architecture. He holds an MS degree
in Computer Science and a BS degree in Mathematics/Computer Science.

54 | Simics*–SystemC* Integration

Intel® Technology Journal | Volume 17, Issue 2, 2013

Contributors

In this article we discuss the integration of SystemC* architecture models with
Intel’s Simics Virtual Platform technology. Using a proof of concept, integration and
synchronization steps and corresponding performance challenges of the integrated
platform are highlighted and solutions developed. A logging and a save/restore
SystemC API are added for seamless integration into Simics and to take advantage
of Simics Checkpointing. Second level integration optimizations are implemented
in the form of temporal decoupling. A complete software stack is ported to
the integrated platform for system validation and software use cases including
BIOS and OS boot, firmware and drivers development, and application stack
execution demonstrating early software development with virtual platform (VP)
methodologies.

Introduction
Simics[3] is the tool of choice for virtual platform modeling for many of the
ongoing projects within Intel to enable software shift-left initiatives. Simics
supports functional modeling at speeds of the order of 10-100 million
instructions per second (MIPS) for fast OS, firmware boot, and software
development. While Simics provides virtual platform models for many of the
mainstream Intel architecture core/uncore based subsystems, and board level
platform models, there are still many internal and external intellectual property
components that need to be developed using SystemC[4], for the reasons of
modeling fidelity and the use of standardized modeling environments. IEEE
SystemC 1661 (Accelera) is the defacto industry standard for both functional
and performance modeling at the system level.[5][6] Many teams within Intel
are doing their model development using SystemC, while the same is true
for intellectual property models developed in the industry by big and small
intellectual property houses alike.[7] Besides standardization, SystemC also has
the advantage of using models developed in such a way to serve both functional
and performance needs of designers and software architects through the use of
advanced modeling artifacts. These models can then be integrated with Simics
to enable a complete platform for full software stack debug and development.

Different modeling semantics are provided by SystemC to serve both
functional and performance modeling domains. Simics on the other hand
supports functional models only for fast performance and software stack
development. Any SystemC modeling paradigms are more magnified upon
integration with Simics due to their impact on the performance of the
integrated platform. Simics is also a complete simulation environment with
supporting tools to enhance the users’ experience. Advanced logging and

Asad Khan
Data Center Group and Storage Group,
Intel Corporation

Chris Wolf
Data Center Group and Storage Group,
Intel Corporation

SImICS*–SySTemC* InTeGraTIon

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 55

checkpointing features are part of the user experience to aid debuggability.
Integration of a SystemC model should maintain the user experience by
extending the Simics features to SystemC, while maintaining performance
of the overall platform commensurate with Simics standalone platform
performance.

Simics SystemC Integration Overview
Simics uses a time slice model of simulation, where each master is assigned a
time slice for execution before control is passed to the next. Usually a master
is a processor module implemented as an instruction set simulator (ISS),
though this is not a restriction. In a functional simulation, an ISS runs a given
number of instructions within its time slice, where each instruction represents
a processor cycle. Any memory accesses corresponding to an instruction are
blocking completing in zero time. The simulation model of Simics imposes
restrictions on any co-simulation environment with corresponding integration
challenges.

There are different ways in which a SystemC model can be simulated with
Simics for an integrated platform. Either the SystemC kernel can be controlled
by Simics, or run independently of Simics. This article addresses Simics
controlling the SystemC kernel.

The communication model for Simics and SystemC co-simulation is
asynchronous. For Simics controlling SystemC, the communication happens
when there are memory, I/O, or configuration accesses between the two
simulation environments based on the underlying memory map, or when
interrupts occur from SystemC devices. Besides the apparent communication
interaction, control is passed to SystemC by the Simics simulation engine
when a scheduled SystemC event needs to be triggered.

The Simics/SystemC Bridge module[1] is the interface between Simics and
SystemC, implementing the interaction between the two simulation engines.
It provides a functional view of SystemC by implementing the interfaces for
Simics to talk to SystemC. Similarly it lets SystemC access Simics’ interfaces for
upstream memory accesses and interrupts. It also encapsulates timing aspects of
the co-simulation by synchronizing the two schedulers and their events.

For Simics controlling SystemC, the co-simulation runs in a single thread
with a context switch between the two schedulers passing control from one
to the other. The two schedulers are temporally coupled, meaning that they
are synchronized at the interface point. Simics runs ahead of SystemC, and
when the two schedulers communicate due to a memory, I/O, or configuration
call, timing synchronization takes place. Temporal coupling however is
not a requirement, as discussed later in this article, and an alternative
synchronization mechanism of temporally decoupled schedulers is also
discussed. SystemC however never runs ahead of the Simics time in any of
these models.

“Integration of a SystemC model

should maintain the user experience

by extending the Simics features

to SystemC, while maintaining

performance of the overall platform”

Intel® Technology Journal | Volume 17, Issue 2, 2013

56 | Simics*–SystemC* Integration

Context switching between Simics and SystemC simulation engines is expensive
from a performance point of view. This is especially true as the complexity
of devices modeled using SystemC goes up and the frequency of switching
also increases. This article delves into aspects of performance and solutions to
address these issues. It also addresses how to best write the SystemC models to
deal with performance bottlenecks. Also mentioned are the SystemC APIs for
adding logging and checkpointing to SystemC to enable seamless integration
with Simics and to extend such Simics’ features to SystemC.

The article also deals with temporal decoupling between the two simulation
engines and how temporal decoupling impacts performance. The co-simulation
still runs as a single thread, with Simics controlling SystemC engine, but SystemC
is set up as a master in itself by assigning a time slice to it and is scheduled
through Simics. The two simulation environments are temporally decoupled
by running SystemC for a fraction of duration of the time slice. Performance
improvements achieved through temporal decoupling are presented along with
why temporal decoupling makes sense. Case studies are used to corroborate the
different methodologies and corresponding performance improvements.

Simics SystemC Bridge Module
The Simics/SystemC Bridge[1] provides synchronization mechanism between
Simics and SystemC schedulers. Simics and SystemC schedulers run in a
co-simulation mode with Simics being the master scheduler. The SystemC
scheduler is triggered by the Simics master scheduler through the bridge
module. It accomplishes the following:

1. Plays catch up with Simics to synchronize the two schedulers in time. It
accomplishes this by running sc_start() for the time difference between
Simics and SystemC simulations to synchronize the two schedulers.

2. Following synchronization of the two simulation engines, allows any
transactions from Simics to SystemC or vice versa to execute as non-
preemptive transactions.

3. On completion of a transaction between Simics and SystemC, the bridge
posts any pending SystemC events onto the Simics event queue for future
scheduling.

As illustrated in Figure 1: Simics SystemC Integrated Virtual Platform, the
Simics platform interfaces with SystemC through the Simics frontend module,
which provides C/C++ APIs to talk to the SystemC module. Depending upon
the functionality of the SystemC module, different interfaces are implemented.
A typical case is the memory interface providing visibility into memory, I/O,
and PCI configuration spaces of the device.

An example of a PCIe device is used for illustration only, as the methodology
is applicable to any SystemC device or System model. For a typical PCI device
implemented using SystemC as shown here, the device is discovered during the
BIOS enumeration stage, where the device’s bus, device, and function IDs (BDF)
are discovered, and then mapped into the memory and I/O spaces of the platform
through the BIOS or OS configuration step by accessing its PCI configuration

“Context switching between Simics and

SystemC simulation engines is expensive

from a performance point of view”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 57

Base Address Registers (BARs). At this stage, the device is programmed to
be addressed through its memory or I/O spaces. The bridge also provides a
mechanism for the SystemC module to do any upstream direct memory accesses
(DMAs) and send Interrupts to the core. This is accomplished by accessing
handles to the platform to access its functionality. Both signal and Message Signal
Interrupts (MSIs) can be implemented through the appropriate APIs.

SystemC Device Model
The SystemC model is implemented hierarchically with a top and a SystemC
TLM-2.0 (IEEE TLM 2.0, 2008) interface. An adapter with a SystemC TLM-2.0
interface on one side and a functional interface on the other connects the
Simics frontend and SystemC device models—all are part of the Simics/
SystemC Bridge component. Transactions from the Simics frontend are
packetized using TLM-2.0’s “tlm_generic_payload” tokens and sent over the
TLM-2.0 interface to the corresponding SystemC device models. Information
that can’t be encapsulated using tlm_generic_payload can be passed to SystemC
device model through the extension mechanism of the TLM-2.0 standard.

The SystemC device model in our example system encapsulates PCIe endpoints
incorporating PCIe configuration registers, along with the device functional
model. The device is accessed through its memory or I/O space registered using
the PCIe BAR configuration registers. Any upstream transactions from the
device are sent to the Simics platform through the TLM-2.0 interfaces.

Simics SystemC Integrated VP Performance
The SystemC event simulator accommodates both event-based and clock-based
modeling semantics. The latter may be used in some performance modeling
scenarios to accurately predict the system performance and highlight issues like

“An adapter with a SystemC TLM-2.0

interface on one side and a functional

interface on the other connects the

Simics frontend and SystemC device

models”

Figure 1: Simics systemC integrated virtual platform
(Source: Intel Corporation, 2011)

Simics
IO/Memory Interface

PCI Interfaces

Simics/SystemC
Bridge

SystemC
Acceleration Complex

PCle Endpoint

Acceleration Complex

SystemC Device Model

System Memory
Access

INTERRUPTS

Simics Platform
IA 1 North Bridge 1
Bus Fabric 1 PCH 1

System DRAM

Intel® Technology Journal | Volume 17, Issue 2, 2013

58 | Simics*–SystemC* Integration

deadlocks and starvation. While the integration methodology discussed here poses
no restriction on SystemC modeling for integration with Simics, it does present
different challenges to the overall platform based on the type of SystemC models
integrated. Simics, being a functional simulator, prefers the SystemC models to be
functional; however it does not impose this restriction. So for this discussion we
will assume a modeling semantic based on events only, removing the performance
penalty and redundancy imposed by clocked models. An event-based methodology
has the capability to add every single event of significance for both functionality
and performance. In the following discussion we describe the performance,
corresponding optimizations, and their side effects for SystemC models.

SystemC Code Refactoring
SystemC uses processes for concurrency. Two types of processes are defined by
the standard:

 ● SC_METHOD processes that run to completion when triggered. These are
sensitive to events and port signals.

 ● SC_THREAD processes run for the duration of the simulation through
an infinite loop. These can be halted in the middle of the process through
wait() statements awaiting certain events. Upon a process halt, the state of
the thread is saved on the heap or the stack.

SC_THREAD() processes are expensive from a simulation point of view
because of the inline wait statements, which cause the context to be stored.
SC_METHOD() processes on the other hand run to completion without any
side effects. The resulting performance hit is more pronounced for an integrated
model due to other performance issues discussed here. It is proposed to replace
any SC_THREAD() processes with the more efficient SC_METHOD()
processes with the wait calls replaced with corresponding SystemC sc_event
semantics. In one case, replacing 30 odd SC_THREAD() with SC_
METHOD() processes lead to a performance gain of about 15 percent.

Performance Optimizations
Simics VP functional simulations run at speeds of the order of 10–100 MIPS.
Simics employs a non-preemptive time slice model for any master modules,
where instructions of the order of 100,000 are assigned to a given master
per time slice before control is passed to another master. Another factor
contributing to speed is zero delay blocking transactions with no side effects.
On the other hand, cycle- or clock-based simulation as in the case of SystemC
device model achieves speeds only of the order of hundreds of kilocycles per
second (KCPS).

Speed incompatibility between the two simulation environments leads to
the slowdown in speed of an integrated Simics SystemC VP. Simulation
performance was measured for an integrated VP compared to a standalone
Simics VP. In this case a standalone Simics platform would boot Fedora OS
within few minutes. Co-simulation with SystemC slowed down the overall
simulation speed up to an order of 100,000:1. It needs to be clarified that the

“Speed incompatibility between the

two simulation environments leads to

the slowdown in speed of an integrated

Simics SystemC VP”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 59

SystemC model was a complete subsystem with its own firmware and hardware
and not a simple memory-mapped device. While SystemC models with timing
granularity of the order of clock periods are to blame, the end result is a direct
consequence of the need to context-switch between Simics and SystemC at
every event that needs to be triggered. This slowdown is worse for clock-based
models, and is improved but not eliminated using an event-based methodology
as discussed in the section “Temporally Decoupled VP Performance”.

Since a complete software stack is to be run on the platform with billions of
instructions, some mechanism had to be devised to speed up the integrated
VP. As shown in Figure 2: Simics/SystemC Clock Scaling, performance
improvement of orders of magnitude is achieved by down-scaling the SystemC
clock frequencies by a factor of X. This implies slowing down SystemC
simulation by a factor of X compared to the Simics clock. This indirectly
translates into reduced context switching between the two simulators by
the same factor, increasing the overall system simulation speed. A scaled-
down factor of 10,000 was used to achieve optimal performance—a number
obtained through empirical data. This translates to a SystemC clock frequency
reduction by a factor of 10,000.

There are side effects to slowing down the SystemC model compared to overall
platform speed. One obvious side effect is the slowdown of any stack that

“…performance improvement of orders

of magnitude is achieved by down-

scaling the SystemC clock frequencies by

a factor of X”

Figure 2: Simics/SystemC clock scaling
(Source: Intel Corporation, 2011)

Context Switch Every
Clock Cycle

SystemC Clock-based
Model

Simics Functional
Platform

Time Quantum of
200,000 Cycles

Clock Cycle Duration
of 1 Clock Period

SystemC Bridge
Component

Before Frequency Downscaling, too
Much Context Switching Between

Simics & SystemC

Context Switch Every X
Clock Cycles

SystemC Clock-based
Model

Simics Functional
Platform

SystemC Bridge
Component

After Frequency Downscaling, Context
Switching Between Simics & SystemC

Much Reduced

Time Quantum of
200,000 Cycles

Clock Cycle
Duration of X Clock Periods

Intel® Technology Journal | Volume 17, Issue 2, 2013

60 | Simics*–SystemC* Integration

uses the SystemC models because it takes longer to run. However this cost is
bearable because the platform boots much faster compared to a non-scaled
model. There are other side effects as well. Since the SystemC model is
running slower, any timeouts for code running on the platform may need to
be increased corresponding to the clock scaling factor to disable premature
timeout expiration. Another side effect relates to any tight polling loops for
code running on the core monitoring the status registers on the SystemC side.
Polling leads to a context switch, slowing down the simulation, especially when
there is little useful work done by SystemC. The polling frequency of these
status registers had to be reduced because of the slowdown of the SystemC
models. This was accomplished by adding stall delays in the Simics/SystemC
Bridge whenever SystemC status registers were polled.

Performance Metrics
Performance optimizations discussed so far are used to determine the overall
performance gains. Base results are obtained using clock scaling, and any
gains over and above that are highlighted for polling and SystemC process
optimizations. “Table 1: Performance Optimizations in numbers” represents
one set of data for a set of software tests running on the platform and actively
exercising the Simics/SystemC interface. Any other results would vary
depending on the type of the models and the frequency of Simics/SystemC
interaction. However the numbers below represent a general trend highlighting
the fact that performance optimizations implemented make significant gains in
overall Simics/SystemC VP performance.

Boot
Time

Setup
Time

w/o Stall

Setup
Time

w/ Stall

Test
Time

w/o Stall

Test
Time

w/ Stall

Poll Mode Driver

SC_THREAD() 197 376 408 230

SC_METHOD() 199 353 375 212

Interrupt Mode
Driver

SC_THREAD() 197 778 332 670 475

SC_METHOD() 199 670 313 660 452

Table 1: Performance optimizations in numbers
(Source: Intel Corporation, 2011)

The matrix represents two sets of data—setup time for the SystemC device
model and the test execution time. Columns represent the performance
comparisons for the two sets with and without stall cycles. Rows represent
the additional SystemC process optimizations using code refactoring. The
following performance improvements were observed:

“Since the SystemC model is running

slower, any timeouts for code running

on the platform may need to be

increased corresponding to the clock

scaling factor to disable premature

timeout expiration”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 61

 ● A gain of 30–60 percent using stall cycles when polling status registers.
 ● A gain of 3–15 percent through replacement of SystemC_THREAD() with

SystemC_METHOD() processes.

Simics SystemC VP—Temporal Decoupling
Simics SystemC integrated VP uses temporal coupling between the two
environments to keep them in time synchronization. The two simulators
interact at the interface layer within the bridge module. However, for
functional VP, as long as event ordering is preserved on both sides, VP works
correctly and there is no need for time synchronization.

Temporal decoupling takes advantage of the lack of timing interdependency
between the two simulators by letting them go out of synch with each other.
This is done by making SystemC a simulation master by assigning it an
execution time slice, and placing it on Simics’ event calendar. When SystemC
gets scheduled by Simics, it is run for a fraction of the time slice—a number
that can be dynamically changed during simulation through a Simics’ attribute.
The idea is to let SystemC get more execution cycles during busy periods, and
only short durations during idle periods. No SystemC events are posted on the
Simics event queue, leaving only time slicing to schedule SystemC.

A side effect of temporal decoupling is that Simics’ time runs ahead of SystemC
time, and the aggregate time difference between the two schedulers keeps
increasing as the simulation progresses, except for the case when SystemC runs
for the entire time slice duration. Another consequence is that SystemC device
interrupts encounter a scheduling delay up to a maximum of the time slice
duration. This is not a problem for most functional VPs, except when there are
real-time performance requirements.

Temporally Decoupled VP Performance
Through temporal decoupling, a much smaller scale factor (100) can yield
performance similar to the temporally coupled case (scale factor of 10,000),
thereby relieving some of the side effects of clock scaling. Also at the cost of
a little bit of performance, time scaling of SystemC can be totally removed as
shown in “Table 2: Temporal decoupling using SystemC time slicing”

SystemC Time
Slice sec

SystemC run
time psec

SystemC Scale
Factor

Fedora OS Boot
Time

.001 10,000 100 17:50

.001 1,000,000 1 24:15

.001 1,000,000 10 28:30

.001 1,000,000 100 21:45

.001 100,000 1 23:30

.001 100,000 10 18:55

.001 100,000 100 18:55

Table 2: Temporal decoupling using SystemC time slicing
(Source: Intel Corporation, 2013)

“Temporal decoupling takes advantage

of the lack of timing interdependency

between the two simulators by letting

them go out of synch with each other”

Intel® Technology Journal | Volume 17, Issue 2, 2013

62 | Simics*–SystemC* Integration

SystemC is allocated a fixed time slice of 1 msec, while the “run duration” of
the time slice is changed as shown along with the scale factor. It is pertinent
to note that a temporally coupled simulation took 19 minutes to boot. A
temporally decoupled model with no scaling (scale factor of 1) achieves the
same state in between 23 and 24 minutes. These numbers should be used only
as a reference of the trends and not as a benchmark to determine the overall
simulation speed, as the speeds are also a factor of the host OS, host machine,
and complexity of the models.

Simics SystemC APIs
For effective integration of SystemC models with Simics, a set of APIs have
been developed to take advantage of Simics features like checkpointing and
advanced logging. These are discussed in detail here.

SaveRestore Checkpoint API
Simics[3] provides a checkpoint capability to store the state of a platform.
Simics uses an attribute mechanism to store the state of a model. Attributes
can be an integer, floating point, string, Boolean, list of values, a dictionary, or
other compound types. For adding checkpointing to a model, its entire state
needs to be saved and restored. For large amounts of data the best way is to
save the state as an image, which stores data as a contiguous array of characters
or any other data type. For saving model state as an image, a pointer to the
image and corresponding length are provided. Simics provides a C++ API to
add checkpoint capability to C++ or SystemC models.

The Simics checkpoint API is a complete API for saving/restoring the state
of a model. However, it is intrusive if added to SystemC in that the models
become dependent on the Simics headers and lose their ability to be compiled
and run as standalone models. The objective of the SaveRestore API is to
make SystemC independent of the Simics checkpoint API for compiling and
running standalone. At the same time, when running as a VP with Simics, this
API ties SystemC state to the Simics checkpoint database.

A “SaveRestore” base class is declared in Figure 3: SystemC SaveRestore API
hierarchy, which sets up the base functionality for registering an attribute.
Another “SrAttrBase” class describes the functionality for the data type to be
saved. All attribute types derive from SrAttrBase and provide a set of functions
to get/set the value of the attribute. A set of C functions are provided to
register a given SystemC model attribute by calling the attribute registration
function in SaveRestore class. These functions set up the attributes and provide
links to the attribute set and get functions. Attribute set/get functions are to be
called when saving or restoring the state of a model. For standalone SystemC
models, the attribute registration function is a dummy function, which lets the
standalone model compile, but does not have any functionality.

The ScdSaveRestore class ties up the SystemC model with the Simics database for
checkpointing in a VP. This class includes Simics API headers linking the Simics

“The objective of the SaveRestore API

is to make SystemC independent of the

Simics checkpoint API for compiling

and running standalone”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 63

Figure 3: SystemC saverestore aPI hierarchy
(Source: Intel Corporation, 2013)

VP with the SystemC model. It derives from the SaveRestore class and overrides
the base functions in SaveRestore for registering the attribute with Simics.
In a Simics SystemC VP, the Simics/SystemC bridge module[1] instantiates the
ScdSaveRestore class and registers it with a handler interface. This handle to
the ScdSaveRestore class is passed to the SystemC model, tying the SystemC
checkpoint state to the Simics database. In this setup any SystemC model
attribute registers with Simics along with its Save and Restore functions.

This setup is enough to save the steady state behavior of the SystemC model,
such as, for example, OS boot and the device initialization state. For dynamic
SystemC checkpointing, the API has to be extended to include TLM-2.0
generic payloads and payload event queue (PEQ) semantics of SystemC. Work
has been done on this front[2], but is outside the scope of this writing.

Updating SystemC Time upon Checkpoint Restore
Restoring a given Simics/SystemC VP restores the Simics time to the
simulation time at which the checkpoint was taken. When the checkpoint
is restored, the SystemC kernel hasn’t started running, and SystemC time is
set to SC_ZERO_TIME. Restoring SystemC time to Simics simulation time
would require running SystemC for the duration of the checkpoint. When

“Restoring a given Simics/SystemC

VP restores the Simics time to the

simulation time at which the checkpoint

was taken”

Intel® Technology Journal | Volume 17, Issue 2, 2013

64 | Simics*–SystemC* Integration

updating SystemC time this way, a significant performance drag was noticed at
checkpoint restore, the duration of which varied based on the time for which
SystemC had to be run to bring it in sync with Simics time.

A solution was to update “current_time” sc_time variable of SystemC to the
Simics time after SystemC construction and elaboration phase. This time
represents the value of the current simulation time within SystemC. As part of
system restore this value was updated to current Simics time, leading to quick
turnaround of the restore point, and preventing the need to run SystemC to
the current simulation time.

SystemC Logging API
Simics provides a logging API for native C++ and Design Modeling Language
(DML) models. The API classifies logging into groups and verbosity levels.
Additionally Simics has the capability to halt the simulation based on a log
message. This becomes extremely powerful for debugging the model. Although
there is a standard logging mechanism within SystemC, there was no method
for Simics to have full control of the SystemC logging. This drove the need for
a generic logging API for SystemC.

The logging API (as well as the SaveRestore API) is based on a handler
mechanism. A user can redefine the logging handler to intercept logging calls
and redirect them to their own API; for example, in model X, the user would
get a log handler object using its name and type.

AcLog = HandlerInterface<VpLog>::GetHandler(“main”);

This would get a pointer to the main handler. Using this handler, log
statements are implemented as follows.

VPLOG_INFO (AcLog, LOG_VERBOSITY, LOG_GROUP, “value = %x”, x)

The main logging handler is defined and registered with Simics within the
Simics/SystemC bridge module tying it to the Simics logging API. This API
also allows us to debug SystemC models outside of Simics and with the same
logging API.

Summary
In this article integration of a complete system level SystemC model is
presented with a Simics VP. Integration steps are highlighted along with the
performance challenges due to the detailed nature of the SystemC model
with its own firmware and functionality, and the different nature of the two
simulation environments. Solutions to performance problems of the integrated
platform are proposed to lead to a working VP for complete software
stacks porting for debug and development. A set of APIs are developed for
checkpointing and logging for the SystemC models to capitalize on the
Simics checkpoint and logging APIs for an integrated solution. Studies show
that performance of the integrated platform falls somewhere between the

“Studies show that performance of the

integrated platform falls somewhere

between the performance of a

standalone Simics VP and a standalone

SystemC platform”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics*–SystemC* Integration | 65

performance of a standalone Simics VP and a standalone SystemC platform.
This model can serve as a blueprint for enabling early software development
activity, including BIOS, OS, firmware, driver and test development.

Complete References
[1] Wind River Simics, “Wind River Simics SystemC Bridge

Programming Guide,” 2010.

[2] Khan, Asad et al. “SystemC Checkpoint extensions for Simics/
SystemC Virtual Platforms,” Intel DTTC 2013.

[3] Wind River Simics, “Model Builder User Guide,” WindRiver,
2012.

[4] IEEE SystemC - Modeling Language Specification. [Online]
Available at: http://www.accelera.org/home.

[5] Khan, Asad, and Leaming, Taylor. “MVP – A Pre-Silicon System
Validation Design Flow Using Virtual Platforms,” Intel DTTC,
2010.

[6] Heraty, Paul, and Khan, Asad. “Integrating Imagination
Technologies’ Cores into Virtual Platforms,” Intel DTTC 2011.

[7] Discretix, “Discretix CryptoCell” – http://www.discretix.com

Author Biographies
Asad Khan is a senior staff engineer at Intel Corporation. He received his
PhD in Electrical Engineering from Northwestern University in 1996. Asad
has almost 20 years of experience working in the electronic system level
design space at Cadence, ARM, Marvell, and Intel Corporation. His current
focus is on virtual platform methodologies for system validation, software
development, and power analysis. Asad is based in Chandler, Arizona.

Chris Wolf is the Virtual Platform Enabling Group (VPEG) lead in Intel’s
Intelligent Systems Group’s Platform Enabling and Development. He has 9
years of experience in system validation and emulation and in virtual platform
methodologies. He has made significant contributions to the shift-left strategy
on Rangeley, Coleto Creek, Island Cove, and Bell Creek, with a focus on
virtual platform and hybrid virtual platform enablement for validation and
sofware teams. He continues to be a strong advocate for VP usage within Intel.

66 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

Intel® Technology Journal | Volume 17, Issue 2, 2013

This article focuses on post-silicon usage of Simics, and discusses the huge
potential for this technology to impact the ongoing network transformation.
Today the speed of growth and demand for infrastructure requires
infrastructure vendors refresh designs and innovate at a much faster pace than
before. This opens a huge trend towards a software-defined network (SDN),
Network Functions Virtualization (NFV), and Intel® Open Network Platform
(Intel® ONP). The recent movement builds on the strength of x86 common
communication platforms, as well as OS solutions such as Wind River Open
Network Software*, and dramatically reduces time to market for infrastructure
vendors with reference platform and reference software stacks. The biggest
challenge in this transformation is on the software side, because customers need
to migrate legacy solutions to the new paradigm. The effort associated with the
process to debug, test, and maintain this solution moving forward can be quite
daunting. Simics is an essential technology in this ongoing transformation and
is nicely positioned to make an impact with support for security, Intel® Data
Plane Development Kit (Intel® DPDK), SDN, and Intel ONP as well as a
long-term roadmap for future products and technologies.

 The Era of Network Transformation—The Challenges
and How Simics Fits
Today’s and yesterday’s telecom equipment depends on a complex mix of CPUs
and network processors and customized ASICs purposely built for the targeted
applications. These heterogeneous solutions often are difficult to program and
scale poorly. The cost of sustaining and improving such a solution is quite
high, with vendors occupied with the burden to maintain a variety of software
programming models, tool chains, and skill sets throughout product life cycle.
Network usage and demand is going through a major explosion and there is
no sign of it slowing down. This data explosion puts tremendous pressure on
communication and storage infrastructure vendors and forces the industry to
innovate and refresh solutions at a pace previously unseen. The solutions must
scale to handle exponential growth of demand and at the same time be flexible
enough to adapt to new services and new requests.

To tackle such a complicated situation, it is essential to have a technology that
can address this kind of heterogeneous environment. Simics is a proven
technology that supports all major CPU architectures and can be extended

“Today the speed of growth and

demand for infrastructure requires

infrastructure vendors refresh designs

and innovate at a much faster pace

than before.”

PosT-sIlIcon ImPacT: sImIcs* HelPs THe nexT GeneraTIon of
neTwork TransformaTIon and mIGraTIon To a sofTware-
DefINeD NeTwork (SDN)

Contributors

Tian Tian
datacenter and connected systems
Group, Intel corporation

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 67

to support new devices, modules, and components. Compared to other
simulation solutions, Simics has very fast simulation speed and is nicely suited
for full system level firmware and software development as well as a network
of systems. All these strengths put Simics in a unique position to help vendors
and developers transition existing hardware and software solutions and to
respond to changes and new features during this network transformation.

People often have the misconception about simulation solutions: “if I already
have my hardware, why do I still need to use simulation technology such as
Simics? Why don’t I just do everything on hardware?” It turns out that Simics
can contribute a lot in post-silicon usage, especially in networked systems.
In this article, we will share our experience here in actual usage to discuss
post-silicon values, using Intel next generation communications platform
(codenamed Crystal Forest[1]) as an example. We also share our excitement
about opportunities in front of Simics in the ongoing network transformation.
The Crystal Forest platform and its follow-on platforms, with their unique
combination of control plane and data plane capabilities, as well as security
and virtualization features, are leading vehicles for Network Functions
Virtualization and software-defined network solutions. Simics has solid support
for Crystal Forest platform (Figure 1) as well as future generations of Intel®
Communications platforms based on the architecture codenamed Haswell. It
has CPU support for the latest Intel® Xeon® CPU as well models for Intel® 89xx
chipset and 82599 networking card. It also runs Intel® QuickAssist software
suite and Intel DPDK software.[2] The platform itself is virtualization ready and
can be used for related development and test effort.

A couple of trends stand out in particular during this era of network
transformation. One is workload consolidation and repartition. There are a
lot of different workloads and usage models driven by different components
on the network (access, wireless base stations, routers and switches,
intelligent edges). Previously, each device was purposely built just to handle
specific functions and services. Although it is a solid approach to tackle the
problem, the amount of time it takes to come up with a new solution or
update tends to be long, as it often requires hardware, software, and a tool
chain to change at the same time. Now vendors are looking into having
general purpose CPUs perform more and more of these specific workloads
for better scalability and time to market. This shift allows vendors to focus
more on services and value-adding software rather than spending the
majority of resources dealing with the burden to maintain multiple versions
of hardware, software, and proprietary solutions, and to find and sustain the
skill sets required to program these proprietary solutions.

Another trend is increased usage of virtualization and other hardware
abstraction technologies in the embedded and communications space.
Devices and resources are now starting to be managed intelligently in real
time based on usage profile and consumption. For a long time, embedded
and communication platforms have been lagging data center servers in
terms of adaption of virtualization technology, partially due to proprietary

“…Simics has very fast simulation speed

and is nicely suited for full system level

firmware and software development as

well as a network of systems.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

68 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

solutions. With the movement to general-purpose CPUs, suddenly adoption of
virtualization technology becomes much easier.

Simics is strong in both categories and is in a unique position to be a key
contributor to this network transformation process. The technology supports
a variety of architectures and can be a nice vehicle to begin repartitioning
workload on future-generation hardware. Developers are the owners of virtual
systems and can get backdoor access to virtual hardware information in a very
developer-friendly fashion (run, stop, reverse execute, probe hardware states)
regardless of security policies or virtualization partitioning. This “unfair” access
breaks rules and allows developers to debug and test complicated scenarios
with visibility in system states. Coupled with the highly integrated and easy-
to-use Eclipse debug environment, developers will find utilities right at their
fingertips when tackling challenging problems.

“The technology supports a variety of

architectures and can be a nice vehicle

to begin repartitioning workload on

future-generation hardware.”

figure 1: simics support for Intel® next generation
communication platform
(Source: Intel Corporation, 2013)

Intel® DPDK
Support

Virtualization

Intel® Xeon
CPU Model

Support

Intel®

QuickAssist
Technology

Simics Crystal Forest

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 69

Post-Silicon Simics Usage Case Studies
In this section we share several real-life usage examples we encountered during
the process of using Simics as part of our product development activities. We
use the Intel® platform codenamed Crystal Forest as an example. Crystal Forest
is a communications solution that is used by infrastructure vendors as a key
building block for communication solutions. It is also an important piece for
SDN, NFV, and Intel Open Network Platforms[3] (Intel ONP).

Before we start, we need to briefly touch on a few terms used here as we will
use the shorter versions rather than referencing the full platform names:

 • Crystal Forest Gladden[4] – Mobile platform name of Intel Xeon processor
with Intel Communications Chipset 89xx Series

 • Crystal Forest Server – platform name for Intel Xeon Processor E5-2600
and E5-2400 Series with Intel Communication Chipset 89xx Series

 Concurrent Debug of UEFI BIOS (Virtual Platform and Hardware
Platform)
Even when hardware platforms are already available, Simics can still contribute
to the product development process by reducing the time spent debugging.
During the board bring-up phase of the Intel Crystal Forest Server reference
design, we successfully utilized Simics models of the target board to assist the
debug process. The key components include two Intel Xeon Processor E5-2600
CPUs, four 89xx chipsets and two 10GbE cards. We have Simics models for all
of these ingredients, and we used them for BIOS development.

During testing on the actual hardware platforms, we noticed an error message
sometimes showed up during boot process and boards would hang afterwards.
But the errors were sporadic and could not be reproduced every single time.
Lab engineers were dealing with other issues and did not look deep into the
problem. We loaded the same BIOS image onto the Simics ATCA environment
and were able to recreate the same issue as shown in Figure 2. There are two
windows shown here. The one in the back is VGA output showing BIOS is at
the final stage of finishing setup. The second window shows the serial output
and displays the same assertion error we saw on hardware platforms.

Once the issue was successfully recreated in Simics, the debug process became
quite easy. Simics is a run-to-run repeatable environment, which makes it very
easy to reproduce errors. We were able to step through the instructions and
isolate the issue to a small module inside the test BIOS (Figure 3). Because in
Simics one can save system states at the crime scene as a checkpoint, we provided
the files to team members on a different geographic location and invited them
check into the issue in parallel. They were able to recreate the error signature
within minutes of getting the checkpoint and continued to debug.

In this example, we reliably recreated this error in Simics. On real hardware,
the error showed up sporadically and was a lot of harder to recreate. Our debug
data and trace collected in Simics isolated the issue within a module inside
BIOS and later on the root cause was determined by our BIOS vendor. By

“Even when hardware platforms are

already available, Simics can still

contribute to the product development

process by reducing the time spent

debugging.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

70 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

figure 3: single step through debug in simics
(Source: Intel Corporation, 2013)

figure 2: simics aTca used to debug oem BIos issue
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 71

Virtual Development Kit for Intel® QuickAssist
A security solution is an integral component of communications and is critical
for solutions that control the safety and protection on the edge of the network.
Intel® QuickAssist software has been used for a long time and continues to

figure 4: simics virtual platform running virtual debug agent for Intel® xdP tool
(Source: Intel Corporation, 2013)

debugging the issue in Simics first, we saved precious time in our schedule. It
was also a great experience where team members in different locations we able
to contribute to the same debug process in real time.

Furthermore, this issue later on resurfaced on some other BIOS releases
and in these situations we were able to immediately spot the issue and reuse
the lessons from the Simics experience. The savings from this incidence
alone is obvious across multiple releases. UEFI BIOS is a critical piece in a
system solution; from this case study we can clearly see that Simics is a viable
development and test tool for UEFI BIOS. Even after silicon is available,
developers can get to the bottom of the software and firmware issues quicker
and more efficiently from a collaboration point of view.

Simics x86 models also come with support for Intel® eXtended Debug Port
(Intel® XDP) debugger and also can be integrated with other hardware debuggers
(Figure 4). These debuggers are essential in the UEFI BIOS debug process on real
hardware platforms. The scripts written for these hardware debuggers can use this
as a bridge to get into the simulation environment, if needed.

“Simics x86 models also come with

support for Intel® eXtended Debug

Port (Intel® XDP) debugger and also

can be integrated with other hardware

debuggers…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

72 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

figure 5: simics Intel® Quickassist modeling—dml
(Source: Intel Corporation, 2013)

Customer
Application

Customer
Application

Shim

Customer
Application

Shim

Open Source Framework

Open Source
Application

Intel® QuickAssist Functional Apls

Pattern MatchingData CompressionCrypto

Intel® QuickAssist Integrated Accelerator

Hardware Accelerator

Customer
Application

Customer
Application

Shim

Customer
Application

Shim

Open Source Framework

Open Source
Application

Intel® QuickAssist Functional Apls

Simics
QuickAssist Model

develop as an important piece of SDN and Intel ONP. Shown here is the
modeling approach for an Intel QuickAssist hardware component (Figure 5).
In this approach, Intel® QuickAssist hardware devices are modeled using Simics
and the whole device functionalities are modeled. It simulates functional
behavior of Intel QuickAssist and interacts with the software layers above. For
software, things behave exactly the same from a functionality point of view
whether it is running on hardware or running on Simics.

“For software, things behave exactly

the same from a functionality point

of view whether it is running on

hardware or running on Simics.”

figure 6: Using the simics file system to move production software onto the virtual platform
(Source: Intel Corporation, 2013)

With the Simics file system feature, users can move software packages easily
from a local PC to Simics virtual platforms. The example (Figure 6) shows that
moving software packages from a local drive and installing them onto a Simics
virtual platform is as easy as operating on local directories.

Developers use exactly the same steps needed on real hardware to load and run
the Intel QuickAssist test suite in Simics (Figure 7):

modprobe icp_qa_al
/lib/firmware/adf_ctl up
insmod build.ko

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 73

figure 7: simics Intel® Quickassist loading software driver
(Source: Intel Corporation, 2013)

Within a few minutes, users can run an Intel QuickAssist test (Figure 8) and
start get familiar with usage of the hardware functionalities.

figure 8: simics Intel® QuickAssist running unmodified security test software
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

74 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

figure 9: dPdk learning process on hardware and on virtual platform
(Source: Intel Corporation, 2013)

4. Start Running Data Plane Applications

(B) Simics Virtual Boards

1. Download Intel® DPDK Software,
Install Onto Platform (0.5 Day)

3. Download Intel® DPDK Software,
Install Onto Platform (0.5 Day)

2. Assemble and Bring Up Hardware
Platform to a Point it Runs OS (0.5 Day)

4. Start Running Data Plane Applications

(A) Hardware Reference Boards

1. Get Access to a Reference Hardware
Platform(s) 1 Shipping (Days? Weeks?)

In this usage case, Intel QuickAssist represents a combination of a purposely
built hardware (Intel QuickAssist silicon) and software API (Intel QuickAssist
API). With Simics, the module is able to respond to user and application
requests as if there were real Intel QuickAssist silicon running underneath.
This usage case shows that customers can develop Simics models for their own
ASICs or other hardware devices and use them for full system simulation.

Ease of Intel® DPDK Adoption and Customization
Intel Data Plane Development Kit (Intel DPDK) is an optimized software
stack provided by Intel that offers high performance packet processing. It
is available in its example format or integrated and supported via several
commercial and professionally supported solutions. Intel DPDK provides
a set of libraries that can be used to optimize or improve performance over
traditional and general-purpose Linux. For example, it provides a scheme to
remove or reduce performance issues commonly associated with interrupt
handler penalty, context switching, data copying and the Linux scheduler.
These areas may be acceptable for general-purpose transactions but can be an
issue for data I/O intensive workloads in the range of 10–40 gigabits.

However, just getting Intel DPDK software does not mean the job is done at
the application side. The hard work tends to integrating the key optimization

“This usage case shows that customers

can develop Simics models for their

own ASICs or other hardware

devices and use them for full system

simulation.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 75

principles learned from these software lessons into the customers’ own software
stacks and flows.

Simics can reduce the learning process for engineers on a new software stack such
as Intel DPDK. As shown in Figure 9, the key bottleneck of the process tends to
be the access to real reference platforms and the test harness. The process can take
days or even weeks. Even when a board is available, the access can be limited. For
example, for a team of engineers, sharing access to one or very few boards means
only a small amount of time is available for an individual and this may translate to
an impact to productivity. With Simics not only is the waiting process eliminated,
all developers can have their own virtual boards. They can quickly launch Simics
and begin learning the software, debug, build test cases, and explore new ways to

“Simics can reduce the learning process

for engineers on a new software stack

such as Intel DPDK.”

figure 10: simics crystal forest running Intel® dPdk
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

76 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

do things. For example, with help from Simics, they can get an Intel DPDK demo
traffic test going very quickly on their own PCs (Figure 10).

The actual customer usage of a reference software stack such as Intel DPDK
requires a lot of customizations. The fact that Simics can run this type of software
application proves that it becomes a viable solution in helping customers study
the reference stacks and begin integrate their solutions on their virtual targets.
This potentially brings significant saving in terms of schedule and time to market.

Enable Access to Variety of Targets
One of the strengths of Simics is that it is a software package. With Simics, you
can instantly turn your laptop or desktop PC to any platforms for which you
have Simics models available. This is a huge benefit for engineers to have this
kind of access and have the flexibility to select the target of interest. This means
that engineers can conduct simulations independently of hardware in the
lab. Shown in Figure 11 is an installation with three different configurations.
AMC is a mobile version of the platform and ATCA is a server version of the
platform. By installing both packages onto the PC, one can switch back and
forth in between these platforms based on need, while in lab situations, it

“With Simics, you can instantly turn

your laptop or desktop PC to any

platforms for which you have Simics

models available.”

figure 11: simics crystal forest supports various form factors
(Source: Intel Corporation, 2013)

Barnesville
PHY

IPMC

Niantic
MAC/PHY

Gladden
Cave
Creek

Clock
Chip

AMC Derivative:
BTS Micro Server

Simics AMC

Reset Power
Sequence

CPLD

Memory
Down

Simics ATCA

USB Flash
HDD

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 77

figure 12: a variety of simics communication storage virtual platforms
(Source: Intel Corporation, 2013)

Simics Romley

Simics Crystal
Forest Gladden

Simics Crystal
Forest Server

Simics Next-
gen Comms

Simics
Rangeley

Simics Intel®

CoreTM Core i7
Nehalem

Simics
Grantley

figure 13: reusing intel® Quickassist module in rangeley virtual platform
(Source: Intel Corporation, 2013)

Intel® Processors for
Communications

Server and Client
Family

Intel® Communications
Chipset 89xx

Intel® QuickAssist
Technology

U
S

B

S
ATA

G
P

IO

U
A

R
T

S
M

B
us

LP
C

/S
P

I

T
im

ers

X4
GbE
MAC

PCIe Gen1
Root

PCIe Gen2
EndPt

SoC Family

Intel® AtomTM C200
Processors (Rangeley)

Intel® QuickAssist
Technology

Legacy IO

U
S

B

S
ATA

X4
GbE
MAC

CPU Cores

PCIe Gen2

DDR3

Intel® Technology Journal | Volume 17, Issue 2, 2013

78 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

figure 14: dual aTca simulation booting into busy box
(Source: Intel Corporation, 2013)

figure 15: dual aTca networking setup
(Source: Intel Corporation, 2013)

Crystal Forest
ATCA

Crystal Forest
ATCA

Intel®82599

Intel®82599

Intel®82599

Intel®82599

Simics Virtual Hub

Port 0Port 0

Port 1Port 1

is very rare for any given engineer to have that kind of unlimited access to a
collection of systems anytime you need.

We have developed Simics solutions for all our critical communication and storage
platforms. A few recent models are shown in Figure 12, ranging from server,
mobile to System-On-Chip (SoC). SoC solutions such as the Intel® Atom™ C200
processor (codenamed Rangeley) are gaining a lot of traction in particular in the
low-power and low-cost arena. These Intel C200 processor solutions share many
common building blocks with their Intel Xeon counterparts.

“We have developed Simics solutions

for all our critical communication and

storage platforms.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 79

As more and more products and platforms begin to have Simics models,
another benefit starts to become significant: software reuse. On the Intel Atom
C200 processor (codenamed Rangeley, see Figure 13), the Intel QuickAssist
hardware module is part of the SoC, while in Intel Xeon families it is typically
part of the south bridge. From a Simics modeling point of view, the existing
solution from the Crystal Forest platform is drop-in compatible. This kind of
software reuse further enhances the lead time software work now has ahead of
hardware availability. As a result, both product solutions and Simics solutions
benefit from this consistent approach across multiple generations and families.
Developers working on future-generation solutions can get virtual hardware up
and running a lot quicker because of effort invested in previous generations.

Build Your Own Network Testing Infrastructure
Not many engineers have the luxury of controlling a large number of
networking platforms. There are simply not enough platforms for every
engineer. Sometimes the equipment is so expensive that it is not possible
to enable everyone with enough access. Hardware schedule, shipping, and
availability issues can also have a negative impact on productivity.

Simics solves the issue by giving access to anyone that needs it. Since it is
software, it can be installed on a laptop or desktop; it can be carried around
instead of locked in the labs. By loading different scripts and installing
different packages, users have access to all kinds of platforms and can build and
instantiate as many systems as needed for the purpose of the simulation.

Shown in the example (Figure 14) is a multi-board test that involves two Crystal
Forest Server (ATCA) boards. Each board has identical settings (of course, one
can easily create a network of different devices). The Dual-ATCA test later boots
into Busy Box (Figure 14) and users can set up a network in between the two.

From this point on (Figure 15) we successfully created a small network of
testers that involve two Crystal Forest ATCA boards. The boot time is good for
developers. They can pause anytime they want to inspect the systems. From
here we can add as many virtual boards as we want and run a network level of
test, depending on the purpose.

Nicely Positioned for SDN and Intel® ONP Development
The Intel ONP Server Reference Design is an SDN ready virtual switching
building block. It utilizes virtualized network functions that define
the hardware and software ingredients such as packet processing and
management. At the heart of Intel ONP Server platform are the Intel Xeon
processor and the Intel Communications Chipset 89xx series. Intel DPDK
is also part of SDN and Intel ONP. The Intel ONP Switch Reference
Design includes Wind River Open Network Software—an open and fully
customizable networking software stack based on a Wind River developed
abstraction layer and APIs.

Simics can simulate Crystal Forest hardware and sits nicely inside the overall
Intel ONP architecture (Figure 16) and can interact with software stacks in

“…software reuse further enhances

the lead time software work now has

ahead of hardware availability.”

“The Intel ONP Server Reference

Design is an SDN ready virtual

switching building block.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

80 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

figure 16: simics crystal forest and intel® open
network platform server architecture
(Source: Intel Corporation, 2013)

SW

HW

SDN Controller

OEM App ISV App SP App

Open Network Platform Software
Intel®DPDK Optimized vSwitch

(Wind River Product)

Simics Crystal Forest Server
CPU (Intel Architecture)

Intel Communications 89xx
Intel 82599

upper layers (such as OEM App) as well as initiate networking with other Intel
ONP or non–Intel ONP devices.

The usage model here is that Simics can support SDN migration moving
control and data plane operations to Intel ONP platforms. Simics can also help
repartition hardware and software functionalities to support Network Functions
Virtualization (NFV), where network functions (L3 forwarding, management
plane, security) are shifting from hardware to software applications running
in a virtualized environment. If the customers already have Simics models for
their current solutions, they can begin that migration process to Intel ONP
immediately without waiting for their own hardware availability. Even if they
do not yet have their Simics device models, they can begin using Simics Crystal
Forest building blocks and studying Intel ONP and SDN migration paths.

Conclusions
In this article, we walked through several examples of Simics post-silicon usage
and demonstrated its positive impact to the product lifecycle. During our work
on Intel® Next Generation Communications Chipset (code named Crystal
Forest),we successfully used Simics to help debug system issues after hardware
became available and proved various usage models for the post-silicon phase.
There are several aspects that stand out from our experience:

 • Simics enables us to apply more resource debug issues concurrently and it
provides a unique approach in recreating the issue in simulation. The debug
time is reduced because it is more efficient in software simulator as one
can pause and even reverse-debug the problem. It is changing the way we
approach BIOS and firmware development.

“…Simics can support SDN

migration moving control and data

plane operations to Intel ONP

platforms.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN) | 81

 • Simics allows more developers to obtain access to hardware and software
features such as the Intel QuickAssist security solution and Intel DPDK.
This removes dependency on hardware so developers continue the learning
or development process on simulation. This speeds up the learning and
development process significantly.

 • Simics brings a great deal of reuse between product families. Using the
Intel® Atom™ C200 processor (previously codenamed Rangeley) as an
example, we can see that the simulation model can be easily reused between
families, which results in time saved both in Simics model development
time and also overall product development time.

 • Simics has tremendous support for Intel® Next Generation
Communication platforms (such as Crystal Forest and future versions) as
well as Intel® Open Network Platform and the software-defined network.
These platforms are important vehicles for customers to create solutions
for NFV and SDNs. Simics is positioned to be a key contributor during
this transformation. As problems and systems get more complicated,
Simics tends to get even more powerful with its total control on the
system and excellent simulation speed.

We are in the middle of a paradigm shift where a more modularized,
multilayered, flexible, demand-driven network solution is clearly where the
industry is heading. The trend is driven by demand, cost reduction, time to
market, and new usage and service models. Existing vendors are being pushed
to come up with solutions faster and more scalable to meet explosive growth.
The biggest challenge may be the effort required to move legacy software and
hardware solutions and repartition workloads to run on new frameworks.
Each vendor tends to have their proprietary solutions, which makes the
transformation process a lot harder than it should be.

Simics is exactly the type of technology needed to go after this major
challenge. Its values in post-silicon usage are well beyond a single isolated
device or system. It is perfectly suited for heterogeneous and networked
systems and provides a simulation speed that is highly desirable for firmware
and software engineers. It gives users a golden key to prototype and pilot
software migration paths even before hardware is built. It can give users a
tremendous edge when developing virtualized solutions and/or environment
with security constraints. Today, Simics already has support for key
ingredients to be a significant contributor during the migration process
to NFV/SDV and Intel Open Network Platforms. Simics may just be the
difference maker for solution vendors in terms of time to market in the era of
network transformation.

Complete References
[1] Intel® Communications Chipset 89xx Series Datasheet, v2, June 2013

[2] Intel® Data Plane Development Kit Getting Started Guide,
Reference number 326002-003, Intel Corporation, August 2013

“Today, Simics already has support

for key ingredients to be a significant

contributor during the migration

process to NFV/SDV and Intel Open

Network Platforms.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

82 | Post-Silicon Impact: Simics* Helps the Next Generation of Network Transformation and Migration to a Software-Defined Network (SDN)

[3] Implementing SDN and NFV with Intel® Architecture, Intel®
Corporation, April 2013

[4] Intel® Processors for Communications Datasheet, Vol. 1 Document
Number: 327405-001, Intel Corporation, June 2013

Author Biography
Tian Tian is a seasoned embedded system designer with 12+ years of product
design, application, and market development experience. He developed a key
voice component for Intel’s IXP425 network processor family and architected
the Access Software OS library for Xscale-based systems. In recent years he
has been managing various x86 product families in the embedded segment
including Intel® Centrino®, Intel Core Duo, Intel Xeon with a focus on the
communication industry. Tian began use Simics as part of the design process
in 2010, was involved with Simics Crystal Forest external release in 2011, and
is leading the technical marketing effort for Simics usage of next-generation
platforms. Tian holds a Master of Electrical Engineering from Arizona State
University and has published many technical white papers and articles.

84 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide is a Simics module designed for finding concurrency bugs in
operating system kernels, with a focus on Pebbles. Pebbles is a UNIX-like
kernel specification used in course 15-410, the undergraduate operating
systems class at Carnegie Mellon University, in which students implement
such a kernel in six weeks from the ground up. Landslide’s mechanism,
called systematic testing, involves deterministically executing every possible
interleaving of thread transitions in a given test case and identifying which ones
expose bugs. In this article we explain the testing environment (the course,
15-410, and the kernel, Pebbles) and the testing technique; describe how
Landslide takes advantage of certain features that Simics provides that other
testing environments (such as virtualization) do not; outline Landslide’s design,
implementation, and user interface; present some results from a preliminary
evaluation of Landslide, and discuss potential directions for future work.

Introduction
Race conditions are notoriously difficult to debug. Because of their
nondeterministic nature, they frequently do not manifest at all during testing,
and when they do manifest, it can be difficult to reproduce them reliably
enough to collect enough information to help debugging.

Many techniques exist for dynamic testing of concurrent systems for race
conditions. Systematic exploration, the strategy we focus on in this work,
involves making educated guesses as to what points during execution a
preemption would be most likely to expose a bug, enumerating the different
possibilities for interleaving threads around these points, and forcing the
system to execute all such interleavings to check if any of them results in
incorrect behavior.[1] Systematic exploration provides a better alternative to
conventional long-running stress tests, because it is less likely to overlook
buggy execution patterns, and it enables a testing framework to report more
thorough debugging information. Compared to other dynamic analyses, such
as data race detection[2], systematic exploration is able to find a wider range of
types of concurrency errors because of its ability to manipulate the execution of
the system under test.

In this article, we present Landslide, a Simics module that provides a
framework for performing systematic testing on kernel-level code.[3] Landslide
is designed with a focus on the testing environment used by students in
course 15-410, the undergraduate operating systems class at Carnegie Mellon
University (CMU). In 15-410, students implement a fully preemptible, UNIX-
like kernel from the ground up over the course of a six-week project.[4] They

“Systematic exploration is able to find

a wider range of types of concurrency

errors”

LAnDSLIDE: A SImICS* ExTEnSIon for DynAmIC TESTIng of KErnEL
ConCurrEnCy ErrorS

Ben Blum
Department of Computer Science,
Carnegie mellon university

David A. Eckhardt
Department of Computer Science,
Carnegie mellon university

Garth Gibson
Department of Computer Science,
Carnegie mellon university

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 85

Intel® Technology Journal | Volume 17, Issue 2, 2013

use the Simics simulator as their primary testing and development platform,
although they must rely on conventional stress-testing techniques to find and
track down concurrency bugs in their code. Landslide is an effort to improve
this situation by making the more sophisticated technique of systematic testing
accessible to developers of kernel code.

This article is structured as follows. In the section “15-410 and Pebbles,” we
discuss the course design, projects, and learning objectives for 15-410, with
a detailed overview of the requirements of the kernel project. In the section
“Systematic Testing,” we introduce the technique of systematic testing, explaining
its requirements, advantages, and challenges. In the section “Design and
Implementation,” we discuss the design of Landslide’s architecture, describing
the overall sequence of events involved in a systematic testing run, and the
various components of Landslide and how they fit together. In the section
“Use of Simics Features,” we focus specifically on how Landslide and Simics
fit together, highlighting the unique features that Simics offers that make
Landslide’s job possible. In the “User Interface” section, we present Landslide’s
user interface, describing the instrumentation process users must complete in
order to use Landslide, and the interface Landslide offers for fine-tuning the
search parameters and reasoning about uncovered bugs. In “Results” we discuss
a user study we conducted with volunteer students from 15-410, in which
Landslide was able to help the students uncover and fix previously-unknown race
conditions in their own kernels, and finally, in “Future Work,” we conclude with
a discussion of the most promising future work directions for this research.

15-410 and Pebbles
15-410, the Operating Systems Design and Implementation course at CMU, is
a semester-long project course comprising five projects. The projects are a stack
tracer, kernel device drivers (for timer, keyboard, and console), a 1:1 user-space
threading library to run on a Pebbles kernel, the Pebbles kernel itself, and a
small extension to the Pebbles kernel. Simics is used as the main development
and debugging environment for the latter four projects.

The course has many learning objectives, ranging from acquiring detailed factual
knowledge about hardware features through practicing advanced cognitive
processes such as open-ended design. Students study high-level concepts such
as protection (least privilege, access control lists vs. capabilities), file-system
internals, and log-based storage. We place emphasis on acquiring information
from primary sources, including both manufacturer-provided hardware
documentation and a non-textbook technical-literature reading assignment.
Students begin with a blank slate rather than a kernel-source template or an
existing operating system, so they must synthesize design requirements from
multiple sources and must choose their own module boundaries and inter-
module conventions. Due to the foundational nature of kernel code, the
assignment design and grading encourage students to think about corner cases,
including resource exhaustion, instead of being satisfied by “the right basic idea”
implementations that handle only auspicious situations. Finally, most relevant to

“The assignment design and grading

encourage students to think about

corner cases, instead of being satisfied by

‘the right basic idea’ implementations.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

86 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

this work, students gain substantial experience in analyzing and writing lock-
based multi-threaded code and thread-synchronization objects. They practice
detecting and documenting deadlock and race conditions, including both thread/
thread concurrency and thread/interrupt concurrency.

Project Overview
In the course of a semester, students work on five programming assignments; the
first two are individual, and the remaining three, including the kernel project itself,
are the products of two-person teams. Here we are primarily concerned with the
kernel project, though we will also briefly describe the others.

Introductory Projects
The first project is a stack crawler: when invoked by a client program, it
displays the program’s stack symbolically, rendering saved program-counter
values as function names and printing function parameters in accordance
with their types. This project enables students to review key process-model
and language-runtime concepts from the prerequisite course[5]; it introduces
students to our expectations about design, analysis, and making choices; finally,
because C pointers are unsafe, it requires students to consider robustness.

The second project is a simple game, such as Hangman, which runs without an
underlying operating system. The project requires students to implement a device
driver library consisting of console output, keyboard input, and a hardware timer
handler. This project and the remaining ones are written in C with some x86-32
assembly code, which is then compiled and linked into an ELF executable, stored
into a 1.44-megabyte 3.5-inch floppy-disk image, and booted via GRUB. If
the image is copied to a real floppy or embedded into an “El Torito” bootable
compact disc image, it can be booted on standard PC hardware; however,
students most often use Simics, to take advantage of its debugging facilities.

The third project is a 1:1 thread library for user-space programs, essentially a
stripped-down version of POSIX Pthreads. Students begin by designing mutexes
using any x86-32 atomic instructions they choose. They then write other thread-
synchronization primitives (condition variables, semaphores, and reader/writer
locks), infrastructure components (stack allocation/recycling and a thread registry),
and low-level code to launch and shut down threads. Student library code is linked
with small test programs provided by the course staff. The test programs run on
a reference kernel written by the course staff and provided in binary form, the
behavior of which is specified in a twelve-page document. In addition to providing
a reliable execution substrate, the reference kernel schedules the execution of user-
space threads created by student code according to a variety of interleaving policies.

The Pebbles Kernel Project
For the fourth project, two-student teams produce a kernel which implements
the same specification as the reference kernel they previously relied on. They
design and implement some approach to synchronizing and blocking threads
while they are in kernel space, a simple round-robin scheduler, basic virtual
memory, a program loader, code to handle various x86 exceptions, and code

“Two-student teams produce a kernel

which implements the same specification

as the reference kernel they previously

relied on.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 87

Intel® Technology Journal | Volume 17, Issue 2, 2013

for setting up and tearing down threads and processes (they reuse their game-
project device drivers). We briefly describe each of the 25 system calls in the
Pebbles specification in Table 1.

Name System Call Description

Lifecycle Management
fork Duplicates the invoking task, including all memory

regions.
thread_fork Creates a new thread in the current task.
exec Replaces the program currently running in the

invoking task with a new one.
set_status Records the exit status of the current task.
vanish Terminates execution of the calling thread.
wait Blocks execution until another task terminates, and

collects its exit status.
task_vanish* Causes all threads of a task to vanish.

Thread management
gettid Returns the ID of the invoking thread.
yield Defers execution to a specified thread.
deschedule Blocks execution of the invoking thread.
make_runnable Wakes up another descheduled thread.
get_ticks Gets the number of timer ticks since bootup.
sleep Blocks a thread for a given number of ticks.
swexn Registers a user-space function as a software

execption handler.
Memory Management

new_pages Allocates a specified region of memory.
remove_pages Deallocates same.

Console I/O
getchar* Reads one character from keyboard input.
readline Reads the next line from keyboard input.
print Prints a given memory buffer to the console.
set_term_color Sets the color for future console output.
set_cursor_pos Sets the console cursor location.
get_cursor_pos Retrieves the console cursor location

Miscellaneous
readfile Loads a given buffer with the names of files stored

in the RAM disk “file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 1: The 25 system calls described in the Pebbles specification.
Students are not required to implement the three system calls marked with
an asterisk (*).
(Source: Pebbles kernel specification, 2013.[4])

Intel® Technology Journal | Volume 17, Issue 2, 2013

88 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

For most students in the class, this is the largest and most complicated software
artifact they have produced. Because the test suite and the grading criteria
emphasize robustness and preemptibility of kernel code, there are many
cross-cutting concerns. As students are responsible for ensuring the runtime
invariants underlying all compiler-generated code in the system (kernel and
user-space), they gain experience with debugging at both the algorithm level
and the register/bit-field level.

Widely regarded as the most difficult concurrency problem in the project is
that of coordinating a parent and a child task that “simultaneously” exit: when
a task completes, live children and exited zombies must be handed off to the
task’s parent or to the system’s “init” process, at a time when the task’s parent
may itself be exiting; meanwhile, threads in tasks that receive new children may
need to be awakened from the wait() system call. Due to design constraints
imposed by other parts of the kernel specification, solutions that are not
carefully designed are prone to data races or deadlocks.

Students who complete the kernel project on time then work on a kernel-
extension project, with varying content depending on the semester. Past
projects have included writing a sound card driver, a file system, hibernation
(suspend to disk), kernel profiling, and an in-kernel debugger. Two recent,
more aggressive, projects have been adding paravirtualization so that their
kernels can host guest kernels and adding multiprocessor support to their
single-processor kernels.

Use of Simics
Simics serves as the main execution and debugging platform in 15-410. Unlike
some emulators, which focus on fast execution of correct code, Simics provides
very faithful bit-level support not only for code that behaves correctly but also
for kernels that accidentally “abuse” hardware. Unlike hardware virtualization
environments, Simics contains substantial debugger support: single-stepping,
printing of source-level symbolic expressions, stack tracing, display of TLB
entries, and even summaries of x86 hardware-defined descriptor tables. All of
these features make Simics a helpful platform for students to test their code.
A major advantage of using Simics over the QEMU emulator in particular
is that QEMU issues timer interrupts only at basic-block boundaries, which
would dramatically undermine our goal of teaching students that threads can
interleave with each other at any time.[6]

Systematic Testing
The underlying idea of systematic testing is to view the set of all possible execution
sequences, which can change due to concurrency nondeterminism, as an execution
tree. The root of this tree denotes the start of the test case, each branch represents
one execution sequence, and nodes in the tree are decision points: time points
during the execution where Landslide should attempt to force a different thread
to run, thereby making progress through the state space.

“For most students in the class, this

is the largest and most complicated

software artifact they have produced.”

“Unlike some emulators, which focus

on fast execution of correct code, Simics

provides very faithful support not only

for correct code but also for kernels that

accidentally abuse hardware.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 89

Intel® Technology Journal | Volume 17, Issue 2, 2013

Example
Consider the example code in Code 1, which demonstrates how the thread_fork()
system call might be implemented. If a timer interrupt occurs at line 4, the
child thread can run, exit, and free its state, causing the access on line 5 to be
a use-after-free. Here, the necessary decision point for finding the bug is at
line 4. Landslide will know that there should be a decision point here because
it automatically interprets new threads becoming runnable as important
concurrency events. Other decision points may also exist, for example, during
the construction of the new thread_t struct, or during the new thread’s execution.
Together, the set of decision points defines an execution tree that contains this
bug, depicted in Figure 1.

1 int thread_fork() {
2 thread_t *child = construct_new_thread();
3 add_to_runqueue(child);
4 // note: at this point child may run and exit
5 return child->tid;
6 }
Code 1. Example implementation of the thread_fork() system call. This
example contains a race condition, described in the comment on line 4.
Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3]

Figure 1: The set of possible execution sequences can
be viewed as a tree of thread interleavings, in which a
concurrency bug is only exposed in some branches. This
particular tree is derived from the example code in Code 1.
(Source: Landslide: Systematic dynamic race detection in
kernel space, 2011.[3])

(no bug) (no bug) Use-after-free!

vanish ()child->tid

free TCB free TCB

free TCBvanish () child->tid

child->tid

add_to_runqueue ()

Challenges
In any systematic testing tool, there is an inherent tradeoff when defining the
set of decision points: searching with few decision points results in coarser-
grained interleavings, faster test completion, but less likelihood of finding
unexpected bugs; whereas searching with more decision points results in the
opposite. Accordingly, Landslide provides an interface for adjusting the set of

“There is an inherent tradeoff when

defining the set of decision points.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

90 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

considered decision points, which we discuss further in the section, “Use of
Simics Features.”

Combining the technique of systematic testing with a kernel-space execution
environment presents some additional challenges. First, a testing tool must
control all sources of nondeterministic input to the system, and account for all
the scheduling options by each such source of input at each decision point. In the
Pebbles environment, the only sources of nondeterminism are timer interrupts
and keyboard input. With Landslide, we focus exclusively on timer interrupts, as
they can be used to directly control the kernel’s context switching.

A second challenge of systematic testing in kernel-space is that of the scheduler.
Because kernels contain their own concurrency implementation, it can
be difficult to find bugs in the scheduler itself while also being able to use
assumptions about the scheduler’s behavior to optimize our search for bugs in
other parts of the kernel.

A third challenge is the issue of multiprocessor kernels: when multiple CPUs
can be running different threads simultaneously, additional nondeterminism
can arise from the order in which their instructions are executed. Some race
conditions may even require multiple active CPUs in order to manifest.
However, as 15-410 does not require student kernels to be capable of SMP
execution, Landslide assumes kernels will only ever use one processor. Lifting
this limitation is left to future research.

Design and Implementation
This section describes the important components of Landslide’s architecture.
Conceptually, Landslide is designed as follows. Students annotate their
code so that Landslide knows which kernel thread is currently running.
After one kernel thread has run for some time, Landslide triggers artificial
clock interrupts to force the scheduler to run a different thread. When a
test program finishes execution according to one pattern of thread switches,
Landslide rewinds the kernel’s state and resumes the test according to a
different thread interleaving. After each instruction, Landslide applies several
bug-detection predicates to the kernel’s state to detect illegal heap accesses,
deadlock, infinite loops, and panics. In theory, by forcing a thread switch
after every non-scheduler instruction, Landslide could apply its bug-detection
predicates to every reachable execution state. Because this would require a
prohibitively large amount of time to complete, in practice Landslide uses a
variety of techniques to thread-switch less often and to avoid repeating bug-
equivalent execution paths.

In order to achieve this exploration of the state space, Landslide comprises
several components, which are depicted visually in Figure 2 and described in
the following sections.

“Combining systematic testing with a

kernel-space execution environment

presents some additional challenges.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 91

Intel® Technology Journal | Volume 17, Issue 2, 2013

Figure 2: Visual representation of landslide’s architecture and its interface with the
kernel under test.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])

Thread Scheduler
The Landslide scheduler is responsible for keeping track of which threads exist in
the guest kernel: which are runnable at any given time, and when they are created
and destroyed. It maintains a “mirror image” of the guest kernel’s scheduler state
in the form of three queues, a pointer to the currently-running thread, and a
pointer to the previously-running thread. The queues are the runqueue, containing
the runnable threads, the sleep queue, containing threads which become runnable
after a certain number of timer ticks, and the deschedule queue, which might not
correspond to a data structure in the guest kernel, but contains all other threads
that exist on the system that are not runnable for whatever reason.

Though we define timer interrupts as the only source of nondeterminism in
our environment, it is more useful to view the concurrent behavior with a
higher-level abstraction, in terms of the set of runnable threads and the ability to
preempt the currently running thread with any different runnable one. Hence,
the scheduler also contains the mechanism for translating the tree explorer’s high-
level decisions about which thread should run next into a lower-level sequence of
timer interrupts (which trigger context switches). Note that multiple interrupts

Guest Kernel

Simulated Execution

tell_landslide()

Timer Interrupts

Test
Lifecycle

Tree Explorer

Kernel
Instrumentation

Memory
Tracking

Simics

Decision Tree

Landslide

Scheduler

Runqueues

Intel® Technology Journal | Volume 17, Issue 2, 2013

92 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

may sometimes be necessary to force the desired thread to run; for example, if the
kernel scheduler uses a round-robin policy and has a runqueue of thread IDs 1,
2, and 3 (with thread ID 1 currently running), if the Landslide scheduler desires
to run thread 3, it will take 2 interrupts before thread 3 begins running.

Memory Access Tracking
Landslide maintains a mirror image of the guest kernel’s dynamic allocation
heap, so it can know at any point which memory ranges are allocated and
which ranges used to be allocated but now are freed. This set is updated each
time the guest kernel calls malloc() or free(). This heap tracking provides
the ability to check for dynamic allocation errors (such as use-after-free and
double-free bugs), in a similar fashion to the Valgrind debugging tool.

Landslide also maintains a set of shared memory accesses made since the last
decision point, for use with the Partial Order Reduction state space technique
(which we describe in the next section). This set of accesses allows Landslide to
determine when certain actions of different threads may conflict with, or are
independent from, each other. Landslide ignores shared memory accesses from
the kernel’s dynamic allocator itself, and it also ignores shared memory accesses
from the components of the kernel’s scheduler that run every transition.

Execution Tree Explorer
The execution tree explorer maintains a representation of the current branch of the
decision tree. It is responsible for checkpointing the state of both Landslide and the
guest kernel at each decision point, deciding at the end of the test which branch of
the tree to execute next (that is, selecting which decision point should have been
decided differently), and backtracking to appropriate points in the test’s execution.

The explorer also identifies points during execution that should count as
decision points. The selection is mainly controlled by the user, during the
annotation and configuration process. However, the explorer also automatically
identifies voluntary reschedules—points at which the kernel explicitly invokes a
context switch of its own accord (for example, in yield())—which comprise the
“minimal necessary set” of decision points.

During the backtracking stage, the explorer applies a state-space reduction technique
called Dynamic Partial Order Reduction (DPOR). Briefly, DPOR analyzes the
memory accesses in a just-finished execution to identify a set of candidate branches to
explore next. These branches represent reorderings of state transitions that conflicted
with each other, with reorderings of independent transitions pruned out. For example,
Figure 3 depicts a subset of a possible execution tree in which the highlighted
transitions of threads 1 and 2 are independent from each other (that is, if they were
reordered, the resulting kernel state would be identical.)

Bug Detection Techniques
During the test case’s execution along each thread interleaving, Landslide
applies several bug-detection predicates to the kernel’s state, some accurate and
some heuristic-based.

“DPOR analyzes the memory accesses

to identify a set of candidate branches to

explore next.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 93

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide’s “definite” bug-detection techniques include identifying kernel
panics, use-after-free bugs (making use of the heap access tracking), and
deadlocks (making use of mutex and scheduler instrumentation).

Additionally, Landslide can heuristically detect infinite loops by comparing the
current execution of the test case against previous executions under different
thread interleavings. If the current execution has lasted a certain proportion
longer than the average of all previous executions, as visualized in Figure 4,
Landslide assumes the deviation represents a nondeterministic infinite loop.

Use of Simics Features
This section discusses how Landslide and Simics fit together, and highlights some
Simics features that Landslide makes heavy use of to enable systematic testing.

Landslide is implemented as a “trace” module, which means that Simics
calls into it once per instruction and once per memory access, supplying
information about the instruction or access about to be performed.
Landslide uses this information to update its internal state machine to
track the kernel’s progress, by reading the values at memory locations,
comparing the current instruction against certain known execution points
in the kernel, and so on.

Landslide’s control over the system consists of two parts. Together, these parts
enable it to steer the kernel through the different branches of the execution
tree, testing for bugs in each branch until the tree is exhausted.

“Landslide can heuristically detect

infinite loops by comparing the current

execution of the test case against

previous executions.”

Figure 3: An example part of an execution tree that could be pruned using DPOR. The
highlighted transitions of threads 1 and 2 are independent, meaning that to achieve full
coverage, Landslide needs to explore only one of the two subtrees.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])

...

...

... ...

2

2 1

1 ...

...

...

......

x � 5 y � 5

x��;

y��;

x � 6 y � 4

Thread 1 Thread 2

x � 5 y � 5

x��;

y��;

x � 6 y � 4

Thread 1 Thread 2

Intel® Technology Journal | Volume 17, Issue 2, 2013

94 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

The first part is causing a timer interrupt to occur at a given point during
the kernel’s execution. Landslide achieves this by manipulating the CPU’s
pending interrupt vector. When Landslide wishes to cause a particular thread
to preempt another thread at a given decision point, it injects a timer interrupt
before the pending instruction. In response, the kernel triggers a context-switch
to the next thread on its scheduler run-queue. If that thread is not the desired
one, Landslide repeats the process, injecting more timer interrupts until the
desired thread begins running.

The second part of Landslide’s control is backtracking. At the end of each
branch of the decision tree, if Landslide wishes to explore a different interleaving

“If that thread is not the desired one,

Landslide repeats the process, injecting

more timer interrupts until the desired

thread begins running.”

Figure 4: An example decision tree containing a
nondeterministic infinite loop. If Landslide explores
the highlighted branch after testing sufficiently many
of the terminating branches, it assumes the kernel is
stuck in an infinite loop and will report a bug.
(Source: Landslide: Systematic dynamic race
detection in kernel space, 2011.[3])

[...]

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 95

Intel® Technology Journal | Volume 17, Issue 2, 2013

at a particular decision point, it must reset the system state to the past state at
that point. Fortunately, Simics provides a facility for reverse-execution in the
form of the set-bookmark BOOKMARK-NAME and skip-to BOOKMARK-
NAME commands. At each decision point during execution, Landslide uses
set-bookmark to ask Simics to set a bookmark. Then, when the current execution
of the test case completes, Landslide uses skip-to to reverse-execute to the
bookmark associated with the desired decision point, at which point exploration
resumes. Because Landslide places itself outside the scope of Simics’ reverse
execution system, although the entire simulated machine state is reset to the
earlier point, Landslide’s memory of the entire state space tree is persistent.

User Interface
Instrumenting and testing a kernel with Landslide involves three stages of
effort. These are required annotations, configuring decision points for a more
efficient search, and interpreting the resulting traces Landslide emits when it
finds a bug. This section gives a brief overview of each.

Required Annotations
Users annotate their kernels to inform Landslide of certain important concurrency
events during execution. We provide a set of annotation functions, named with the
prefix tell_landslide, for this purpose. The annotations denote when a thread runs
fork(), sleep(), or vanish(), when a thread is added to or removed from the run-
queue, and when a thread becomes blocked on a mutex. The annotation is placed
just before the actual action being annotated. Code 2 shows an annotated sample
of the code from the example in the “Systematic Testing” section.

1 void add_to_runqueue(thread_t *child) {
2 tell_landslide_thread_runnable(child->tid);
3 // ... more implementation follows ...
4 }
5 int thread_fork() {
6 thread_t *child = construct_new_thread();
7 tell_landslide_forking(child->tid);
8 add_to_runqueue(child);
9 return child->tid;
10 }
Code 2. The same example thread_fork() implementation, now with
annotations for use with Landslide.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

There is also a configuration file, config.landslide, in which the student must
specify constant information such as the function names of the timer handler
and context switcher, which threads exist when the kernel boots, and which
user-space test program Landslide should invoke.

Finally, there are two short (nominally two-line) functions used within Landslide
itself that the user must implement. These are predicates on the kernel’s scheduler

Intel® Technology Journal | Volume 17, Issue 2, 2013

96 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

state and express potentially nontrivial conditions: whether the current thread is
runnable but not on the run-queue, and whether preemption is disabled while
interrupts are on. This logic executes within Landslide, inside of Simics, rather
than as part of the simulated kernel’s execution.

Configuring Decision Points
If Landslide uses only decision points that it automatically identifies on
voluntary reschedules, the resulting interleavings will be coarse-grained and
likely to overlook bugs. We provide an extra annotation for students to add
more decision points for a finer-grained search, called tell_landslide_decide().
We recommend inserting it into concurrency primitives, such as at the start of
mutex_lock() and at the end of mutex_unlock().

However, this strategy may cause Landslide to identify decision points in
unrelated parts of the kernel, such as when accessing mutexes in unrelated and/
or already-trusted system calls. We provide interface options in config.landslide
for the student to view currently identified decision points and to selectively
eliminate them. For example, if a student were testing thread death and
reaping, they might want decision points to appear in wait() and vanish() but
not if unrelated virtual memory operations are also in progress. Accordingly,
they could write within_function wait vanish and without_function destroy_
address_space. The within_function directive requires that at least one of the
specified functions shall be on the call stack when decision points are identified,
and without_function requires the opposite.

Decision Traces
When Landslide identifies a bug, it outputs a decision trace. This trace reports
what kind of bug was detected, and also reports each decision point in the
current interleaving: which thread was running, a trace of its stack when it
was switched away from, and the thread that Landslide caused to preempt it.
With this trace, the user can better understand the concurrent execution that
exposed the bug. In Code 3 we show an example decision trace, which depicts
a sequence of thread interleavings that can expose the bug in the example from
the Systematic Testing section.

USE AFTER FREE: read from 0x15a8f0 at IP 0x104209

Block 0x15a8f0 was allocated by thread 3 at (...)

and freed by thread 4 at (...)

Decision trace follows:

1: switched from thread 3 -> thread 4 at:

0x105a10 in context_switch,

0x1041f4 in thread_fork,

0x10362b in thread_fork_wrapper

2: switched from thread 4 -> thread 3 at:

0x105a10 in context_switch,

0x104681 in yield,

0x104570 in exit,

0x103708 in exit_wrapper

“With this trace, the user can better

understand the concurrent execution

that exposed the bug.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 97

Intel® Technology Journal | Volume 17, Issue 2, 2013

Current thread 3 at:

0x104209 in thread_fork,

0x10362b in thread_fork_wrapper
Total decision points 24, total backtracks 5
Code 3. An example decision trace that Landslide would emit when it finds a
bug. This particular decision trace represents the example use-after-free bug in
thread_fork() presented earlier.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

Results
We evaluated Landslide in two ways: first, by instrumenting two prior-semester
student kernels to measure the exploration time needed to find different races,
and second, by meeting with current-semester student volunteers, before they
submitted their kernel for grading, to see if they could find bugs on their own
with Landslide. (The volunteers were chosen from students with free time, and
were therefore not chosen at random.)

In the first phase, we instrumented one kernel written by a teaching assistant
in a previous year and also one student kernel later graded by that TA.
We configured Landslide to search for five complicated well-known race
conditions. In addition to finding all five races, Landslide also found a sixth
previously unknown race in the TA’s own kernel. Using additional decision
points only on calls to mutex_lock(), Landslide found each of the six bugs in 11
to 57 seconds on a 2.6 GHz Intel® Xeon® server, executing between 1 and 377
distinct interleavings per bug.

In the user-study phase, we found that students spent on average 119 minutes
(60 to 158) on the required instrumentation, and a further 36 minutes (10 to
60) refining Landslide’s search. Of the four groups who finished the required
instrumentation, all four found previously unknown bugs in their kernels: two
races and two deterministic errors. These bugs manifested as infinite loops,
a kernel panic, and a use-after-free. Despite wishing the instrumentation
were easier, the students reported that they found working with Landslide
rewarding.

Future Work
There are several promising future work directions for Landslide that we
would like to explore. These include incorporating new testing techniques,
such as parallelized search, state space estimation, and new state space
reduction techniques. They also include extending Landslide to support more
complicated kernel features, such as symmetric multiprocessing and device
driver nondeterminism.

Other Testing Techniques
The most notable bug-detection predicate that Landslide does not yet
incorporate is data race detection.[2][7] A data race is defined as a pair of
memory accesses done by two distinct threads on the same address, at least one

“In addition to finding all five

races, Landslide also found a sixth

previously-unknown race in the TA’s

own kernel.”

“All four groups found previously

unknown bugs in their kernels: two

races and two deterministic errors.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

98 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

of which is a write, where there is no synchronization or dependency between
the two threads at the time of either access. Many tools already exist for
identifying data races, but we anticipate that searching for them with Landslide
could additionally help guide Landslide’s search towards thread interleavings
more likely to have bugs based on such data races.

Ongoing research exists in several other techniques for coping with the exponential
nature of the state spaces associated with systematic testing. Among these are
parallelized dynamic partial order reduction[8] and dynamic interface reduction[9].

Extending Landslide’s Concurrency Model
Landslide’s present incarnation makes several limiting assumptions about
the concurrency model of the kernel under test. Chief among these are
the assumptions that the kernel schedules threads only on one processor
at a time, and that the timer interrupt is the kernel’s only source of
nondeterminism.

We anticipate revising the concurrency model to incorporate SMP scheduling
would be a relatively minor change, as the overall structure of the state space
tree remains the same, though some context switches would instead be cross-
CPU switches. Unlike all context switches in the current uniprocessor model,
such context switches would not necessarily involve executing any scheduler
code. Incorporating device driver nondeterminism, however, will be more of
a challenge, as in addition to context-switching to an arbitrary thread at any
decision point, nondeterminism can also arise from either taking interrupts
to receive input from a device or from context switching to a device driver’s
dedicated handler thread.

Lifting these limitations would be a significant step towards making Landslide
applicable to real-world kernels such as Linux. Overall, we are optimistic for
the future of systematic testing for concurrency bugs, and we hope to see
sophisticated bug-finding tools along these lines in due time.

References
[1] Patrice Godefroid. VeriSoft: A Tool for the Automatic Analysis of

Concurrent Reactive Software. In Proceedings of the 9th
International Conference on Computer Aided Verification,
CAV ’97, pages 476–479, London, UK, 1997. Springer-Verlag.

[2] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer:
data race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, WBIA ’09, pages 62–71,
New York, NY, USA, 2009. ACM.

[3] Ben Blum. Landslide: Systematic dynamic race detection in kernel
space. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, May 2012. CMU-CS-12-118.

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 99

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 99

[4] David A. Eckhardt, “Pebbles kernel specification,” 2012. [Online].
Available: http://www.cs.cmu.edu/~410/p2/kspec.pdf.

[5] Randy Bryant and David O’Hallaron, “Introducing computer
systems from a programmer’s perspective,” in Proceedings of the
32nd Technical Symposium on Computer Science Education
(SIGCSE). Charlotte, NC: ACM, Feb. 2001.

[6] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic
translator. In Proceedings of the annual conference on USENIX
Annual Technical Conference (ATEC ‘05). USENIX Association,
Berkeley, CA, USA, 41-41.

[7] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. 1997. Eraser: a dynamic data race detector
for multithreaded programs. ACM Transactions on Computer
Systems 15, 4 (November 1997), 391–411.

[8] Jiri Simsa, Randy Bryant, Garth Gibson, Jason Hickey. Scalable
dynamic partial order reduction. Third International Conference
on Runtime Verification (RV2012), 25–28 September 2012,
Istanbul, Turkey.

[9] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang,
and Lintao Zhang. 2011. Practical software model checking via
dynamic interface reduction. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP ‘11).
ACM, New York, NY, USA, 265–278.

Author Biographies
Ben Blum is a PhD candidate in the Computer Science Department at
Carnegie Mellon University. He first implemented Landslide as the research
topic for his Master’s degree at CMU and is continuing the work during his
PhD studies. Ben has additionally served as a teaching assistant for 15-410 for
three semesters. His web site is at http://www.cs.cmu.edu/~bblum.

David A. Eckhardt is an associate teaching professor of computer science at
Carnegie Mellon University. He joined the faculty after completing his MS
and PhD at Carnegie Mellon and BS in Computer Science at The Pennsylvania
State University. Dave received an Intel Foundation Graduate Fellowship
and was co-inventor of a patent with Intel Senior Fellow Kevin Kahn. He
has taught Operating Systems at CMU continuously since 2003 and has
supervised student projects based on the Linux, FreeBSD, Haiku, OS X, and
Plan 9 operating systems. Dave’s research interests include operating systems,
wireless networks, and high-performance networking. His web site is at http://
www.cs.cmu.edu/~davide/.

Intel® Technology Journal | Volume 17, Issue 2, 2013

100 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

Garth Gibson is a professor of computer science at Carnegie Mellon
University, the cofounder and chief scientist at Panasas Inc., and a Fellow of the
ACM. He has an M.S. and Ph.D. from the University of California at Berkeley
and a BMath from the University of Waterloo in Canada. Garth’s research is
centered on reliable scalable storage systems for parallel and cloud computing
and he has had his hands in the creation of the RAID taxonomy and the IETF
NFS v4.1 parallel NFS extensions. Garth is also an investigator in the Intel
Science and Technology Center for Cloud Computing. His web site is http://
www.cs.cmu.edu/~garth/.

102 | Early Hardware Register Validation with Simics*

Intel® Technology Journal | Volume 17, Issue 2, 2013

Contributors

This article describes the use of Wind River Simics*, a full-platform functional
simulator, for early validation of hardware register specifications. The Simics
model becomes one of the first consumers of the registers, and can find several
types of errors earlier, and sometimes with a wider scope, than hardware-
based validation. The article is based on an actual experience of collaboration
between Simics model developers and hardware architects within Intel
during development of an Intel® Xeon® chip. Simics was proved valuable as
a validation tool and contributed to shift-left (reducing time to market) for
hardware development.

Introduction
As the complexity of Intel hardware is increasing, the hardware register count
in the new platforms is growing rapidly. Increasing amounts of control and
status states are becoming architecturally visible to manufacturers, forming a
key part of competitive advantage and a liability for customer-visible bugs. At
the same time, hardware architects are being faced with the need for shorter
project development cycles and a need for earlier (shift-left) engagement with
teams that are using register specifications in their development. To handle
these conflicting requirements (more complexity and having it come in
earlier), the architects must use automated register validation techniques to
validate register specifications. Early incorporation of validation in the register
architecture definition process is vital for the early appearance of mature
specifications.

At the later stages of development, validation of architectural definitions is
performed by software developers (that is, during BIOS development), but at
the present time the problem of early pre-software register validation has no
adequate solution: some attempts at formal validation have proved to be slow
and error-prone; most errors are found by simple observation, which cannot
bring confidence in the status of register maturity.

RTL-based (hardware-based) register validation options are subject to
significant dependencies on the integration of IP blocks into working models
and the functionality of the global register access fabrics.

Register specifications lack an early target for validation in the project feature
specification phase and design execution phase. They also lack a sense of
delivery urgency until later in the project. Specifications are very likely to
have impeding errors that face the initial bring-up of the RTL validation
environment.

“at the present time the problem of

early pre-software register validation

has no adequate solution”

Alexey Veselyi
Intel Corporation

John Ayers
Intel Corporation

EaRly HaRdwaRE REgISTER ValIdaTIon wITH SImICS*

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 103

This article describes the use of Wind River Simics, a full-platform functional
simulator, for addressing the need for early register validation during the
development of an Intel Xeon chip. Simics is being used more and more for pre-
silicon software validation by multiple groups at Intel. This validation approach
proved very promising, and the intention is to adapt it for broader use.

The process of collaboration with the hardware design team is set up as follows.
Model developers start implementation of the hardware model using early
register specifications. The Simics model becomes one of the first consumers of
the register specification and is able to find several types of specification errors
significantly earlier than other RTL-based validation options, and in some
cases with a perspective not available to RTL-based options. The approach
detects not only register construction errors but also allows for validation
of key architectural register specifications against legacy-derived behavior
assumptions. Additionally Simics creates the possibility to define high-
level functional tests for the new platform. These tests can cover most of
the platform’s functionality, with the exception of new or heavily redefined
features. The team of Simics model engineers provides feedback to hardware
architects for every register definitions drop.

This article discusses in depth the scope of register validation using Simics and
the ways to perform it. It is based on an actual experience of such collaboration
between Simics model developers and hardware architects within Intel
during the development of an Intel Xeon chip. Simics proved to be a valuable
tool for finding bugs on the pre-software stage, thus speeding up hardware
development and promoting the shift-left paradigm (reducing product time to
market).

Early Register Validation Using Simics
Software simulation plays an important role in the shift-left of hardware
development process. We will be discussing Wind River Simics, a functional
full-platform simulator, which is becoming the de-facto standard simulator for
many use cases at Intel. The usage of Simics is being incorporated into BIOS,
driver, and other software development processes throughout Intel for pre-
silicon, as well as post-silicon validation. This is a standard and well-known
approach to the use of a functional simulator for validation purposes.

Simics model developers and hardware architects engaged early in collaboration
on the project. At that early stage, the register specifications were only
beginning to appear, and the overall development flow was just starting to
form. So it became apparent that we were facing the opportunity to try Simics
as a validation tool at the pre-software stage, which had not been attempted
before.

We will first talk about register validation in general, determine the gaps in the
currently established process, and then describe the collaborative process that
was set up to tackle these gaps.

“The Simics model becomes one of

the first consumers of the register

specification”

“we were facing the opportunity to

try Simics as a validation tool at the

pre-software stage, which had not been

attempted before.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

104 | Early Hardware Register Validation with Simics*

Hardware Register Validation
Architectural register definitions are a crucial form of an interface specification
between software (or firmware) accessing agents and the implemented logic.
As this interface connects two very distinct domains, there are multiple
perspectives or validation targets. Simics advocates for the software validation
perspective.

Current hardware-based validation of registers exists in two forms: validation
of registers, and feature validation that implements register programming
and tests for functionality. Hardware-based validation targets to be an
interface validation with some visibility of the physical implementation side
of the interface, specifically the register instance. It does not include the logic
function behind the register, but instead validates that registers accesses are
correct and that the register instantiation abides by several attributes defined
in the specification. Example attributes are: address, visibility, lock, register
type, access type, and reset/defaults (by asserting reset sequence). Hardware-
based register validation is very explicit to not target register impact on chip
behavior, leaving some of this for cluster, full-chip, or Uncore-scoped feature
validation to incorporate register reads and writes within the validation
of targeted features. Even feature validation lacks the perspective of the
platform and the register programming and reading sequences used by
software/BIOS.

Hardware-based register validation and feature validation do provide
significant coverage of validating architectural registers against hardware
behavior. However, these register and feature validations depend significantly
on RTL functionality and integration. Functionality must be there for the
register access fabric, for the emulators and monitors, and so on. Additionally
the hardware-based validation targets never have the software and platform
perspective that Simics has. As a result, the hardware-based validation effort
starts with a register database that has not been validated sufficiently for
rudimentary register construction faults or for architectural behavior of the
integrated IP blocks scaled to the new project goals.

The diagram in Figure 1 captures the lifecycle of register definitions during a
project when Simics provides an early register validation platform. The lagging
enablement of hardware-based validation is shown in this drawing, as is the
opportunity for the Simics platform to perform as a backdrop for the feature
specification and design execution phases of architectural register validation.
Simics serves to provide timely feedback on architectural behavior deviation
from the prior reference product. With these earlier discoveries the project
architecture owners have time to establish expectations before design teams
have begun investing heavily in the specifications.

The shift-left of register validation and of external programmer specifications
ahead of the slow ramp of RTL implemented registers are the key concepts
in Figure 1. The subsequent sections define the place for Simics full-platform
simulator in enabling this scenario.

“With these earlier discoveries the

project architecture owners have time

to establish expectations before design

teams have begun investing heavily in

the specifications”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 105

Early Validation of Registers for Construction
The validation targets for Simics must consider that this environment is not
based on RTL and that it therefore poses a higher risk of deviation from actual
silicon behavior. To mitigate this there are two goals: to not target lower-level
register implementation details, and to validate register data exactly as it is
consumed for hardware-based validation tools. In this case, hardware-based
register and feature validation matches very well with early register validation
using Simics.

Simics offers an opportunity for earlier detection of register construction errors:

 ● Register address errors: overlaps, erroneous placement in PCI Header
address, and so on.

 ● PCI device definition errors: bus-device-function allocations contradicting
the system address plan, headers not compliant with the PCI standard,
erroneous PCI class-code, incorrect device header-type values.

Database checks find some register address errors; however, it is very difficult
to manage the list of heuristic-based checks without some segmenting of the

“Simics offers an opportunity

for earlier detection of register

construction errors”

Figure 1: The register definition lifecycle with simics as a validation platform
(Source: Intel Corporation, 2013)

Supplement Register
Specifications for External

Consumption

Simics Platform,
BIOS and OS Boot Validation

Shift-left The
Delivery of Spec

Physical Placement
Information

Integration Stage Targets for System
Agents (UBox, Fuse Controller,

pCode, vCode, uCode)
Scaling Number of
Scoped Register

Instances and Bit Fields

IP
Block

A

IP
Block

B

IP
Block

C

Design Registers

Hardware-based Validation

Registers RTL
Implemented

Registers RTL
Implemented

Logical Register Address Map
(MSR, MMIO, B:D:F)

Legacy Architecture Registers Tagged
as Matching to Legacy BIOS/SW/Driver

Access Fabric Functionality
Incrementally Increases

Legacy BIOS/SW/Drivers

Early Validation in
Virtual Platform

BIOS Programming Stage Targets

External Specification (IPIX)

Architectural Public Registers

Intel® Technology Journal | Volume 17, Issue 2, 2013

106 | Early Hardware Register Validation with Simics*

registers according to their impact. Simics offers a focus point for the most
architecturally significant registers to be reviewed for construction and ensures
that legacy definitions take the precedence.

Early PCI header device definition and bus-device-function allocation
validation is paramount for establishing the infrastructure of register addresses
and for alignment with the project device plans. Project PCI endpoint, root
complex, nontransparent bridge (NTB) configurations and so on should be
initiated with confidence that the most basic definitions match legacy access
expectations.

Early Validation of Registers for Derived Behavior
Simics offers a platform to plug in legacy BIOS routines and then validate
legacy architectural registers for not straying behaviorally from seed BIOS
expectations. After projects capture IP register definitions, they move into a
stage of scaling for the IP instance counts, expansions, and structural changes
to system agent and project defining registers (such as, for example, CPUID),
and placement in a system address map for public MSR and CSR/CFG
registers. These changes have consistently been shown to introduce unintended
editing mistakes or incomplete edits, as well as compatibility breaks with other
architectural specifications.

BIOS routines are each associated with a list of registers to be accessed. The
architectural registers that are in support of legacy features are extracted from
the database based on these lists of registers. BIOS routines are selected from
key reference BIOS releases, such as the prior product in the product segment.
For example, as the DDRIO in successive projects moves from two channels
to three channels, there is significant value to both the BIOS development and
hardware design in having the DDR training or configuration programming
scale up in count in expected ways and in validating fundamental behaviors.

After validation of legacy architectural functionality, Simics, that is consuming
early register definitions, provides a very effective launch point for early BIOS
programming targets, possibly ahead of related RTL development. Examples
are: MMCFG/SNC/SAD/TAD/MMIO translation tables, routing tables,
range settings, and PCI enumeration flow.

Additionally Simics creates the possibility to define high-level functional
hardware tests for the new platform. These tests can cover most of the
platform’s functionality, with the exception of new or heavily redefined
features.

The Simics team provides feedback to the hardware architects for every register
definitions drop.

Simics as a Validation Tool
We now describe the process of collaboration established between the Simics
engineers and the hardware architects working on the project.

“Simics provides a very effective

launch point for early BIOS

programming targets, possibly ahead of

related RTL development”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 107

The Simics engineers are included in the iterative development process of
the hardware design team. As soon as a new release of the register definitions
is ready, they can begin exploring the registers using Simics. This, in turn,
consists of several stages. Each one of these stages has its own functional scope
to which the recognized bugs in the specifications belong. The stages are
described in Table 1.

Development stage Validation scope

Register structures
parsing and processing

Register overlaps and collisions; misplaced registers

Standard PCI configuration registers missing or
incorrect

Invalid class-code and header type values

Platform setup and
compilation

Device list mismatch with platform HAS
(Hardware architecture specification)

Existence of registers against a closely-related
predecessor platform (unless the new specifications
explicitly state the difference):

Registers that are expected to be programmed by a
future BIOS, based on past experience;

Registers with side effects used during OS boot

IIO (PCIe, VTD, NTB, error detection registers)

Preliminary boot test
with a simple GPL
BIOS (SeaBIOS)

Registers required for BIOS boot: CPUBUSNO
and MMCFG rule registers

Some PCI enumeration issues

OS boot tests
(different versions
of Linux, Windows,
SVOS, and so on)

MMIO mapping rules

PCI enumeration issues

Registers/fuses required for interrupts functionality

Specific feature testing Registers required to support the features:
PCIe ports
Legacy and non-legacy interrupts
NTB region mapping
Reset
etc.

Table 1: Simics platform development stages and their validation scopes
(Source: Intel Corporation, 2013)

All of the observed issues are promptly shared with the hardware architects,
who take the report into consideration for the next register definitions

Intel® Technology Journal | Volume 17, Issue 2, 2013

108 | Early Hardware Register Validation with Simics*

release. Sometimes a reported bug in a single register can be an indication
to the hardware team of a bigger problem in the specifications: for
instance, a common error in register access types or a misplaced register
bank.

Validation Based on Prior Definition
A large part of the mentioned validation scopes share a common validation
assumption: the platform in development should adhere to some legacy
expectations. On the one hand, this makes such an approach limited to only
validating the functionality inherited from previous-generation specifications.
New features, which are a big risk factor, and which are likely to become the
focus of attention for early software developers, are only covered by the generic
validation scopes. But on the other hand, legacy functionality forms the bulk of
overall functionality of a modern Intel platform. After the hardware architects
have formed the preliminary understanding of how the new platform differs
from its predecessor, they can define which areas should be excluded from
prior-definition-based validation.

Generic Errors
On the first stages of the described development cycle, validation is
performed the following way. The Simics team receives register definitions
(containing register offsets, access types, default values, fields) as an XML
database, ConfigDB, which is one of the standard formats for register
definitions exchange. The Simics engineers have developed tools to
automatically process and convert the XML into a format that the Simics
framework can understand (Device Modeling Language, DML). Another
commonly-used register specifications format, CRIF, can also be used during
this process.

During this stage, generic errors can be detected, such as overlapping registers,
invalid register and field sizes, invalid placement of custom registers into
the standard PCI header block, and so on. Also, on this stage Simics detects
invalid class-codes and header-type values when they mismatch the rest of
the PCI header definition—which happens to be a frequent bug in register
specifications.

Here we should note that some of these errors can be found automatically by
other validation tools, so this scope is not fully limited to Simics.

Legacy Expectations Mismatch
More features of Simics come into play on the next stage, where it is
possible to validate the platform’s behavior based on legacy expectations.
This includes compliance with existing standards (PCI header configuration
registers matching PCI specification; PCI enumeration) and preservation
of functionality from previous platforms (MMCFG/SAD/TAD/MMIO
translation tables, routing tables, range settings).

The Simics API allows for side effects of registers to be described separately
from register definitions. The Simics team takes advantage of this capability

“a reported bug in a single register can

be an indication to the hardware team

of a bigger problem”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 109

and always makes the effort not to mix register definition with register
implementation. This makes it possible to port side effects from a previous
model to the new one, after filtering out the side effects that the new platform
should not have. Custom-register side effects constitute the major part of the
overall model implementation.

As a first approximation of the new functionality, an attempt is made to
combine old side effects, which are already implemented for a previous
platform and thoroughly tested, with new register definitions. Then the
platform is set up and compiled using the Simics framework. For registers that
match the old definition, the amount of attention required from a developer
is minimal. For registers that are different, the developer should consult the
platform documentation and understand the nature of such differences. The
Simics framework will point to every one of these registers during platform
setup. Developers then have to look through every register and make a decision
about the extent of the possible reuse of the old implementation.

For registers that changed their names, sizes, set of fields or locations, the
developer usually has to make some trivial changes, after consulting with the
platform specification. But if registers are missing or contain changes that
are incompatible with previous specifications, these observations should be
delivered as feedback to the hardware architects—some of the changes are
purposeful, and should be taken into account by the model developers, while
others are bugs in the register specification, which should be resolved in future
iterations. The Simics model is not blocked by these bugs—some functionality
of the model is just temporarily disabled (or legacy definitions are used) until
the specifications are correct.

At this stage the developer also pays close attention to the rearranged bus/
device/function (BDF) map of the new platform and captures possible
discrepancies between the map and the register definition. This is achieved
by first creating the skeleton of the platform (containing dummy devices)
in conformance with the BDF map, and only then applying the register
definitions. The overall flow of platform development is illustrated in Figure 2.

Running Workloads
As soon as the Simics engineers team is done with triage and gathering low-level
register errors, they can proceed to the functional level of validation against
legacy expectations. At this stage the platform is up and running and is register-
accurate relative to the latest register specifications. Now Simics can attempt to
run actual workloads to see how the platform is able to operate as a whole.

The first workload that is run is SeaBIOS, a GPL implementation of a 16-bit
x86 BIOS developed primarily for running on emulators. The BIOS requires
minor modifications to run on new platforms—they are usually limited to
changing device IDs in the source code; sometimes they include some shuffling
of device or register locations. Any other discrepancy should be, once again,
compared to the specifications and reported to the hardware architects. The
BIOS boot validates the operation of PCI configuration space mapping, PCI

“an attempt is made to combine

old side effects, which are already

thoroughly tested, with new register

definitions”

“Now Simics can attempt to run

actual workloads”

Intel® Technology Journal | Volume 17, Issue 2, 2013

110 | Early Hardware Register Validation with Simics*

enumeration, and some other features, and also opens the path to running
actual operating systems on the early model.

When the specifications are mature enough for SeaBIOS to successfully boot,
the model attempts to boot operating systems. The Simics team has a set
of disk images with installed systems that are used by their customers with
various platforms. This includes different versions of Linux, Enterprise Linux
and SVOS, desktop and server versions of Windows. The operating system’s
boot, also containing driver initializations, can validate a lot of device-specific
functionality, MMIO, interrupts, and so on.

High-Level Behavior
The next important stage of the development cycle is the implementation of
tests for specific high-level functionality. This includes PCIe ports operation,
legacy and non-legacy interrupts, NTB, networking, different types of reset,
and so on. The Simics team is working on increasing their pool of tests that can
be later used for the validation of future platforms. Using these tests makes it
possible to keep track of major functional areas of the register specification. In
case of any issues with the tests, the root causes of the issues are determined by
the Simics team, and the register bugs are reported to hardware architects.

After all the stages are complete and the hardware architects have received
feedback, they can begin work on fixing the errors that were found. At the
same time, they are implementing features that were previously missing in

“Using these tests makes it possible to

keep track of major functional areas of

the register specification”

Figure 2: Simics platform development stages and their validation scopes
(Source: Intel Corporation, 2013)

•....
•....

•....
•....

•....
•....

•....
•....

Device
Skeletons

ConfigDB
XMLs

HAS

Register
Side-effects

Filtering

Existence and
Correctness of

Required Registers

Collisions; PCI cfg Errors
Bad Class-code/Header Type

New
Model

Multiple Groups of
Registers Supporting
Required Behavior

BIOS, OS,
Func. Tests

Register-Accurate
Devices

Register
Definitions

•......
•......
•......
•......
•......
•......
•......
•......

•......
•......
•......
•......
•......
•......
•......
•......

•......
•......
•......
•......
•......
•......
•......

•....
•....

•......

Inconsistency
with BDF Map

Predecessor
Model

Legend

Model Dev Flow

Feedback to
HW Architects

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 111

the new register definitions. So, when a new drop of the registers is ready, a
new iteration of the cycle can begin.

The mentioned tests were traditionally used by the Simics team for the
validation of their own models. What we are proposing now is the use of the
same (or similar) tests on early stages of hardware development for validation
of specifications. This is made possible by the availability of many platform
models previously implemented by the Simics team with a high level of detail.

Required Resources
With a substantial bank of mature models already developed at Intel, an early
platform model can be assembled within approximately a week of work. On
the following hardware specification iterations, the turnaround time is usually
also under a week.

The model that appears during the early specifications period is only an outline
of the future model, although some parts that can be taken from another
platform can already be fully working at this stage. As the specifications
mature, we approach the BIOS development stage with an already existing
functional model. That means the work that was put in model development is
not lost, but is passed on to the later stages to be utilized for the more standard
use cases: pre-silicon software and hardware codevelopment, and, subsequently,
post-silicon validation.

Results
The results of using the Simics platform in the project for early register
validation reflect that the initial implementation has focused more on
construction validation.

From the standpoint of the hardware architecture team, Simics provided
tangible bug discoveries in both the register address attributes and the PCI
device configuration settings. In the project, the ability to have early validation
testing provided timely feedback on the project HAS documents and helped
shift earlier the delivery of key external specifications.

The Simics model became a destination for the delivery of register
specifications that preceded the enablement point in hardware-based
validation. This had a clear and compelling influence on pulling register
specification to an earlier point in the project lifecycle than would have been
there otherwise.

We provide some examples of actual bug discoveries that were made for the
register specifications using the described process:

 ● Multiple errors concerning overlapping register address values: fully overlapping
registers or a 64-bit register placed only four bytes before the start of the
next one. These errors would have resulted in access aliasing and potentially
corrupted Read/Write effects. Found on the register structure processing stage.

“an early platform model can be

assembled within approximately a

week of work”

“the ability to have early validation

testing helped shift earlier the delivery

of key external specifications”

Intel® Technology Journal | Volume 17, Issue 2, 2013

112 | Early Hardware Register Validation with Simics*

 ● Registers placed in Header Offset space (0x0–0x3F) that are not legitimate
PCI Header registers. Since hardware redirects accesses differently based on
offset, there would have been failed access and potential bad Read/Write
effects. Found during platform setup.

 ● Arrayed registers that became noncontiguous, while being contiguous
in a previous platform. While this is not, strictly speaking, an error, a
future BIOS can anticipate that they would be contiguous and implement
iterative increment addressing of this register set. So it is useful to point out
this issue to architects to see if breaking such logic was intentional. Found
in the process of porting legacy register side effects.

 ● Register offsets that are in extended offset range (0×100 and higher) when
BIOS expects the CFG accesses to be in Legacy mode using CF8/CFC
port-in/port-out, with only 8-bit offsets. This error makes the register
unreachable in the early reset timeframe. Found during BIOS boot.

 ● Incorrect setting in a Function 0 header_type.multi_function_device field,
which did not reflect the addition of Functions 2 and 3 in the Function
allocations. This error would have caused a failure to PCI-enumerate those
two new functions for subsequent accesses. Found during the PCIe port
functional testing.

Each of these discoveries significantly preceded the readiness for coverage by
hardware-based validation.

Summary
Wind River Simics, as a functional simulator, is being used for validations of
hardware specifications and software on the pre-silicon and post-silicon stages.
We have shown how its use as a validation tool can be extended to cover very
early hardware architecture specifications.

Hardware architects reported having a gap in the established specification
development process: on the early stages of the project, no validation was
possible and no consumer existed for the register definitions. An attempt
was made to cover this gap with Simics, by means of engaging in early
collaboration between the team of Simics modeling engineers and the hardware
architects.

Overall, we have achieved very positive results. Hardware architects’ feedback
states that validation with Simics significantly helped shift-left the delivery of
architecture specifications. However, this is still an early solution, and due to
time and resource constraints its potential was not fully realized in the given
project. Validation helped find many errors in the register construction area,
so this type of validation can be considered well established. As for validation
against legacy BIOS assumptions, only a few errors were found, although this
approach looks very promising.

The net result was that while the theoretical value is high, in practice the
impact was positive, but limited.

“Hardware architects’ feedback

states that validation with Simics

significantly helped shift-left the

delivery of architecture specifications”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Early Hardware Register Validation with Simics* | 113

We expect to use the described approach for early validation of future
projects, engaging the Simics team early on in the architecture specification
development process. As the approach matures, we will be able to compare
the value achieved in practice with its theoretical value. If we discover it to be
successful, then the further intent is to make Simics one of the standard tools
for early architecture definition validation at Intel.

Author Biographies
Alexey Veselyi is a Simics Intel architecture model engineer, and has been with
Intel for two years. He can be reached at alexey.s.veselyi at intel.com.

John Ayers, HPC server architect, has been with Intel for 15 years. He can be
reached at john.r.ayers at intel.com.

114 | Software Power and Performance Correlation on Simics*

Intel® Technology Journal | Volume 17, Issue 2, 2013

Contributors

Parth Malani
Software and Services Group,
Intel Corporation

Mangesh Tamhankar
Software and Services Group,
Intel Corporation

SofTware Power and PerformanCe CorrelaTIon on SImICS*

Early estimation of driving forces like power and performance for future
hardware platforms using Virtual Platform (VP) tools such as Simics can greatly
improve the product design cycle, although a small gap between simulated
performance and its actual value can adversely affect other simulation derivatives
such as power. In this article, we mitigate any such gap through a streamlined
system tuning methodology to achieve high degree of performance correlation
on Simics, which is within 2 percent of actual hardware performance. Using
the tuned performance as a foundation, we build a power model on top of
Simics that provides accuracy of within 5 percent for various software multicore
compute workloads. The benefits offered by this experiment are twofold. First,
it can help system designers working on architecture exploration by providing
insights into how to properly model and tune the Simics system to reflect
crucial design details. Second, platform architects and application developers
can take advantage of this accurately tuned system for early estimation and
exploration of power and thermal, which are directly dependent on simulated
performance. In a broader scope the beneficiaries of this work may include
application/driver developers, system designers and architects, marketing
professionals, process engineers, and so on.

Introduction
In traditional product design flow, software design and exploration
happens only after hardware is physically available. The Software Shift-Left
phenomenon has created an interesting space in hardware-software co-design
domain wherein software design phase is shifted ahead in the overall product
design cycle taking place in parallel with hardware design. Such shift in
design cadence shortens product time to market and enhances design quality.
Application developers can explore and optimize power and performance
of their software code without having to wait for silicon prototypes to be
available. Pre-silicon platform level power and performance simulation
through VP-based tools can help improve a variety of design steps ranging
from architecture and power management exploration to power, cost, and area
budgeting, as well as time to market. One of the major limitations of many
current simulation methods is reduced scope of simulation and lack of system
level details such as OS involvement. Today’s dynamic applications execute
beyond CPU boundaries by using other system components such as the GPU
and ASICs. Traditional simulation methods cannot model the interaction
between these system components. Virtual Platform (VP) based simulators
such as Simics[1] offer an attractive solution to model system interaction.

“Improved performance accuracy can

improve estimates on other derivatives

such as power.”

“Pre-silicon platform level power and

performance simulation through VP

based tool can speed-up product design

cycle.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 115

However, modeling accuracy of functionally accurate VPs can significantly
affect their potential benefits, making it imperative to correlate them against
existing hardware to establish a reliable and accurate foundation. This article
presents a streamlined performance tuning methodology for multicore software
workloads running on a Simics-based X86 system. The experiments indicate
that it is possible to achieve good performance correlation on Simics by
deliberately tuning its system model configuration. Our results demonstrate a
performance accuracy that is within 2 percent of the actual hardware. We then
explore the possibility of adding a power modeling capability on Simics and
present a Virtual Power Monitoring (VPMON) framework, which utilizes the
tuned Simics performance and Simics tracing extensions to simulate software
power. Correlation of simulated power with hardware measurements for
various software workloads shows within 5 percent power modeling accuracy.

The increased simulation speed offered by VP-based tools is a virtue of their
functional performance accuracy. This accuracy can also affect other derivatives
of performance, such as power and thermal. Correlating power consumption
with performance has been proven very successful by many power modeling
approaches in past. Estimation of runtime processor power consumption
based on performance counters or events has been well explored on numerous
architectures such as IA[2][4], AMD[6], and ARM[7]. Some of these works[2][3][4] also
demonstrate microarchitecture level power characterization capabilities provided
by their power models. Techniques have been proposed[2][6] to accurately
estimate multicore processor power. All of these power modeling techniques rely
on performance statistics measured on actual hardware. It serves as an efficient
power analysis solution for the current generation of hardware products only.
Simulation-based power modeling is an attractive solution when the target
hardware is not available. Varma et al.[8] have proposed a simulation-based
power modeling methodology and evaluated it using a modified Intel Xscale®
cycle-accurate simulator (Xsim) with SystemC*-based transaction level models.
They demonstrated results with power modeling accuracy within 10 percent of
measured data while attaining simulation speed in excess of 1 MIPS. Although
this methodology is meant to be generic for any embedded system, the authors
did not discuss its applicability to a pre-silicon power modeling scenario.

We envisage VPMON to be used as a power projection tool wherein a user can
configure Simics with performance models of future hardware and model their
power consumption. Also it can be utilized as a power simulator, providing
means for workload power exploration on current and future hardware. For
example, application programmers may want to evaluate the impact of their
software code changes on the power consumption. In many cases the accuracy
may not be as desirable as the polarity of the power impact. Apart from these
usages, VPMON can be extended to study thermal behavior of the system.
Transforming performance counters or power consumption to temperature has
been explored before by Chung et al.[9] and Bellosa et al.[5] respectively, and is
proven to be useful for system thermal management.

“It is possible to achieve good

performance correlation on Simics.”

“VPMON power simulator provides

means for workload power exploration

on current and future hardware.”

MPS018
Highlight
Can we change this to "within 1 percent"?

Intel® Technology Journal | Volume 17, Issue 2, 2013

116 | Software Power and Performance Correlation on Simics*

To best of our knowledge, the only work targeting Simics based power modeling
has been proposed by Bartolini et al. [10], which adds power and thermal
modeling capabilities in the Simics framework by integrating multiple external
tools such as Matlab and the GEMS memory simulator. The power model relies
on performance counters modeled in GEMS as well as Simics internal registers
for Intel® Core™ architecture, which is a platform-specific feature. Our approach
relies purely on the instruction set stream and is thus highly portable within
different Intel architectures. The authors tested their technique with synthetic
workloads stressing various levels of cycles per instruction (CPI). We have tested
the proposed method with real multicore multithreaded software kernels. It
should be noted that the work in Bartolini et al.[10] also models Dynamic Voltage
and Frequency Scaling (DVFS), which we have not targeted here.

To achieve the best tradeoff between accuracy and speed of power simulation
is particularly challenging when modeled power depends on simulated
performance. The correlation experiment is divided into two phases based on
this fact. The two phases are outlined as below:

 ● Performance correlation through system tuning.
 ● Power modeling based on tuned system performance.

The rest of this chapter is outlined as follows. The next section, “Performance
Correlation,” explains the system tuning methodology applied to correlate
application performance measured on Simics against the actual hardware and
also shows the outcomes. The section “Power Modeling and Correlation”
provides details of the VPMON framework and its implementation on Simics.
This section also demonstrates the power modeling accuracy and simulation
speed results. This is followed by “Summary and Conclusions.”

Performance Correlation
A possible gap between software performance on a Simics-based system
and actual hardware is first assessed. We then employ a streamlined tuning
process to enforce a high degree of performance accuracy. Simics exhibits very
attractive characteristics such as modularity, configurability, programmable
APIs, OS awareness, and dynamic tuning of system parameters. Our
performance correlation methodology is composed of two steps: 1) system
configuration and 2) performance tuning and correlation. We first focus on
configuring the Simics system as per the existing hardware specifications. It
should be noted that a system may include diverse hardware components and
devices such as CPU, GPU, memory, network card, and disks. Depending on
the nature of the application, many of these devices may not get utilized at
all. Removing such devices from simulation flow or using ad-hoc performance
models can speed up the simulation.

We target a server system with Intel® Xeon® processors for the correlation
experiment. Simics supports Xeon processor models and a multicore/
multithreaded execution environment through its OS involvement feature. In

“Our approach is highly portable

within different Intel architectures.”

“Accuracy and speed of power

simulation depends on simulated

performance.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 117

particular, as a reference platform, we employed a single-socket system using a
Xeon processor with cores based on the microarchitecture formerly codenamed
Sandy Bridge (SNB) . To model this system, we chose Simics 4.6, which has
an SNB platform model available. Simics incorporates libraries of performance
models supporting ISAs of numerous processors along with the standard
chipsets and other system components such as buses, disks, and so on. Along
with the virtual OS and user application program, it can simulate full system
execution across entire platform.

Platform Configuration
We were able to run industry-standard multicore compute workloads such as
Linpack “as is” in their binary forms on the Simics system. The performance
reported by workload on the Simics system differed from its hardware counterpart
because of the default Simics system configuration. However we were able to
narrow this gap through tuning of various system parameters such as the number
of threads, frequency, and instructions-per-cycle (IPC), and by adding performance
models of crucial components such as instruction and data caches. The main
idea we follow is to apply and limit the tuning to the components that fall in the
workload’s critical execution path. This is important because adding additional
simulation models can reduce the simulation speed significantly.

Table 1 shows the detailed platform configuration we used for the performance
correlation experiment. We used Linpack and DGEMM (double-precision
matrix multiplication) multithreaded workloads to represent compute-
intensive user application programs. The host system on which Simics is
running contains an Intel® Core™ i5 dual-core processor running at 3.3 GHz
with 8 GB of RAM. We stuck to 2 GB of memory for the Simics target
system to avoid simulation overhead for the host system. It did not affect the
correlation because Linpack and DGEMM are compute-bound workloads.
It can be inferred that the base Simics configuration differs from the reference
platform in many aspects and their performance outputs thus will not be equal.

Configuration Space Intel® Xeon® Simics 4.6

System Single socket Intel® Xeon® (formerly Romley)
platform

OS Red Hat Enterprise Linux 6*, Intel® Compilers
Application Linpack, DGEMM
CPU Intel® Xeon® E5-2640, 6

SNB cores, Intel® HTT
enabled, 3-level cache

6 SNB cores, Intel®
HTT enabled, no cache

Frequency 2500/3000 MHz TDP/
Turbo

2000 MHz (tunable)

IPC Variable 1 (tunable)
Memory 16 GB, 1333 MHz 2 GB (tunable)

Table 1: Simics vs. hardware platform configuration
(Source: Intel Corporation, 2013)

“We were able to run industry-

standard multicore workloads “as is”

on Simics.”

“The idea is to apply and limit the

tuning to workload’s critical execution

path.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

118 | Software Power and Performance Correlation on Simics*

Tuning Methodology
We compared the actual GFLOPS performance reported by the workloads
on the Simics system to the reference hardware and the correlation error
is plotted in the chart in Figure 1. Data points, from left to right, on solid
lines pertaining to each workload indicate progressively applied tuning and
corresponding error in accuracy. As shown, the base Simics configuration
stood at about -43 percent and -72 percent off from the hardware for Linpack
and DGEMM respectively. We tuned the frequency as per the reference CPU
and the gap was reduced, because the default Simics frequency was lower
than hardware as shown in Table 1. Simics supports fixed IPC (finite number
of simulation steps per cycle) because it is not cycle accurate. We tuned the
IPC based on its architectural peak value and it significantly increased the
performance pushing the error rate above 0 percent. Both frequency and IPC
can be set per logical processor at runtime through attributes under Simics class
hierarchy Romley.mb.cpu0.core[i][j], where i and j reflect physical and logical
processor index respectively.

“Base Simics configuration is off from

the hardware.”

Figure 1: application performance tuning on Simics
(Source: Intel Corporation, 2013)

Base
Config

Frequency
Tuning

IPC
Tuning

Cache
Models

243%
230%

76%

21%

272%

236%

220%

240%

260%

280%

0%

20%

40%

60%

80%

100%

31%

Linpack

DGEMM

Performance jumps significantly at this stage because the base configuration
does not model memory hierarchy yet; that is, memory latency is not
accounted for. Finally we added 3-level cache models as per the SNB core
specifications and were able to achieve performance correlation within 1
percent. Adding memory hierarchy naturally degrades the IPC below its peak
value. Also the compute-bound workloads we use here are cache intensive
at best and thus we did not tune the memory model except to configure its
frequency as per the reference platform.

Simics provides a sample global cache model called g-cache. We extended
and modified it for multicore/multithread support. Table 2 provides the
configuration details for cache models we used. The size of each cache is shown

“We were able to achieve performance

correlation within 1 percent.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 119

along with its access latency. All the caches use random replacement policy by
default. We used latency of 200 cycles for any accesses going to main memory.

Cache Size Snooping Latency (# cycles)

L1 Inst 32 KB MESI 3
L1 Data 32 KB MESI 3
L2 Data 256 KB MESI 8
L3 Data 20 MB N/A 25

Table 2: Cache model configuration and timing
(Source: Intel Corporation, 2013)

This performance correlation exercise can be applied to any compute-bound
workload. As we mentioned earlier, the idea is to apply and limit the tuning to the
components that fall in the workload’s critical execution path. This is important
because adding additional simulation models can reduce the simulation speed
significantly. We came up with two types of tuning: spatial and temporal. In
spatial tuning, we make sure we only simulate the components that are required by
workload. For example, we did not use an external memory model for a compute-
intensive workload that is cache bound. The idea behind temporal tuning is to
limit the tuning dynamically as per behavior of the workload.

Figure 2 depicts a typical execution scenario for a compute-intensive workload
such as DGEMM. During the initial phase (INIT), it allocates memory and
initializes data matrices followed by a phase that involves a computation
process using this data. Because the INIT phase is not included in performance
calculation (GFLOPS in this case), it may be beneficial to start the simulation
with a basic configuration and add more details as and when desirable. Simics
supports a halting mechanism and hotplugging of device/component models,
which we utilized to trade off accuracy for simulation speed. We halt the
simulation at the beginning of compute phase and attach the cache models to
account for accurate performance modeling. We detach the cache models when
the workload writes back the results from compute phase.

It is interesting to note that the tuning input does not affect the high level
behavior or functionality of the workload. However it has a direct impact on

“Simics supports hotplugging of

component models to trade off

accuracy for speed.”

Figure 2: Simulation runtime optimization
(Source: Intel Corporation, 2013)

Compute-Intensive Workload

START MEM ALLOC/INIT ‘INTERESTING PART’ WRITE BACK

Workload Execution Timeline

No Memory
Model, no

Cache Model

Attach Cache
Model

Detach Cache
Model

Intel® Technology Journal | Volume 17, Issue 2, 2013

120 | Software Power and Performance Correlation on Simics*

performance statistics such as C-state residency or instruction throughput,
which we use for power modeling as discussed in the next section.

Power Modeling and Correlation
Besides performance correlation, our other important objective is to implement
a power module on Simics that can output dynamic workload power at
runtime. The power output can ideally be for an entire system including
multiple components; however, we only explore the CPU power model here.
Although Simics captures the performance part in fair detail, incorporating
power simulation is challenging. However existing debug and profiling features
of Simics can be utilized to come up with a power monitoring framework.
The accuracy of power estimation will highly depend on how prolific the
profiled information is, because most power modeling techniques rely on
performance events or statistics. The user can create a robust foundation for power
modeling by tuning system parameters such as timing and memory through Simics’
programmable interface as mentioned in the previous section. It is also crucial how
the power modeling framework utilizes and builds upon this underlying foundation
to predict dynamic power. The VPMON power model provides runtime CPU
socket power dissipated by the multicore workload running on top of Simics.

Pdyn = AF ∙ Cdyn ∙ V
 2 ∙ f (1)

Equation 1 shows how we calculate the dynamic power, which depends on
variety of parameters, namely the Activity Factor (AF), dynamic capacitance
(Cdyn), voltage (V), and frequency (f). The Activity Factor (AF) represents the
dynamic power impact of the user application running on top of the hardware.
It is the only variable in the equation and its value is modeled through Simics
as explained in subsequent sections.

Power Monitoring Framework
Figure 3 shows the design and implementation of a Virtual Power Monitoring
(VPMON) framework on Simics. A user application program is running
atop a Simics platform, which contains a simulator API, a debug engine, and
most importantly the performance models for various system components. It
provides the simulation of application execution on a full system. The function-
accurate component and device models are marked by F in Figure 3. Examples
of such functional models include the CPU ISA model, external memory
model, and cache models. Although we achieve reasonable power modeling
accuracy using available Simics models, it may be required to improve them for
platform- or component-level power modeling. For example, if a user wants to
analyze the power of RAM due to data communication, the ad-hoc memory
model may not be sufficient and should be improvised.

Performance simulation accuracy can be improved by tuning the system
parameters based on the real system as well as by adding models of new
components or devices as shown by the tuning block on the left side of the
figure. The tuning and modeling effort will be reflected in the simulation.

“VPMON provides runtime CPU

power dissipated by multicore

workload.”

“Activity Factor represents dynamic

power impact of the user application.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 121

A debug engine monitors system components at runtime and provides
profiling, statistics, and debugging information.

We implemented a multicore tracer module, which is essentially a dynamic
cloud of performance-related information pertaining to each logical CPU.
Simics provides a single-core instruction-tracing module written in C as a “plug
and play” simulator extension. We modified it to support multicore platforms
and added various monitors to calculate AF in Equation 1. In addition, the
cloud may contain other system statistics and performance counters such as
cache profile and thread topology. VPMON maintains a data structure CPU_
stats to calculate and store performance statistics for every logical CPU trace
entry. Tuning input such as frequency, number of cores, and cache information
is also fed to the tracing module. The monitors capture crucial performance
statistics observable within Simics through its debugging and profiling APIs. If
the power model utilizes such information from all Simics components, there
will be a huge cloud of data. However application power models can generally
achieve sufficient accuracy with limited high level system observation. This is
precisely the reason we were able to achieve good power modeling accuracy on
Simics without going for cycle-accurate details.

From the user perspective, VPMON execution flow is very simple, involving only
two commands on the Simics command line. Whenever a user wants to analyze
the power during workload execution, he or she has to halt the simulation and
load the precompiled tracing module along with a VPMON wrapper script. The
wrapper accesses VPMON tracer output at fixed sampling intervals in virtual
simulation time through the SIM_get_attribute()and SIM_set_attribute() interfaces.
The tracer module maintains a bucket of statistical information during each
sampling interval, and the bucket is processed at the end of each interval through
a callback function on an access through the VPMON wrapper. The power will be
displayed every sampling interval on continuation of simulation from this point
onwards. Optionally, VPMON can also output performance statistics if desired.

“We achieve good power modeling

accuracy without going for cycle-

accurate details.”

User Application Program

F F F F

T
 u n i n g I n p u t

Performance

Power

Cloud of Observable System
State Information

Power Model

M
ulticore T

racing
M

odule

D
 e b u g A

 P
 I

Debug Engine

SIMICS

Virtual Performance
Models (Functional)

VPMON - Virtual Power Monitor

S

I

M

A

P

I

Figure 3: VPmon Power modeling framework
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

122 | Software Power and Performance Correlation on Simics*

Power Modeling Accuracy Experiments
To evaluate the VPMON power modeling framework we used the same
reference system as mentioned in Table 1. We added numerous workloads
representative of diverse applications and correlated their performance against
hardware based on the methodology discussed before. Next, we built a linear-
regression–based power model, trained it using the measured power data for
the reference hardware system with the Intel Xeon processor, and periodically
sampled performance counters from a multicore tracer for various workloads.
We set the sampling interval to 10 milliseconds of virtual simulation time;
however, the framework can support any arbitrary value. We set the regression
objective to minimize the sum squared error (SSE) between the modeled
and measured CPU power for all workloads. The workloads exhibit variable
execution time and we focus on average power inside their core compute loop
for comparison. For each workload in the training set, an entry is made to the
model consisting of observed performance counters such as C-state residency
and IPC. VPMON samples these parameters through the multicore tracer.

During the training process, the power model correlates each performance
counter to measured workload Activity Factors and outputs a single set of
coefficients modeling the power contribution of each counter. We derive AF for
each workload on an instrumented hardware system of Table 1 by measuring
core power (Pdyn), Cdyn, voltage, and frequency. We used a synthetic power
virus workload to calculate Cdyn. To make a single entry for each workload in
the model, we take average value of sampled counters (and AF) over its entire
compute loop. To summarize, the training set comprises of pairs of VPMON
counters and measured AF pertaining to each workload. Training process is
performed offline, and modeled coefficients and constants are incorporated
into the VPMON multicore tracer to simulate runtime power.

To evaluate the power model we used a testing set that has additional workloads
apart from the ones used in training. We compared the average simulated power
within the compute loop of each workload to its hardware counterpart. Figure 4
shows the relative comparison of measured versus modeled power on Simics.
Measured values are based on a fixed value of 1 and VPMON power is shown
in a relative manner for nine different workloads. All the workloads execute a
different number of threads ranging from six to twelve threads. SGEMM and
DGEMM are matrix multiplication workloads that are compute bound in nature
similar to Linpack. Stencil2D is a highly cache-bound workload. HiPwrWkld is
a synthetic power virus workload used to stress the silicon Thermal Design Power
(TDP). We also used these five workloads for the training process mentioned
before. The remaining four workloads are fast Fourier transform (FFT) single-
and double-precision kernels. For all workloads, the accuracy of the Simics power
model is within 10 percent of measured value in the worst possible scenario. The
average modeling (training) and projection (testing) accuracies are both within
5 percent of hardware measurements.

Modeling average power may not be sufficient for workloads exhibiting highly
dynamic power behavior. We also compared the instantaneous simulated power

“Training process correlates

performance counters to measured

workload AF.”

“Average modeling and projection

accuracies are within 5 percent of

hardware measurements.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 123

of each workload to measured hardware power trace with an identical sampling
interval (10 milliseconds). Both power traces were time correlated with help of
an output flag set by the workload.

Figure 5 depicts the projected power versus time comparison between Simics
and hardware using an Intel Xeon processor for a FFT DP workload that
displays a dynamic power pattern. The worst-case accuracy in this example
is still within 13 percent of measured value. The error in timing correlation
is mainly due to two reasons: 1) a gap in Simics cycle-level performance and
timing accuracy (that is, we were not able to correlate the performance well
enough for this workload), and 2) this workload was not included in the
training process and thus the power here is projected.

“Simulated and measured power traces

are time correlated.”

0.97

1.01
1.02

H
iP

w
rW

kl
d

D
G

E
M

N

Li
np

ac
k

S
te

nc
il

S
G

E
M

M

F
F

T
 S

P

F
F

T
 D

P

A
ve

ra
ge

1.02

0.96

M
od

el
ed

 /
M

ea
su

re
d

P
ow

er
 (

R
el

at
iv

e) 1.10

Projected Workloads

1.05

1.00

0.95

0.90

0.94

0.99

0.94

1.03

0.99

F
F

T
 S

P
 P

ea
k

F
F

T
 D

P
 P

ea
k

Measured

VPMON

Figure 4: VPmon modeled vs. measured power
(Source: Intel Corporation, 2013)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00

60

0

C
P

U
 P

ow
er

 (
W

)

Time (Miliseconds)

10

20

30

40

50

VPMON

Measured

Figure 5: Power vs. time comparison for ffT dP workload
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

124 | Software Power and Performance Correlation on Simics*

It should be noted that for many usage scenarios such as peak power study
for TDP analysis, the timing accuracy of power is less important. Instead it is
crucial to have accurate peak power and its sustained duration in such use cases.

Simulating fine-grained instantaneous power through VPMON is limited by
its overhead. The simulation speed slightly decreases with a finer sampling rate
due to frequent calls to the power model. These periodic calls are achieved by
a self-timed Simics event. To evaluate the efficiency of the entire VPMON
framework, we measured its simulation speed for various workloads. We
analyzed the simulation speed for the core compute loop of the DGEMM
workload because it reported the highest number of instructions to process in
each power sampling interval. This is directly proportional to the processing
overhead of the multicore tracer in the VPMON framework. VPMON took
17000 seconds to simulate 1 second of real time. It processed 44 billion
instructions in this duration and thus provided throughput of 2.58 million
instructions per second (MIPS).

Summary and Conclusions
We showed that it is possible to build an accurate power modeling framework
on Simics. The VPMON power module we discussed provided CPU power for
realistic multicore/multithreaded workloads with more than 90 percent correlation
when compared to measured hardware data. The simulation overhead we incurred
from VPMON was minimal compared to the granularity of power modeling.

The power model was validated on existing hardware and can be extended
to project the application power for future platforms. Once the whole flow
of correlating Simics performance and power against existing hardware is
completed, proper knowledge of design parameters (frequency, voltage)
and architecture as well as process scaling (Cdyn) can be applied along with
Simics functional models of future hardware to simulate future system power
consumption. VPMON is currently portable within multiple Simics instances
as well as different Intel Xeon CPU SKUs. Other system components such as
external memory and GPU can be included for platform-level power modeling.
VPMON can have a library of multiple power models in this case. However, it
relies on functional models of system components available on Simics and thus
its accuracy and efficiency is bounded by these factors.

Complete References
[1] Engblom, J., Aarno, D. and Werner, B., “Full-System Simulation

from Embedded to High-Performance Systems”, in Processor and
System-on-Chip Simulation, Leupers, Rainer and Temam, Olivier
(eds), pp. 25–45, Springer Verlag, 2010.

[2] Bertran, R. et al., “Decomposable and responsive power models for
multicore processors using performance counters,” in International
Conference on Supercomputing (ICS), June 2010.

“Simulation overhead of VPMON is

minimal compared to granularity of

power modeling.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Software Power and Performance Correlation on Simics* | 125

[3] Isci, C. and Martonosi, M., “Runtime Power Monitoring in
High-End Processors: Methodology and Empirical Data,” Proc.
MICRO, December 2003.

[4] Wu, W. et al., “A systematic method for functional unit power
estimation in microprocessors,” in Design Automation Conference
(DAC), July 2006.

[5] Bellosa, F. et al., “Event-Driven Energy Accounting for Dynamic
Thermal Management,” In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power (COLP),
September 2003.

[6] Singh, K. et al., “Real time power estimation and thread
scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, November 2008.

[7] Sinha, A. et al., “Jouletrack: A web based tool for software energy
profiling,” in Design Automation Conference (DAC), June 2001.

[8] Varma, A. et al., “Accurate and fast system-level power modeling:
An XScale-based case study,” ACM Transactions on Embedded
Computing Systems, April 2008.

[9] Chung, S.-W. et al., “Using On-Chip Event Counters For High-
Resolution, Real-Time Temperature Measurement,” in Thermal
and Thermomechanical Phenomena in Electronics Systems, IEEE
Computer Society, May 2006.

[10] Bartolini, A. et al., “A Virtual Platform Environment for Exploring
Power, Thermal and Reliability Management Control Strategies in
High-performance Multicores,” in Proceedings of the 20th Great
lakes symposium on VLSI (GLSVLSI) May 2010.

Author Biographies
Parth Malani is an engineer at Intel working on power and performance
modeling for multi- and many core platforms. He holds a PhD and MS in
Electrical and Computer Engineering from the State University of New York
at Binghamton and a BE in Electronics and Communications from Gujarat
University, India.

Mangesh Tamhankar has over 20 years of industrial and academic
experience. He currently manages Intel teams working on software
development, projections, and product development. He received his
PhD in Computer Science and Reliability from the Indian Institute of
Technology, Bombay, India.

126 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simulation of large computing systems is a challenging task, mainly because
a single host may not be able to accommodate a full model. Therefore, a
simulation itself has to be distributed across several systems. Simics provides
such functionality with its individual parts communicating over a network
transparently for target systems. Still, the task of running Simics distributed
is not trivial; its challenges include maintaining simulation scalability, speed,
and manageability. This article describes one practical case of simulating a large
distributed cluster system with more than a thousand of target cores using
Simics.

Introduction
This article describes our experience with creating and running a model
of a large computing cluster system using Wind River Simics. Scale and
resource requirements of workloads of this study made it necessary to
run the simulation on top of a distributed multi-host system, resulting in
a virtual computer cluster being simulated on a physical smaller cluster
system. In the course of this work, we adapted Simics to be executed as a
job of a cluster resource management application. In this article we present
our instrumentation technique that was used to capture parallel application
behavior. We present our observations of the simulation scalability that was
reached and outline limitations we discovered during this study.

Applications, Target System, and Host Hardware
Applications that were run inside the target OS consisted of two packages for
molecular dynamics, namely Gromacs[1] and Amber[2]. These applications are
parallel and make use of the message passing interface (MPI) to communicate
between processes. An MPI application’s processes can be spread over
multiple computing nodes, connected with a local high-speed network.
Communication delays imposed by limited network bandwidth, nonzero
latency, as well as other numerous factors—such as operating system buffering,
specifics of network card configuration, suboptimal network topology, and so
forth—can negatively affect overall performance. The described simulation
was created to capture the whole system behavior related to MPI message
delivery.

A system whose behavior was to be analyzed consisted of 112 identical multi-
core nodes. Its configuration is shown in Table 1. All target nodes ran Debian
GNU/Linux 6.0 x86_64.

“…the task of running Simics

distributed is not trivial; its challenges

include maintaining simulation

scalability, speed, and manageability.”

SImICS* on SharEd ComPuTIng CluSTErS: ThE PraCTICal
ExPErIEnCE of InTEgraTIon and SCalabIlITy

Grigory Rechistov
Systems Simulation Center, Intel
Corporation

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 127

Parameter Value

Processor Intel® Xeon® E5 (Sandy Bridge) 2.8 GHz

Number of cores per CPU 8 (16 logical with Intel® Hyper-Threading
Technology)

Number of CPUs per node 2

Number of nodes 112

RAM per node 48 GB

Network configuration Ethernet 10 Gbit/s

Total number of cores 1792

Total RAM 5376 GB

Table 1: Target system configuration
(Source: Intel Corporation, 2013)

The host system was a cluster itself, though of a smaller scale. Its configuration
is outlined in Table 2.

Parameter Value

Number of nodes 16

Processors
Intel® Xeon® 5580 (Westmere),
3.33 GHz

Number of cores per CPU
6 (12 logical with Intel® Hyper-
Threading Technology)

Number of CPUs 2

Disk storage 3 TB

Network configuration Infiniband* QDR 10 Gbit/s

RAM per node 32 GB

Total number of cores 192

Total RAM 512 GB

Table 2: Configuration of the host system
(Source: Intel Corporation, 2013)

The host system nodes ran the same version of Debian GNU/Linux 6.0
x86_64 as in the targets. It consisted of a single head node that served as an
NFS server and several compute nodes that shared Simics installation and all
required files on a network share. A network topology for both host and target

“The host system was a cluster itself,

though of a smaller scale.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

128 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

systems was a star (Figure 1). There were two separate networks, the first one
(Gigabit Ethernet) was dedicated to service traffic (NFS, SSH, and so on) and
the second, high speed Infiniband was used for applications traffic needs.

Simics and Simulation Distribution
To utilize computing resources efficiently and speed up simulation runs, the
simulation’s parts should run in parallel, sometimes distributed over several
nodes. This section describes capabilities Simics offers to achieve this goal.

Parallel Simulation on a Single Host
Simics allows modeling of several target systems in a single simulation run.
Each of these targets can be run in a separate host thread. Effectively this allows
the utilization of more computational resources of a host system and speeds up
the simulation.

Still, not every existing modeling scenario of a multi-core system can be
arbitrarily partitioned onto multiple host threads. For the described scheme to
be possible within Simics, several conditions must be met:

 ● All Simics device models that constitute a simulation must be marked
as thread-safe. That is, some care should be taken when writing Simics
modules if they are supposed to be used in multithreaded environments.
When loading a new module, Simics checks it to be marked as thread-safe
and disables the feature globally if it is not. The majority of Simics modules
are already made thread-safe thus this is rarely a concern.

 ● Parts of a simulation that are to be run in separate threads must be loosely
coupled; that is, the frequency of communication between them should be
significantly lower than average frequency of their internal communication.
For this study, this meant that an SMP system had to be simulated in
one thread, and it could contact other simulated SMP domains run in
different threads via simulated network. This is because LAN messages can

“For the described scheme to be possible

within Simics, several conditions must

be met”

Figure 1: Host system interconnect configuration
(Source: Intel Corporation, 2013)

node16Head Node

Infiniband QDR 10 Gb/s Switch

node01

Ethernet Switch 1 Gb/s

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 129

be delivered significantly less frequently than shared memory messages.
This limitation on what can and what cannot be parallelized is dictated by
tradeoffs between performance, determinism, and complexity of underlying
Simics implementation.

For the scope of this study all conditions for multithreaded simulation were
met: each host with 12 logical processors was able to simulate up to 12 target
machines (nodes) in parallel. This means that each host processor core was
responsible for simulating 32 logical target cores (2 processors, each with
8 cores and 16 threads).

Distribution between Multiple Hosts
To make even larger simulations possible, Simics supports running a simulation
in a distributed mode, when its loosely coupled parts can be spread across
several host machines. Corresponding simulation partitions (called domains)
periodically synchronize over the host network transparently to the simulation.
To provide a deterministic behavior a barrier scheme is used (Figure 2).

“To make even larger simulations

possible, Simics supports running a

simulation in a distributed mode…”

In this scheme, each domain is running its own part of the simulation
for a predefined amount of simulated time (called quota) without any
communication with other domains. Then barrier synchronization is used, at
which point all pending inter-domain messages are delivered.

For the distributed simulation to work, TCP/IP sockets are used. Each
participating Simics process should be configured to use the same host:port
pair, which indicates where a top-level synchronization domain is executing.

To make a clear view of placement and interaction between all parts, the whole
setup of simulation is shown in Figure 3. Each host’s logical processor core
is used to serve for one target machine with all its simulated cores. To enable
transparent interaction of target machines placed on different host systems (and
also for global simulator time synchronization) the host local network is used
to encapsulate and transfer packets of simulated network, which is also isolated
from host LAN to prevent nondeterministic influences of the real world.

Figure 2: domain synchronization scheme
(Source: Intel Corporation, 2013)

Barrier

Domain 2

Domain 1

S
yn

ch
ro

ni
za

tio
n

S
yn

ch
ro

ni
za

tio
n

Barrier

Intel® Technology Journal | Volume 17, Issue 2, 2013

130 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

 Dynamic Node Allocation and Process Distribution
The original Simics scheme for a distributed simulation makes an assumption
that it is known in advance before launch which hosts will be used to run
Simics instances and which network host:port pair will be used for the
centralized coordination. Additionally, it is a user’s task to log on to each
of participating hosts and start a new Simics process on it. If the number
of participating hosts is high, this task becomes very tedious. What’s more
important, in our case not all host nodes were immediately available all the
time — some of them may have been exclusively occupied with tasks run by
other users, some could have been turned off for maintenance, and so on. It
was therefore required to implement a method to free a user from these tasks by
creating a mechanism that allocates all required resources.

On the described computing cluster, Simple Linux Resource Manager
(SLURM)[3] was used as a system-wide resource manager to be used by all
working groups. In order to be able to open an SSH shell to a node, one was
required to request SLURM for an exclusive allocation of the necessary number
of nodes for a predetermined period of time first. If there were no free nodes
at that moment, the request would be blocked until one or more existing
allocations had finished or exhausted their time quota, thus releasing more
resources.

“It was therefore required to implement

a method to free a user from these tasks

by creating a mechanism that allocates

all required resources.”

Figure 3: distributed simulation setup
(Source: Intel Corporation, 2013)

Host NICHost NICHost NICHost NIC

Host Machine 1 Host Machine 16Host Machine NHost Machine 2

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Target 12 Target 24 Target 181 Target 192... ...Target 13Target 1

Host LAN

Target Network

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target
Core

Target NICTarget NICTarget NICTarget NICTarget NICTarget NIC Target NICTarget NIC

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 131

Various SLURM tasks, such as allocating, freeing, querying nodes can be
accomplished with command line tools such as salloc, smap, and srun. It is
also possible to use API bindings existing for many programming languages,
including Python. Therefore we implemented a set of Python scripts to tie
Simics and SLURM. The overall high-level overview of the distribution
processes is illustrated in Figure 4.

“…we implemented a set of Python

scripts to tie Simics and SLURM.”

A wrapper to the simics program, called simics-slurm, was written to automate tasks
of host resources allocation and simulation distribution. This script is executed on
a login node by the user. It accepts all regular Simics command-line arguments,
such as a target script name, but additionally performs the following steps:

 ● simics-slurm asks the SLURM service to allocate the desired number of host
nodes.

 ● SLURM checks if enough cluster nodes are unoccupied. If not, it stalls
until some of already active jobs finish and release enough resources. It then
allocates nodes for exclusive use and passes a list of their host names back
to the simics-slurm. The list of nodes is then fixed and they are guaranteed
to be free from other users’ tasks until either nodes are returned to the free
pool or the granted time period runs out.

 ● The script then opens an SSH session to the first host node granted by
SLURM and spawns a master Simics process on it. This step is done to
relieve the original login node from running resource-intensive programs as
it only serves as an entry point to all users of the cluster and is not supposed
to host their tasks.

Figure 4: dynamic simulation distribution sequence
(Source: Intel Corporation. 2013)

SSH

User

Login Node

Occupied by Other User

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Granted by SLURM

Simics

Simics

Simics

Simics

Intel® Technology Journal | Volume 17, Issue 2, 2013

132 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

 ● The master Simics process runs the global_distrib.py script, which spawns
additional Simics slave processes through SSH on remaining allocated
nodes with relevant command-line arguments. It also chooses a random
TCP port number to be used for domain synchronization. Finally, it
creates a target machine called master0 that will serve as a head node of the
simulated cluster. It served as an NFS server inside the simulation.

 ● Each of the Simics slave processes spawns one or more target machines, each
of which is given an simulation-unique name of nodeN, where N varies from
001 to 112, and connects to a given host:port. All information necessary to
establish connections is passed via SSH command-line arguments.

Global Commands Implementation
For a simulation confined to a single (possibly multi-threaded) host process, Simics
offers a rich set of commands to control it. Commands exist to wait for an event, to
delay a script for a specified time interval, to set a break point at instruction address
or data, to stop simulation at target console string, to start or stop simulation,
and so on. Unfortunately, there are no similar convenient methods to do it within
multiple Simics processes. For example, to start a distributed simulation one has
to issue a “continue” command at every Simics control console manually. This
certainly contradicted with our goal to have automatic simulation runs.

To have minimal required control over the distributed simulation we needed
the ability to pass messages between separate Simics instances and to write
handlers for them. It turned out that some form for it is already present. There
is an undocumented Simics function VT_global_message () that can pass an
arbitrary text string that will be caught by a user-defined hap handler. These
messages are always global, that is, broadcast to all processes, therefore for peer-
to-peer communications every Simics instance had to filter out messages not
targeted to that particular process.

Using this technique several global commands were implemented to start,
stop, and exit simulation, to attach and detach the mpi-tracer tool (described
later) and to run an arbitrary Simics command inside all processes. The global
message was also used to inform the master script that secondary nodes had
reached certain states in simulation.

Experiment Flow
The combination of Simics distribution scripts and the implementation of
global commands allowed us to organize our experiments as described below:

 ● The master script spawns all slave Simics processes and waits until all of
them report “ready” through sending of global messages.

 ● A global start of simulation command is sent back from the master process
to the rest of Simics instances. All target machines start to run. It should be
noted that a master target is allowed to pass GRUB bootloader stage earlier
than remaining targets because it has to bring up an NFS server in advance
so that it can be used inside the simulation.

“To have minimal required control over

the distributed simulation we needed

the ability to pass messages between

separate Simics instances…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 133

 ● A script branch is created to wait for all simulated machines to report that
they have booted.

 ● After a target machine has reached the Linux login prompt, a login/
password pair is entered through a keyboard model. Then a Simics process
that contains that machine sends a global message to notify the master
process that one more target machine is ready.

 ● After all machines have booted, the keyboard model on the master target
node is used to enter necessary commands to start an MPI application.

 ● After a predefined delay that is meant to allow the application to start up, a
global command is issued that instructs all Simics instances to activate
mpi-tracer to start recording all MPI activity.

 ● After another predefined interval of simulated time, another global
command is broadcast to stop capturing MPI calls trace and to save already
obtained results to disk. Shortly after that, a global shutdown command is
sent for all Simics copies to quit.

The Study: Capturing MPI Calls Trace
The ultimate goal of this study was to capture all calls to MPI communication
functions that a distributed application issues during its execution on a large
number of cores distributed across multiple nodes. The MPI standard[4] defines
several dozens of functions to be used to create point-to-point and broadcast
messages as well as a small number of auxiliary functions for local data
manipulation.

We used a modified MPI library to catch every entry and exit from a set of
MPI communication calls (we omitted tracing of auxiliary functions because
they are not related to communications). To be able to do it we inserted a
machine instruction that is ignored by a target application but is specially
treated by Simics — a so called “magic instruction.” For IA-32 targets it
is CPUID with a nontypical leaf number. After Simics detects the magic
instruction, execution is passed to the user-specified function handler, which
inspects the machine state and logs a predetermined set of data: name of MPI
function, contents of its arguments taken from the stack and value of simulated
time. While this function is running, the simulation is standing still, and the
state of the system is consistent. The target inspection takes zero time from
the perspective of the target, happening between two target instructions.
We modified a magic instruction macro definition shipped with Simics
so that more than just two integers can be communicated between target
system and simulator in a single magic call, as we needed to save up to 16
values containing MPI function number and values of all its arguments to be
recorded in a trace. The overall control flow for handling an MPI call is shown
in Figure 5.

It should be noted that a target application was not aware of any of the
described activity—for it, the executing of CPUID was just as if it were
completing a regular instruction.

“The ultimate goal of this study was to

capture all calls to MPI communication

functions that a distributed application

issues…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

134 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

The analysis of collected data was done offline with a second group of Python
scripts that was created to extract useful information, such as MPI call frequency,
distribution, and length, from collected binary traces. As an example of results
that could be obtained with the system created, a characterization of occurrences
distribution for all MPI functions observed for mdrun (the most important
application of the Gromacs suite) is shown in Figure 6. The number of target
machines participating in this series of experiments varied from 2 through 64.

“The analysis of collected data was done

offline with a second group of Python

scripts…”

Figure 5: mPI tracing sequence
(Source: Intel Corporation, 2013)

mpi-tracerSimicsMPI Lib

Core_Magic_Instruction
(hap)

Magic Instruction

PMPI _Send
MPI _Send

Profiling LibApplication

Figure 6: Probabilities of different mPI functions calls for gromacs (application
mdrun) for different simulation sizes. N is a number of simulated nodes, each of
which contained 16 processes.
(Source: Intel Corporation, 2013)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

P
ro

ba
bi

lit
y

of
 C

al
l

0.05

0

MPI Function

M
PI_Send

M
PI_Recv

M
PI_Isend

M
PI_Irecv

M
PI_W

aitall

M
PI_Sendrecv

M
PI_Alltoall

Others

N 5 2
N 5 4
N 5 6
N 5 8

N 5 10
N 5 12
N 5 16
N 5 20
N 5 32
N 5 48
N 5 64

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 135

From the data and additional statistics collected, a conclusion was made that
this application spent most of its communication time in two data exchange
calls, namely peer-to-peer MPI_Sendrecv and collective MPI_waitall. Further
analysis demonstrated that another frequent pair of routines, MPI_Isend and
MPI_Irecv, actually does not introduce significant delay into the application’s
operation. Therefore, in order to optimize a cluster configuration to this
application, a system designer’s attention should be focused just on optimizing
for MPI_Sendrecv and, to lesser extent, for MPI_waitall.

Scalability Results
In this section we describe the largest simulation that we were able to carry out
and what it took in terms of time and space.

We were able to simulate up to 1792 cores, which constitute the target system
of interest, on about 150 physical cores. For such a large simulation 12 host
cluster nodes had to be exclusively allocated for Simics. The collection of MPI
traces for 200 simulated seconds of an application run took about two days
of simulation. A single trace file from each host node contained about 2 GB
of binary data, totaling more than 20 GB of logs for the whole simulation. To
extract MPI call profile data from the raw logs, the typical processing time was
about one hour.

Slowdown
An initial booting process consisted of several phases: SeaBIOS boot, GRUB
bootloader, Linux kernel, and userland startup up to the shell login. A
slowdown for this part of simulation varied from 20 to 50 times. The value was
relatively low because this part of simulation was executed with Simics VMP
mode enabled.

For the MPI tracing part of the simulation, the observed slowdown varied from
800 to 2000. At this phase simulation was often (at every MPI call) interrupted
to process a magic instruction callback. As a result a lot of data was dumped on
disk during this phase, adding to resulting slowdown. Also, VMP was mostly
turned off.

Scalability Limitations
The main concern and limiting factor of this study were the memory
requirements of target applications. Each booted target machine required
about 2 GB of host memory to work. This limited the number of target
nodes on a single host node to 14. This limitation is hard to circumvent
as the memory requirements are basically noncompressible. A swap might
help in this case and Simics supports automatic offloading of its images to
swap files; still it is possible that it would result in a catastrophic simulation
slowdown.

A low simulation speed may also be a critical factor for an experiment in
a case when its full execution time is approaching the MTBF (mean time

“We were able to simulate up to 1792

cores, which constitute the target system

of interest, on about 150 physical cores.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

136 | Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability

between failures) value of the host hardware. A process that takes too
long to complete will be interrupted by a hardware/software failure with
a high probability. A possible mitigation of this is using simulation state
checkpointing.

Conclusions
In this article Simics’ ability to handle large multi-machine scenarios was
demonstrated. When resources of a single host are not enough, simulation
can be distributed across several systems. It was shown that Simics is capable
of simulating thousands of processor cores distributed across hundreds of
target systems connected within a network, and such a large simulation can be
carried out with one tenth the physical resources while maintaining acceptable
slowdown.

To efficiently share computational resources of a host system and ease experiment
setup and automation, Simics was adapted to be run as a SLURM job.

Finally, a method to capture behavior of a parallel application based on
mechanism of magic instructions was described. This method was used
to study behavior of two applications that were run on top of distributed
computing cluster simulation.

Acknowledgments
The author would like to thank the following people who participated in the joint
MIPT-Intel research and helped to develop tools and methodology described in
the article: Evgeny Yulyugin, Artem Abdukhalikov, and Pavel Shishpor.

References
[1] D. Van Der Spoel, E. Lindahl, B. Hesset et al., “GROMACS: Fast,

Flexible, and Free,” Journal of Computational Chemistry. 2005. V.
26. No. 16. Pp. 1701–1718.

[2] D. A. Case, T. A. Darden, T. E. Cheatham, et al., Amber 11 Users’
Manual, University of California, 2010.

[3] Jette M. A., A. B. Yoo, and M. Grondona, “SLURM: Simple Linux
Resource Management System,” In Lecture Notes in Computer
Science: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP), 2003.

[4] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Version 2.2, 2009.

“…Simics is capable of simulating

thousands of processor cores distributed

across hundreds of target systems…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Simics* on Shared Computing Clusters: The Practical Experience of Integration and Scalability | 137

Author Biographies
Grigory Rechistov is a software engineer in the Systems Simulation Center at
Intel. He joined Intel in 2007 and his career has since been devoted to creating
software models of upcoming Intel CPUs. He holds a BS and MS in applied
mathematics and physics from the Moscow Institute of Physics and Technology
and recently defended his PhD thesis in computer science. His email is grigory.
rechistov at intel.com.

138 | Device Driver Synthesis

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

Automatic Device Driver Synthesis is a research collaboration project between
Intel and National Information Communications Technology Australia
(NICTA) that aims to synthesize device drivers automatically using formal
OS and device specifications. We have built a tool chain that uses Simics*
DML Device model sources as an input to the driver synthesis tool chain. The
tool chain has a frontend compiler that extracts the device behavior from the
Device Modeling Language (DML) model and outputs a formal representation
of the device behavior that we refer to as a device specification. The driver
synthesis tool combines this specification with a similar O/S specification and
applies the principles of game theory to compute a winning strategy on behalf
of the driver and eventually converts it into driver C code. This approach aims
to use the existing device models for producing device drivers resulting in
highly reliable drivers and faster time to market. We have synthesized a number
of drivers using our tool chain. Some examples include legacy IDE controller,
UART, SDHCI controller, and a minimal Ethernet adapter.

Introduction
A device driver is the part of the operating system (OS) that is responsible
for controlling an input/output (I/O) device. There is wealth of research[1][2]
showing that drivers are a primary source of bugs, and driver development is a
major bottleneck for platform validation and time to market. Figure 1 shows
the conventional driver development process, where a driver writer uses two
informal documents, OS and device specifications, to convert a series of OS
requests to device commands. The process of device driver creation can be
error prone and tedious. One of the main reasons is that the driver writer uses
informal documents that are susceptible to misinterpretation. In addition, the
driver writer has to have domain knowledge of both the OS and the device. In
many cases driver writers also reuse existing driver code to write a new driver,
inheriting any existing bugs in the process.

We propose to improve the driver development process by automatically
synthesizing drivers from formal OS and device specifications, as shown in
Figure 2. This is based on the fact that all the information needed to control
a device from software is available during the design of the device. The idea is
to represent this knowledge, so as to enable synthesizing driver automatically.

For device formal specification, we plan to leverage the high-level device
models either written by hardware designers or for software simulation for
virtual platforms. We are building a tool chain that applies the principles of

“Device drivers are the major cause of

operating system failures”

DeVIce DrIVer SynTheSIS

Mona Vij
Intel Labs, Intel corporation

John Keys
Intel Labs, Intel corporation

Arun Raghunath
Intel Labs, Intel corporation

Scott Hahn
Intel Labs, Intel corporation

Vincent Zimmer
Software and Solutions Group,
Intel corporation

Leonid Ryzhyk
University of Toronto

Adam Walker
nIcTA

Alexander Legg
nIcTA

Device Driver Synthesis | 139

Intel® Technology Journal | Volume 17, Issue 2, 2013

Figure 1: conventional driver development
(Source: Intel corporation, 2011)

Figure 2: Driver synthesis
(Source: Intel corporation, 2011)

Driver
Implementation

Informal Documents

OS
Spec

Device
Spec

Conventional Driver Development

Driver Synthesis

Driver
Implementation

Driver
Synthesis

Tool

Formal
Specification

Formal OS Spec

< / >

Formal Device Spec

< / >

Driver
Synthesis

Tool

“Driver synthesis from formal

specifications”

Intel® Technology Journal | Volume 17, Issue 2, 2013

140 | Device Driver Synthesis

game theory and synthesizes the driver code from formal specifications. This
approach improves driver reliability by reducing manual intervention, avoiding
misinterpretation of device documents by driver writers. Moreover, given a
device specification, drivers can be generated automatically for all supported
operating systems, thereby eliminating the costs associated with porting drivers.
With this approach of driver development, DML device models are used not
only for simulation, but for driver generation as well. The driver synthesis tool
chain also provides some additional capabilities like a state space explorer that
aids in DML device model debugging. Overall this approach results in correct
drivers and improves time to market by moving development earlier in design
cycle, leading to cost reduction.

In the long run we plan to support large classes of devices with this tool, from
very simple to complex devices, as long as their behavior can be represented as
a state machine. We can’t synthesize drivers that perform complex computation
and are difficult to represent as a state machine. In addition, we don’t plan to
support drivers for devices that are based on programmable cores, such as high-
end graphics or network processors.

High Level Architecture
Device driver synthesis aims to create device driver code automatically from
hardware specifications of a device. Figure 3 shows various components in the
driver synthesis tool chain that begins with formal specifications and converts
it to various intermediate forms before finally emitting the device driver code.
We formalize the driver synthesis problem as a game between the driver and
its environment, which consists of the device, additional device interfaces (for
example, network) and the operating system. The formal specification of the
device and OS interface, together, define the “rules” of a two-player zero-sum

“Game theory in driver development”

Figure 3: Driver synthesis tool chain
(Source: Intel corporation, 2013)

State Space
Explorer

Code
Generator

OS
Specification

Strategy
Generator

AbstractorFront-end
Compilers

Winning
Strategy

Driver
Code

Abstract State
Machine

Concrete State
Machine

Class
Specification Counter-example

Device
Specification

Device Driver Synthesis | 141

Intel® Technology Journal | Volume 17, Issue 2, 2013

game. The driver assumes the role of the first player and the environment (OS,
media, and so on) describe the moves of the “opponent.” In the context of the
game, modeling the environment as an “opponent” puts more emphasis on
the environmental events that lead to failure than those that are benign. The
environment begins all games with moves that represent OS-to-driver requests.
In response to these moves, the driver must try and make “moves” (that is, send
commands to the device) to push the device to a winning state, corresponding
to a correct device response for the given OS request. The moves chosen by the
driver should be such that no matter what external event occurs, the device and
driver can either correctly service the OS request or fail gracefully and continue
to operate correctly in the future. Effectively the tool constructs a driver
algorithm that guarantees that the driver is able to correctly satisfy all OS
requests given any feasible driver behavior. We call such an algorithm a winning
strategy on behalf of the driver.

Tool Inputs
The tool takes multiple formal specifications as input, as described in the
following subsections.

Device Class Specification
The Device Class specification models states, events, and functions common to
all devices of a given class in an OS-independent and device-implementation–
independent manner. The specification describes events that represent
interactions between the device and its environment (that is, connected media,
external devices, and so on). Events may also represent completion of individual
device requests such as setting a configuration. The states describe logical device
states applicable to devices of class, such as configured states, initial state, and so
on. In addition, the specification may describe sub-states that a device is expected
to transition through in order to complete a device function. In addition, the
specification also defines all constant values given to or received from devices of
class, such as baud rates, configuration values, and I/O signals.

Device Class specifications need only be written once per device class and
can be used with different OS specifications and devices of the same class
from different vendors. We believe a model similar to USB’s Device Working
Group (DWG) would work best for establishing industry‐wide device class
specifications. In this model, classes of devices are identified and a working
group (WG) is established for each class, drawing WG membership from
interested parties who tend to be the leaders and experts in a specific device
class. The WG then develops a class specification by consensus, with the result
typically being subject to approval of the parent organization.

OS Interface Specification
The OS Interface specification describes legal sequences of interactions between
the driver and the OS as well as the expected device response on completion of
each OS request. It models when events defined in the device-class specification
must be raised in response to OS requests. This specification does not specify
how the events in the device-class specification are generated, since that should

“Device class specification models

states, events and functions common to

all devices in a class”

Intel® Technology Journal | Volume 17, Issue 2, 2013

142 | Device Driver Synthesis

be part of the device specification. It is up to the synthesis algorithm to derive
the necessary steps for generating these events in response to OS requests.

Ideally, the OS specification for a specific OS will be produced by the entity
that produces the OS. This specification needs to be written once per OS per
device class and when a new OS release occurs; minimal change should be
required to adapt the specification.

Device Specification
Device specifications are device-specific instantiations of device class
specifications. They model the device behavior and the externally visible
artifacts of the device. In particular, they model externally visible registers
and device operations that result from the reading or writing of said registers.
The device response depends on the register values and device internal state,
such as, for example, whether the device is initialized or waiting for a request
to complete. These responses include but are not limited to updating register
values, generating interrupts, triggering one or more external events, and
interactions with other subsystems. These specifications are written at a high
level of abstraction and ignore detailed internal architecture and timing.

Individual device specifications must be produced by the device vendor.
In the case of industry-standard devices such as EHCI and XHCI (USB) and
SDHCI (MMC/SDIO), a single device specification can be produced by the
entity responsible for the standard and used for any device that meets the
standard. In the case where a device is industry standard but also contains
vendor‐specific extensions, the device vendor becomes the responsible party.
The vendor can import the industry-standard specification to specify device
core functionality, but still remains responsible for specifying the vendor
extensions.

Tool Outputs
The tool processes the input specifications and applies the principles of game
theory to produce driver code.

Driver Code
The tool produces C code when it finds a successful strategy. In some cases
driver writers will need to develop manual wrappers to integrate the code
with the OS.

No single entity can be identified as the entity responsible for producing
device driver binaries. Industry history suggests three potential sources: OS
vendor, hardware vendor, and platform integrator. OS vendors generate
large numbers of device drivers, tied to OS release cycles. Hardware vendors
produce drivers when 1) the target OS vendor does not support the device
(in particular for new hardware), and 2) when the need for the driver falls
between OS release cycles. Platform integrators generate device drivers when
the driver is not provided by the OS vendor or the device vendor, or they
built the device themselves.

“The tool produces “C” code as output

if it finds a successful strategy”

Device Driver Synthesis | 143

Intel® Technology Journal | Volume 17, Issue 2, 2013

Table 1 illustrates the interdependence between the three entities

Entity Produces Consumes

Device Class WG Device Class
Specification

n/a

OS Vendor OS Specification Device Class Specification
Device Vendor Device Specification Device Class Specification
Platform Integrator n/a Device Class Specification

OS Specification
Device Specification

Table 1: Specification Producers and Consumers
(Source: Intel corporation, 2013)

DML Models for Driver Synthesis
Device Driver synthesis aims to synthesize drivers automatically from formal
specifications, so availability of a device specification is a key to success of the
tool. If a device specification has to be created specifically for synthesis, then
we’ve only accomplished the shifting of efforts from driver development to
specification development, rather than solving the problem. In addition there is
no way to validate the manually developed model to make sure that it models
the device operation properly.

There are many high-level device specification languages that are
currently used by hardware manufacturers including SystemC, System
Verilog, and Simics DML. To ensure that the driver synthesis tools
are widely applicable, the architecture provides for multiple frontend
compilers that convert specifications written in a given language into an
intermediate language Termite Specification Language (TSL) developed
by us. TSL provides a means for concise description of FSM states and
transitions and is used as the FSM external representation by all other
tool-chain components.

Wind River Simics* is becoming the platform of choice for virtual
platforms at Intel. Many DML models already exist and are being used
successfully in virtual platforms. If a particular DML model doesn’t exist,
then writing the model contributes to synthesis as well as virtual platforms.
We have developed a frontend compiler for DML for using DML models
with our tool chain.

DML to TSL Compiler
DML has been designed to facilitate fast model development by software
engineers. It is a very forgiving language in general, allowing forward
referencing, type casting, and automatic C-style type promotion. TSL, on the
other hand, is very restrictive. For example, it does not provide type promotion
or casting or allow forward references.

“Availability of a device model is key

to the success of the tool”

Intel® Technology Journal | Volume 17, Issue 2, 2013

144 | Device Driver Synthesis

One of the goals of the project is to not modify the actual device models, since
we do not want our use of the models to impact their original use in virtual
platforms and we do not want to force a fork of the models, which might lead
to issues with bug-fix propagation. We have built a DML compiler that tries
to deal with the DML to TSL conversion automatically, but in some cases we
do need to modify the model. Currently we do modify the model directly, but
all of the modifications we currently make to the actual model could instead
be kept in a separate annotations file, thereby leaving the model pristine. This
support will be added in the future versions of the tool.

Extracting Device Behavior from DML Models
Conceptually, DML architecture is very similar to event-driven GUI
architectures. A DML model can be thought of as a collection of responses,
where each response corresponds to a message or a set of inputs. Responses
execute instantaneously; that is, simulation time does not advance while an
individual response is executing, and blocking in a handler is prohibited.
Response execution always begins with an external call of an interface method
and completes with the return to the external caller.

TSL models express device behaviors as a collection of variables that represent
device state and a collection of transitions to these state variables. Given a set of
input state changes, each individual transition describes the cascade of changes to
other state variables in response to the input changes. In addition, each transition
may have guarding constraints that allow it to be enabled or disabled depending
on current device state. Similarly to DML, TSL transitions are also instantaneous.
While they resemble code, a TSL transition can also be thought of as a formula that
computes next state S′given current state S and inputs I: S′ = fTrans(S, I).

Conceptually, DML model structure closely corresponds to the TSL structure.
A single TSL transition maps directly to an execution trace of a DML interface
method and its called methods. The TSL state variables map directly to the
collection of DML registers, fields, attribute objects, and data objects.

Before we can begin extraction, we build out an in-memory representation of
the model. This involves application of templates to DML objects, evaluation
of parameters, expansion of select and foreach keywords, and evaluation and
pruning/expansion of if object statements. Each of these steps can result
in significant model changes so evaluation of the model really cannot be
performed without these steps.

We begin the extraction process by collecting the model variables that will
become the TSL state variables. All data objects and attributes are added to the
collection as they are encountered. Fields are added only if their alloc parameter
is true (that is, model space is allocated for its contents). Registers are added
only if they do not contain fields and their alloc parameter is true.

We identify the individual transitions to be extracted (transition entry points)
by identifying and collecting all exported interface methods contained in the
models. As well as explicit interfaces, this set also contains the read/write bank

“DML compiler extracts the relevant

device behavior from DML device

models.”

Device Driver Synthesis | 145

Intel® Technology Journal | Volume 17, Issue 2, 2013

access methods for all register banks present. We also add transitions for each
DML event object and after keyword encountered in the model, along with a
1-bit guard variable for each event or after transition.

After identifying the entry points, we can begin extraction of the transitions.
This is done by first copying the method containing the entry point, then
replacing each call or inline statement with the body of the target method. This
is repeated recursively until no call or inline statements remain and we are left
with a full code trace through all branches of the call. As an optimization, we
concurrently evaluate if statement conditions to prune branches that will never
be taken because they will always be false.

Besides state variables, TSL allows for temporary variables. These are global
in scope but do not retain values across transitions. TSL has no notion of
transition-local variables. As part of the transition extraction, we must convert
all local variables found in DML methods to TSL temporary variables. Because
of TSL’s global scoping, some amount of variable name mangling is required
to ensure unique variable names.

TSL restricts transitions from modifying a variable more than once per
transition. This requires us to analyze each extracted transition and introduce
new temporary variables and assignments when violations are identified.

TSL also requires that any single transition must update all state variables.
To meet this requirement, we analyze each branch in the transition for
assignment statements. For each variable assigned, we add an identity
assignment (state’ = state;) to the corresponding branch. We complete this
requirement by adding identity assignments to the end of the transition for
all remaining unassigned state variables.

The following subsections describe how our frontend DML compiler deals
with the conversion from DML to TSL.

DML Templates
Development of the compiler caused us to study several of the import files in
great detail, specifically dml-builtins.dml and utility.dml, leading us to realize
the power of well-planned template and parameter use. This in turn allowed us
to write “extensions” in DML itself, rather than extending the language.

The file dml-builtins.dml provides the glue that ties banks, registers, and fields
together, as well as providing default methods and parameters for most types of
DML objects. Unfortunately, it is so closely tied to the Simics DML compiler,
dmlc, that we could not use it without porting it. Our first porting task was
to create our own versions of the methods that are “intercepted by the DML
compiler.” These methods are involved in the read/write access fan-out from
bank objects to registers and fields.

For Simics device I/O, the bank method access() serves as the primary entry
point for the I/O-memory interface (register read/write operations). Instead
of a single method that takes direction and size as parameters, TSL uses a set

“The tool converts models into an

intermediate representation called

TSL that is amenable for analysis and

synthesis”

Intel® Technology Journal | Volume 17, Issue 2, 2013

146 | Device Driver Synthesis

of entry points: read8(), write8(), read16(), write16(), read32(), and write32().
To accomplish this change, we modified the behavior of our bank objects to
create parameters containing lists of mapped registers of specific sizes: mapped_
regs8, mapped_regs16, and mapped_regs32. We also defined an iioregion
interface with methods corresponding to the TSL requirements and modified
the default “bank” template in our dml-builtins.dml file to implement the
iioregion interface and instantiate the individual access methods as applicable.
In addition, we added the ability to turn off access for banks we were not
interested in. For instance, we may be working with a PCI-based UART where
we are interested in the UART register banks but not the PCI configuration
space register banks. This control allows us to extract UART register-related
transitions while ignoring PCI-configuration related ones.

Early on, we discovered that our game-playing solver did not always follow the rules
that driver writers do. Specifically, it would attempt device register access before the
driver’s probe() routine had been called. To solve this issue, we added a guarding
constraint to the access methods, blocking them until probe() had been called. The
following is a portion of our dml-builtins file illustrating these changes:

// io_waits_for_probe – define to block IOs before probe() is called
parameter io_waits_for_probe default undefined;
// conditionally create a variable to track if probe() has been called
if (defined $dev.io_waits_for_probe) {
 data uint1 probe_called;
}

template bank {
.
.
.
// extensions for tsl
parameter mapped_regs32 default undefined;
parameter mapped_regs16 default undefined;
parameter mapped_regs8 default undefined;

// controls if bank-related transitions will be emitted
parameter emit_accessors default true;

if ($this.emit_accessors == true) {

// not emitted if bank has no visible registers
if (defined $this.mapped_registers) {

// The TSL access interface
implement iioregion {
 // Does bank contain mapped 8-bit registers?
 if (defined $parent.mapped_regs8) {

“Built-in templates for register access

provide a software interface to the

device internals with appropriate

constraints”

Device Driver Synthesis | 147

Intel® Technology Journal | Volume 17, Issue 2, 2013

 // emit guard if we need to wait for probe
 if (defined $dev.io_waits_for_probe) {
 parameter guard_read8 = ($dev.probe_called == 1);
 }
 // and emit the read access method
 method read8(uint32 roffs8) -> (uint1 rstatus, uint8 rval8) {

Event objects presented another challenge. In Simics, execution of an event
object’s event() method is constrained by its posted state. It can only be called
if it has previously been posted to an event queue. In TSL, no such queues
exist. This is further compounded by the almost 100-percent rate of models
overloading the default event() method. We needed to constrain the event()
method to only run when posted, and we needed to retain control of the
event’s entry point so we could apply the constraint and perform constraint
housekeeping. Again, we were able to perform the bulk of this work by
modifying the default event template:

template event {
.
.
.
// variable to track posted state
data uint1 _posted_;

// methods to manipulate posted state
method post(when, data) {$this._posted_ = 1;}
method remove(data) {$this._posted_ = 0;}
method _cancel_all() {$this._posted_ = 0;}

// instantiate an event “wrapper” entrypoint
implement event_entry {

//entry point only enabled when event is posted
parameter guard_pre_event = ($_posted_ != 0);

method pre_event(void *param) {
// housekeeping – reset posted state
$_posted_ = 0; //Clear posted flag and call event
// call control to real handler
inline $parent.event(param);

}

Unused Code
There is some code in DML device models that is for DML infrastructure and
not for device operations. Our tool has no need for such code and we needed
a way to eliminate such code from models without modifying the models. We
have defined a few annotations for use in the models. They all begin with the
sequence //@ and so are transparent to the Simics DML compiler. We use the
pair //@ignore and //@resume to hide portions of DML from our DML tool.

“Event handling is challenging in

TSL, as there are no queues. ”

Intel® Technology Journal | Volume 17, Issue 2, 2013

148 | Device Driver Synthesis

We have used these to some extent in the models but mostly use them in our
copies of the system import files, the DML equivalent of user/include/*.h.

Width Conversion
TSL does not support type promotion or casting, so our DML compiler
performs a significant amount of expression rewriting in order to provide explicit
width conversions. Width conversion to a wider type requires the original
assignment be converted to a conjunction of two assignments, the original
assignment and a second assignment to the extra bits. For example, assuming a
32-bit variable named foo and a 16-bit variable name bar, the statement:

foo = bar;

becomes:

((foo[15:0] = bar) && (foo[31:16] = 0))

In some cases, the format of a DML expression may prevent our tool from
being able to make this modification. For instance, the DML expression:

foo = (somevar == 0) ? bar :0;

cannot be modified because the conversion is only needed conditionally but
can only be expressed in terms of the global foo, not the conditional bar. In
these cases, we rewrite the DML in a form that allows for the conversion:

if (somevar == 0)
 foo = bar;
else
 foo = 0;

This rewriting provides separate conditional assignments to foo, allowing each
to be converted as needed.

Arithmetic Operations
Current version of TSL does not support arithmetic operations (such as 1, 2, 3, 4,
or modulo) or magnitude comparison operations (such as <, <5, >, or > 5).
At this point this is just a limitation of our tool and we plan to add this support
in our tool soon. For dealing with this issue for now, our tool detects cases where
power-of-2 techniques can be used instead and performs automatic conversion.
The detection depends on one of the operands being a constant power-of-2
value. In cases where this is not obvious, we have to modify the model by hand.

Some models contain complex arithmetic expressions that calculate some
binning value based on one or more inputs. In these cases, we have replaced the

“The TSL compiler performs strict

type checking requiring the DML

compiler to coalesce types by rewriting

expressions in the emitted TSL”

Device Driver Synthesis | 149

Intel® Technology Journal | Volume 17, Issue 2, 2013

arithmetic expressions with if-else trees or switch statements coded to achieve
the same result without arithmetic.

Driver Verification Using DML models
We use the same Simics model that is used to synthesize the driver in the
Simics framework to execute and test the synthesized driver.

For some of the devices for which the hardware is available, we also tested the
driver on actual hardware.

Tool Chain Capabilities
The synthesis tool chain has some additional capabilities that can be useful to a
DML model writer. In the following sections we describe these capabilities and
how a DML model writer can use it to their advantage.

State Space Explorer
The driver synthesis tool chain includes a utility that allows a user to visually
inspect the combined device and OS state machine. The utility is a state space
explorer, a graphical user interface that allows the user to perform various
operations on the state machine, like analyzing available driver actions in a given
device state, applying an action from the current state and inspecting the changes
to the device state, and viewing the effect of external environment events.

While the state space explorer is a critical component of a tool chain that
synthesizes driver code, it also offers capabilities that can be quite useful to a
DML model developer.

Visual Model Debugger
As illustrated in Figure 4, the state space explorer GUI allows a DML model
developer to visualize the device model as a directed graph where each node
in the graph represents a state (or a set of states) and each arc in the graph
represents a transition from one state to another.

The GUI allows a model user to inspect the values of any device internal
variable in a given state by simply clicking on the node in the graph
representing the state. A pane on the left lists all the device internal variables,
and clicking on a particular state node causes this list to be updated with the
values of each variable in that state.

Further, from a given state, the GUI allows a user to pick the next transition
which would move the device state machine to another state. While this
feature is somewhat similar to the step or next operation in a traditional
software debugger, the event-driven nature of a DML model requires the
tool to provide more flexibility. The events triggering state transitions are
broadly classified into events that can be controlled by software and those
that depend on the environment (like platform hardware interrupt, line
unplugged, and so on) and therefore cannot be controlled by the device
or software. The tool allows a user to choose which event occurs next in a

“State space explorer allows the model

developer to visualize the device

model”

Intel® Technology Journal | Volume 17, Issue 2, 2013

150 | Device Driver Synthesis

given device state. The choice includes both controllable and uncontrollable
events. In the case of software-controlled actions, the user can also specify the
parameters of the action.

Figure 4: State space explorer GUI. The right pane shows the device model as a directed graph. The left pane shows device
internal variable values.
(Source: Intel corporation, 2013)

The capabilities described above (inspecting device variable values and directing
the state machine by choosing the next transition via the GUI) allow the model
writer to use the state space explorer as a debugging aid, examining the effect of
(a chain of) events on the device.

Counterexample Generation
The primary challenge in exploring the state space of a hardware device model
is its huge size, which would quickly make visualization incomprehensible and
state management cumbersome. The GUI explorer utility in the synthesis tool
chain employs numerous techniques, built on a foundation of formal methods
and symbolic execution to address this issue. These techniques include:

 ● aggregating states with the same properties with respect to the DML mode
code into a set of states and displaying the entire set as one node

 ● symbolic representation of the model code, which allows abstracting
the model variables (which can have a massive number of values)

“State space explorer provides a

counter example when no winning

driver strategy exists”

Device Driver Synthesis | 151

Intel® Technology Journal | Volume 17, Issue 2, 2013

into Boolean predicates that distinguish specific paths through
the code

 ● showing only relevant subset of actions and parameter values when adding
a state transition

 ● automatically “running” (tracing out a path in the device state machine) till
a specified “way-point condition” (a predicate expressed over device model
variables) is true

One of the most useful capabilities from a model developer’s perspective is the
tool’s ability to generate counterexamples. The normal operating mode is to
develop a successful strategy for the driver, but when the model is buggy such
that it is impossible to generate a successful driver strategy, the tool generates a
counterexample, that is, a set of actions on the state machine demonstrating how
the driver can be prevented from moving the state machine into a desired goal state.
This is possible since the tool is built on top of a formal representation of the model.

Providing counterexamples is very useful to a model developer as they can be
presented with a specific sequence of actions on the device model that would
lead the model into an undesirable state.

Scenario Replication
Device programming sequences typically involve massaging of OS input
parameters, a long series of register reads/writes, and require specific
environment conditions (such as network connectivity for a successful packet
transmission) to hold. In order to assist the tool user in efficiently exploring the
device state space and quickly repeating long repetitive action sequences, the
GUI allows saving traces of action sequences, also known as state transitions,
from any given state. In any subsequent run of the tool, as long as the model
remains unmodified, the same scenario can be replicated by bringing the model
to the same start state and then loading the trace saved.

This capability can be very useful for software-hardware co-development
allowing device-driver and device-model developers to work together closely.
The driver developer can initiate some OS-based scenario and capture its effect
on the device model internals for the model developer to replicate. Typically
such errors (for example, race conditions, synchronization errors, or deadlocks)
involve very specific interactions of the software, device, environment, and
OS actions, making it hard for model developers to replicate the exact error
conditions being encountered in a complete system. While Simics does
allow easily simulating the complete system state to replicate errors, the
model developer would still need to instrument the DML model code with
appropriate debug logic (typically log messages, to determine the root cause of
the problem). The distinction is similar to classic software debugging done by
adding code to print debug messages versus using a debugger to find problems.

The combination of the capabilities to explore model state space,
counterexample generation and scenario replication allows a DML model
writer to quickly narrow the search for bugs in DML device models as they are
directly able to examine the device-internal state in the discovered failure paths.

“Visual tool allows for scenario

replication by supporting save and

restore feature”

Intel® Technology Journal | Volume 17, Issue 2, 2013

152 | Device Driver Synthesis

Prototype Device Drivers
We have successfully synthesized device drivers for multiple nontrivial devices
using DML device models. We used some existing models and developed
some from scratch. For all the drivers the synthesized code was limited
to driver code that handles device specific operations like initialization,
configuration, and data transfer. We embedded this synthesized driver code
in manually developed wrappers for code that involves OS and bus resource
allocation and any data transformation. Resource allocation includes allocating
IRQ lines, setting up DMA descriptor rings, creating mappings for memory-
mapped device regions, and so on. Data transformations performed by drivers
include preprocessing data buffers sent to the device, such as, for example,
changing their alignment or padding, and postprocessing data received from
the device, such as extracting checksum from a network packet. While many
of these operations can in principle be formalized and synthesized using the
game-based approach, we believe that a different formalism is needed to
automate synthesis of this functionality. We successfully synthesized low-level
drivers for the following devices:

 ● Legacy IDE Controller –Linux driver from manually developed DML
model from device datasheet

 ● W5100 Embedded Ethernet Controller – Native firmware driver from
manually developed DML model from device datasheet

 ● Intel PRO/1000 Ethernet Controller – Linux driver from manually
developed DML model from device datasheet

 ● UART NS16450 – Linux driver from existing DML device model
 ● SD Host controller – EFI driver from existing DML model

SD Host Controller Case Study
This section describes the steps involved in synthesizing a UEFI SD Host
controller driver from scratch. This case study is considered in detail here
because it is based on using a preexisting device model. As such, it is the most
representative of the intended use of this technology.

Input Specifications
Driver synthesis requires three input specifications for the device. This section
describes the steps involved in acquiring/developing three input specifications.

Device Specification
We used an existing SD host controller DML device model from Simics
team as our device specification. As we began to examine the model to
determine where the device‐class related annotations should be placed, we
noticed that unlike the other DML models we had worked with, this model
did not account for in‐flight data transfer times. All data transfers to or
from the card model happened instantaneously. Our past experience led

“The synthesis tool has been used to

successfully generate device drivers for

several non-trivial devices”

Device Driver Synthesis | 153

Intel® Technology Journal | Volume 17, Issue 2, 2013

us to believe that we would not be able to successfully synthesize a driver
from a model in this condition. The problem is that the instantaneous
completion leads the synthesis algorithm to assume that any operation
started in cycle x will be complete in cycle (x + 1), eliminating the need to
poll status registers for an indication of completion, and so on. Therefore,
our first step became a rewrite step.

We rewrote the model to account for the in‐flight times and validated the
changes using a stock Linux image with the Linux SD Host driver, running on
the Simics Framework. We submitted patches for these changes to Simics.

We then began the task of annotating the model with Device Class events and
attempting synthesis. As this model was the most complex model we had tried to
date, we immediately ran into problems. The complexity of the model resulted in
an output TSL file with 6.8 Kb of state space (global variables), another 12.3 Kb
for temporary variables, and 45 separate transitions. This extreme size resulted
in tool-chain execution times in excess of 4 hours. As we were still trying to
determine the correct locations for annotations, the extreme execution time was a
significant hindrance to forward progress.

Since the model is a full model, it contains transfer modes and registers that
would not be used in our project. In an attempt to reduce the overall size and
complexity, we tweaked the model to hide the unused transfer modes and
registers. This reduced model has 2.5 Kb of global variable space, 1.5 Kb of
temporary variable space, and 14 separate transitions. This reduced tool-chain
execution time to tens of minutes.

We also had to make a few changes to the model for TSL compatibility
issues. These changes included rewriting arrayed register definitions without
arrays, statement adjustments to allow width conversions, and elimination of
arithmetic operations.

Class Specification
We needed to define this specification from scratch as it does not exist today.
Normally we expect it to be published with the device industry standard
specification. This specification defines all the interfaces supported by the SD
Host controller device that are expected to be supported by all the drivers. We
started with SD host controller standard specification[6] and defined the class
interfaces. This is defined as a Word document. The class interfaces are the
points of synchronization between OS and device specifications. We will use
these interfaces to annotate both the OS and device specifications.

OS Specification
We chose to synthesize the SD host controller driver for UEFI (Unified
Extended Firmware Interface). We used UEFI documentation[5] to define this
specification. The SD host controller driver is the lowest level driver in the
layered driver stack. The OS specification for this driver was motivated by the
interfaces expected by the media layer driver.

“The SD host controller DML model

was annotated to work with the tool”

Intel® Technology Journal | Volume 17, Issue 2, 2013

154 | Device Driver Synthesis

These interfaces are codified by the main UEFI specification and expose
abstractions such as block device access, such as the EFI_BLOCK_IO_
PROTOCOL. The generic services in the EFI_BLOCK_IO_PROTOCOL,
such as ReadBlocks(), WriteBlocks(), and Reset(), need to be refined to an
implementation that meets the requirements of the underlying hardware
controllers. Today the requirements of the UEFI specification and its associated
driver model, along with the semantics of the hardware, are all managed by
the developer as part of the code creation process. This process is error fraught,
and most developers typically take an existing driver source and “port” it to the
requirements of the new hardware. As such, there is no guarantee of correctness,
with flawed “existing sources” being evolved via this porting process.

Instead, with the driver synthesis, a single instance of an OS specification for a class
of devices can be married to a specific device specification, such as the DML for the
hardware, to derive the source. This removes the errant human interpretation of the
UEFI specification and the hardware host controller interface definition.

This is an important issue in that the UEFI firmware on the system board is
considered hardware by many end users of the platform. And with the trust
guarantees around platforms based upon UEFI Secure Boot[7], assurance
considerations, such as correctness of the implementation, gain even more
importance as all of the UEFI drivers and components are in the same trusted
computing base.

“Strong assurance guarantees needed

for firmware along with the extensive

specifications available in UEFI

make EFI drivers an ideal target for

synthesis”

UEFI defines a stylized model of system booting that includes interfaces between
several different executable entities, including UEFI drivers, as shown in Figure 5.

Figure 5: UeFI boot sequence
(Source: Intel corporation, 2013)

Security
(SEC)

Pre EFI
Initialization

(PEl)

Driver
Execution

Environment
(DXE)

Boot Dev
Select
(BDS)

Transient
System Load

(TSL)

Run Time
(RT)

After
Life
(AL)

UEFI
Interfaces

V
er

ify

Pre
Verifier

OS-Present
App

Final OS
Environment

Final OS
Boot Loader

Transient OS
Boot Loader

Transient OS
Environment

OS-Absent
App

Boot
Manager

Device,
Bus, or
Service
Driver

Intrinsic
Services

EFIDriver
Dispatcher

Security

Board
Init

Chipset
Init

CPU
Init

?

[. .Platform Initialization. .]Power on Shutdown[. . . .OS Boot. . . .]

Device Driver Synthesis | 155

Intel® Technology Journal | Volume 17, Issue 2, 2013

Specification Synchronization
We used the class specification as synchronization between the OS and device
specification. This involved using the class interfaces in the OS specification at
the synchronization points. Finding the correct synchronization points involved
studying the DML device model. Finding the correct place to annotate the
device model depends on the way the model is written. It was a fairly simple
process to annotate the SD host controller and EFI OS specifications.

Integration
Once we had the three inputs ready, it was an iterative process to input them
through our tool chain to synthesize the driver. We did not synthesize the
configuration interfaces for this device, but synthesized the main function to
send a command to the card. At the end of this step we were able to synthesize
the device driver strategy for this driver.

Code Generation
Code generation proved much mode tedious than anticipated. At the time of
writing, our synthesis tool does not support fully automatic code generation.
Instead, it allows the user to interactively construct driver source code by
selecting one of several possible actions proposed by the winning strategy in
each state. Ongoing research on this problem is focusing on techniques for
fully automatic code generation as well as on improved methods for interactive
user-guided code generation (see the section “User-Guided Synthesis”).

Testing and Validation
We used the Simics simulator of a target platform based on the Intel® Core™ i7
processor for testing this EFI driver. This model does not contain an integrated
SD host controller so our first step involved adding our SDHCI device model
to the platform. We created a Python wrapper to instantiate our SDHCI model
and Simics MMC Card model and integrated the wrapper into platform model
startup script. The startup script was modified to connect the host controller to
the platform model through an unused South Bridge PCI bus slot.

With the platform model extended, the next step was to validate the extended
model. This was done using the Linux image supplied with the platform model. We
booted the image in Simics and recompiled the kernel to create a loadable Linux
SDHCI driver. We updated the Linux image to retain the new driver modules. We
were then able to load the SDHCI driver and validate our SDHCI-MMC card
model combination using Linux file-system commands targeted to the MMC card.

Our next step was to establish an EFI baseline image. To achieve this goal,
we built an EFI image with an existing SD host controller driver and tested
that simulation environment. We then integrated our driver with the EFI
code base, replacing the existing driver. We needed to develop some wrapper
code to integrate in EFI environment. We then built and tested this driver on
the Simics simulator and successfully brought up the SD host controller and
performed read/write operations to the SD card.

“The synthesized code generated by the

tool was tested in the Simics simulator

with an Intel® Core™ i7 based

platform model”

Intel® Technology Journal | Volume 17, Issue 2, 2013

156 | Device Driver Synthesis

User-Guided Synthesis
Our initial approach with this project was complete automatic synthesis, where
once the specifications are available, a push-button approach will result in a
driver. In practice we realized that users want much more control over the
structure of the driver code. In addition, in some cases synthesis gets stuck, and
having users provide some simple hints can make the job of the synthesis tool
much easier. Given these findings we decided to make a shift toward user-
guided synthesis, as illustrated in Figure 6.

“User guided synthesis allows a driver

writer to have fine grained control

over the driver synthesis process”

Figure 6: Guided synthesis spectrum
(Source: nIcTA, 2013)

To this end we plan on using driver templates that specify the driver
structure. The user can add additional constraints on the synthesized driver
by defining a device-specific driver template that can include some hints,
or anything that is specific to a device. We plan on supporting a complete
spectrum from fully automatic synthesis, where the device-specific template
is empty, to the other extreme, where the user manually writes the complete
driver in device-specific template and our tool can then act as a verifier to
verify the driver against input specifications. We think the sweet spot is
somewhere in the middle, where the user specifies some code structure and
constraints in the device-specific template and generates more usable and
readable code (see Figure 7).

We are also working on an interactive code generation GUI that gives user
the flexibility to add any code at code generation steps. Any code manually
added this way using the code generation GUI is saved by adding it back to
the template and will automatically be available at the next iteration. Using
a combination of templates and code generation GUI, our tool chain will
provide user control over generated code at all stages of synthesis. Even though
the user gets complete control, our tool chain will validate that the user has
added correct code. Any errors caused by the user will result in synthesis failure
and not an incorrect driver.

Guided Synthesis Spectrum

Fully Automatic Synthesis

Empty Driver
Template

Synthesised Driver

Hybrid Approach

Modified Driver
Template

Synthesised Driver

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

Verification

Manually Developed
Driver

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

receive(){
 ...
}

send(){
 ...
}

receive(){

}

write(ctl,0);

...

send(){

}

...

Device Driver Synthesis | 157

Intel® Technology Journal | Volume 17, Issue 2, 2013

Future and Summary
Using existing device models for driver synthesis is a great start, but in practice
we realized that we had to modify and annotate the models extensively in order
to make them suitable for synthesis. In the future we hope to work with model
writers to lay down requirements for writing device models with synthesis in
mind, so as to reduce manual intervention to annotate or modify the models.

Complete References
[1] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In 18th SOSP, pages
73–88, Lake Louise, Alta, Canada, Oct 2001.

[2] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP
kernel crash analysis. In 20th LISA, pages 101–111, Washington,
DC, USA, 2006.

[3] N. Piterman and A. Pnueli, “Synthesis of reactive designs,”
in Proceedings of Verification, Model Checking, and Abstract
Implementation (VMCAI), 2006.

[4] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Transactions on Computers, Vols. C-35, no. 8,
pp. 667–691, August 1986.

[5] Unified EFI Forum, [Online]. Available: www.uefi.org/home.

[6] SD Association, “SD Host Controller Standard Specification
Version 4.00,” SD Association, 2012.

“Synthesis with user guidance has a

potential to achieve the holy grail of

fine grained user control with formal

guarantees of correctness for generated

device drivers”

Figure 7: User-Guided synthesis with templates
(Source: nIcTA, 2013)

Manual code is added back
to the template and can be
reused at the next iteration

OS Model

The user controls synthesized
code via interactive code

generation toolDevice Spec

Device-specific
Driver

Template

Driver
Template

Driver
Implementation

Intel® Technology Journal | Volume 17, Issue 2, 2013

158 | Device Driver Synthesis

[7] Magnus Nystrom, Martin Nicholes, Vincent Zimmer, “UEFI
Networking and Pre-OS Security,” in Intel Technology Journal -
UEFI Today: Boostrapping the Continuum, Volume 15, Issue 1,
pp. 80–101, October 2011

Author Biographies
Mona Vij is a researcher in Intel Labs. She has been a security and operating
systems researcher for over 20 years. She has a Masters in Computer Science
from the University of Delhi, India and a Bachelor of Science in Mathematics
from St Stephen’s College, Delhi.

John Keys is a Staff Engineer in Intel Labs. He has been developing low-level
software for over 25 years, for both PCs and embedded platforms. He has
experience with a wide range of hardware devices, CPUs, operating systems,
processor architectures, and platforms from bare-metal to PC to satellites
and tunnel boring machines. He has made significant contributions to the
development of PCMCIA and USB technologies and standards. Through this
leading edge work, he also became an expert in “hacking” an existing platform
to add new capabilities, beginning with plug-and-play support for MS-
DOS3.2. John has been with Intel for 14 years in a variety of positions. Prior
to joining Intel, he was the VP of Software for MCCI in Ithaca, NY.

Arun Raghunath is a Senior Software Engineer in Intel Labs. He has a Masters
in Computer Science from University of Southern California, and a Bachelors
in Computer Science & Engineering from Pune University, India.

He has been a Systems software researcher at Intel for the last 14 years. He has
authored 5 conference papers, 1 book chapter and holds 8 patents in the areas
of High performance computer networking, Operating Systems, Compilers
and multi-core parallelization.

Scott Hahn is a Principal Engineer in the Systems Architecture Lab within
Intel Labs where he leads the Operating Systems Research team. His team
primarily focuses on the interaction of system SW and HW. Their projects
cover multiple areas including storage, scheduling, memory and device drivers.
Scott has been with Intel since 1994 and joined Intel Labs in 2006. Prior to
joining Intel Labs, he was an architect in the LAN Access Division (LAD)
where he worked on a number of network technologies and was the lead
architect of Intel’s Active Management Technology (Intel® AMT). Scott also
worked in Intel's Supercomputer Systems Division where he was responsible
for developing Intel's IP over ATM solution for the world’s first TeraFLOP
super computer. Scott has published over 15 technical papers, holds 13 patents,
and has received an Intel Achievement Award for his work on Intel® AMT.

Vincent Zimmer is a principal engineer in the Software and Services Group
at Intel. He has been firmware developer for over 20 years. He has a Bachelor
of Science in electrical engineering from Cornell University, Ithaca, NY, and a
Master of Science in computer science and engineering from the University of

Device Driver Synthesis | 159

Intel® Technology Journal | Volume 17, Issue 2, 2013

Washington, Seattle, WA. He has published three books, two book chapters,
one IETF RFC, ten publications and over 270 US patents.

Leonid Ryzhyk is a Postdoctoral Fellow at the University of Toronto and
Researcher at NICTA. He obtained a PhD in Computer Science from the
University of New South Wales, Sydney, Australia in 2010. He received his
Bachelor’s and Master’s degrees in Computer Science from the National
Technical University of Ukraine in 2000 and 2002.

Adam Walker is a PhD student at the University of New South Wales, Sydney,
Australia. He obtained his Bachelor’s degree from the University of Auckland,
New Zealand in 2008.

Alexander Legg is a PhD student at the University of New South Wales,
working with NICTA in Sydney, Australia. He received a Bachelor of
Information Technology (Hons) from the University of Sydney in 2011.

160 | Using Simics in Education

Intel® Technology Journal | Volume 17, Issue 2, 2013

Contributor

Wind River Education Services provides user training for a variety of topics,
including Wind River operating systems and tools, as well as more general
topics like networking. Training always includes hands-on labs, which can
complicate logistics for training sessions. Shipping boards and configuring
networks is time consuming and error prone. For that reason, education
services are using Simics as an alternative to physical hardware to streamline
training logistics and provide new ways to do training.

Introduction
By just looking at the title of the article, it remains unclear what kind of
education this article refers to. A more precise but woefully long title would
be: “Using Simics* for educating people on various embedded system topics,
such as debugging tools, operating systems, device driver and application
development, networking, and security.” Apparently, Simics is not amongst the
topics people are educated on. So this article is about using Simics as a training
tool. It is not about training people on Simics. In fact, the training examples
in question try to hide Simics as much as possible, because the students must
not get the feeling that they are being trained on something they did not want
to be trained on, or, which would be even worse, get the feeling that they need
Simics in order to use the tools or software they are being trained on.

Using Simics in this way reduces Simics (more precisely, the target machine
that it simulates) to a mere hardware replacement, thereby throwing away a
lot of its unique features. To understand the reasons for this, a closer look at
hands-on labs is required.

Training people on embedded software tools and techniques involves hands-
on labs, within which the students can apply what they have learned within
the lecture parts. These labs are essential for the overall learning effect because
during the labs the taught concepts can settle in. To ensure a smooth lab
execution, the complete lab setup needs to be provided to the customers, and
hence executing such labs imposes the following challenges on the conductor
of the training:

 ● Equipment has to be shipped—Shipping equipment costs time and
money, and bears the risk of having the equipment not arriving on time or
becoming defective.

 ● Reliability of equipment—Regular shipment and in-lab use of equipment
eventually leaves it in a brittle state and leads to potential failures during use.

“It is not about training people on

Simics.”

Robert Guenzel
Technical Content Engineering,
Wind River

USIng SImICS In EdUCaTIon

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 161

 ● Amount of equipment—There are literally hundreds of pieces of equipment
per class (a laptop, evaluation board, Ethernet switch, hardware debugger,
and cables per student). The overhead for making sure all pieces are there,
in good shape, and recollected after training is significant.

 ● Installation—Creating networks, connecting the debuggers, probes, and so
on at the customer site is very time consuming and error prone.

 ● Insight into the system—Real hardware does not allow full system time
freeze and insight into the complete system state.

 ● Flexibility—The same training sessions need to be delivered on different
target machines such as PowerPC, ARM, or x86.

 ● Scalability—The number of CPU cores or nodes in a network needs to
be changeable on the fly to show effects of concepts introduced within
lectures.

All of the above points have a significant impact on training maintenance and
training delivery—and at the end of the day training costs. With Simics, a lot
of the above problems can be mitigated:

 ● No need to ship equipment other than normal laptops.
 ● Broken laptops are easy to replace, because they are off the shelf.
 ● The required equipment is independent of the training that is delivered. It

is always one laptop per student.
 ● Simics gives full insight into the system and allows full system time freeze.
 ● For a number of training sessions a change of the used target is simple. For

example, migrating from the Simics PowerPC* Quick Start Platform to the
Simics ARM* Quick Start Platform.

 ● System installation and bring-up is reduced to powering on the laptop and
starting Simics with a well-tested Simics script.

The following sections show the application of Simics in a number of training
examples, showing the real-world problems and how they were solved.

Device Driver Development Training
When teaching people on device driver development, the hands-on labs
should present them with the most central tasks involved in device driver
programming. This means the labs require a device that is

 ● simple enough to understand within the duration of the lab
 ● complex enough to warrant some device driver activity
 ● available in various platforms such as ARM, PPC, and x86

The only real-world device that fulfills most of the above requirements is a
16x50 UART. However, this device is about 20 years old and hence is not at all
exciting. Needless to say, there is hardly any need for developing a device driver
for it, because every OS already has one. In order to make the lab motivating
and interesting, something else is needed.

“…There are literally hundreds of

pieces of equipment per class…”

“With Simics, a lot of the above

problems can be mitigated:”

“In order to make the lab motivating

and interesting, something else is

needed.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

162 | Using Simics in Education

Another option is to design an artificial device and program an FPGA
accordingly. This, however, would then require having boards with an FPGA
for each of our target architectures (ARM, PPC, and x86). Leaving aside
the question of whether all targeted operating systems would run on such
boards, it is still highly likely that these boards would be only vaguely similar
and hence would lead to a big development and maintenance effort for the
training labs. Additionally, not knowing what the next customer would want
to be trained on would require purchasing many more boards than would ever
be needed. Furthermore, the FPGA-based boards could simply break, and
reprogramming the FPGAs would require shipping even more equipment.

A third option is to use Simics. Simics also allows designing an artificial device.
Having it included into one of the Quick Start Platforms (PowerPC or ARM)
would automatically make it available in the other, because both platforms are—
apart from the processor used—identical. With the way Simics models memory-
mapped busses, it is also not difficult to put the device into an x86 platform.

The device created has the following specification:

 ● The device has only 32-bit registers.
 ● The device is an LED controller driving 32 LEDs with a value in its pattern

control register (PTN).
 ● The device has a main control register (MCR).
 ● The device has a pattern life time (PLT) register.
 ● The device is enabled with MCR[0] = 1. With MCR[0] = 0, no pattern is

driven.
 ● The device has two operation modes. Mode 0, “Memory mapped I/O only”

and Mode 1, “DMA”. The mode is chosen by setting MCR[1].
 ● The device can drive an IRQ to the CPU.
 ● Once PLT! = 0 the device decrements PLT every cycle and raises an IRQ

once PLT = 0. Decrementing PLT is suspended while the IRQ is raised.
PLT is immutable from the outside once decrementing starts.

 ● Writing the MCR clears the IRQ.
 ● When entering Mode 1 or when in Mode 1 and after clearing the IRQ,

the device shall read the values of PNT and PLT from the addresses
MCR[31:2]<<2, and (MCR[31:2]<<2) + 4 respectively.

The specification is easy to comprehend, but still offers IRQs, DMA, and
normal register I/O. The idea here is that one can create some kind of moving
pattern by updating PNT and PLT in response to IRQs, as depicted in Figure 1.

The resulting I/O definitions of the DML device are shown in Code 1.

dml 1.2;
device myDevice;
parameter desc = “LED Controller”;
parameter documentation = “LED Controller with integrated timer”;

“The specification is easy to

comprehend, but still offers IRQs,

DMA, and normal register I/O.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 163

import “utility.dml”;
import “simics/devs/signal.dml”;
import “simics/devs/memory-space.dml”;

connect phys_mem {
 parameter documentation = “Connect memory space for”

+“DMA operations.”;
 parameter configuration = “optional”;
 interface memory_space;
}
connect irq_dev {
 parameter documentation = “Connect IRQ receiver.”;
 parameter configuration = “optional”;
 interface signal;
}
connect led[32] {
 parameter documentation = “Connect LEDs.”;
 parameter configuration = “required”;
 interface signal;
}
bank regs {
 parameter register_size = 4;
 register MCR @ 0 x 00 is (read_write) “Main Control Reg”{
 field DMAADR [31:2] “DMA source address”;
 field MODE [1] “Operation mode of device”;
 field ENABLE [0] “Enable/Disable device”;
}
 register PTN @ 0 x 04 is (read_write) “Pattern Reg”;
 register PLT @ 0 x 08 is (read_write) “Life Time Reg”;
}
import “myDevice_impl.dml”;

Figure 1: a running light implemented using the
training device.
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

164 | Using Simics in Education

Code 1: The DML code for I/O definitions of the training device.
Source: Wind River, 2013

The DML code shown in Code 1 is a straightforward implementation of
the specification. It has one bank with the specified registers, an array of 32
connect objects for the LEDs, and another two connect objects for the IRQ
receiver (usually the PIC of the system) and the memory space for DMA
operations, respectively.

The DML file “myDevice_impl.dml” then implements a number of
convenience functions for the connect objects (as shown in Code 2), the side
effects of the register accesses (like switching the LEDs on and off), and the
event required to handle the pattern life time (as shown in Code 3).

connect irq_dev {
 method set(){
 $irq_state=true;
 if ($this.obj)
 $irq_dev.signal.signal_raise();
 }
 method reset(){
 $irq_state=false;
 if ($this.obj)
 $irq_dev.signal.signal_lower();
 }
}

Code 2: Convenience functions in the IRQ connect object.
Source: Wind River, 2013

event lifetime_event {
parameter timebase = “cycles”;
parameter desc = “lifetime expiry event”;
method event(void *param) {

inline $irq_dev.set();
$regs.PLT=0;

 }
}

bank regs {
 register PLT {
 method write(val){
 if ($this==0 && val!=0){
 $this=val;
 if ($irq_state==false && $MCR.ENABLE==1){
 inline $lifetime_event.post(val,NULL);
 }

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 165

 }
 }
 [...] //part omitted
}

Code 3: Use of an event to handle the pattern life time.
Source: Wind River, 2013

The DML code is simple (myDevice_impl.dml has around 150 lines of code)
and can be maintained without exhaustive DML knowledge. Integrating
the device into the Quick Start Platform has been done at the scripting level
as shown in Code 4, because this allows us to have a single script for both
targets. Also note that the script handles the chosen OS, so there is only one
script for four different training variants.

if not defined target_arch { $target_arch = ppc }
if not defined target_os { $target_os = vxworks }
if not defined target_image { $target_image = someKernel}

$vxworks_image = $target_image
$kernel_image = $target_image

add-directory “%script%”
run-command-file (“%simics%/targets/qsp-”+$target_arch+”/qsp-”+$target_
os+”.simics”)

new-qsp-led-panel name = $system.upper_16_bit
new-qsp-led-panel name = $system.lower_16_bit

@device=pre_conf_object(simenv.system+’.dut’,’myDevice’)
@device.led = [None]*32
@device.queue = SIM_get_object(simenv.system).cpu[0]
@device.phys_mem= SIM_get_object(simenv.system).phys_mem
@device.irq_dev = [conf.board.pic, “irqs[80]”]
@tmp1=SIM_get_object(simenv.system+’.lower_16_bit’)
@tmp2=SIM_get_object(simenv.system+’.upper_16_bit’)
@for i in range(16):
 exec(‘device.led[%d]=tmp1.led%d’%(i,15-i))
 exec(‘device.led[%d]=tmp2.led%d’%(i+16,15-i))
@SIM_add_configuration([device],None)
$system.phys_mem.add-map base = 0xe00a0000 length = 12 device = $system.
dut:regs align-size=4

Code 4: The Simics script to insert the device into the QSP.
Source: Wind River, 2013

“…the script handles the chosen OS, so

there is only one script for four different

training variants.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

166 | Using Simics in Education

The nice thing here is that the above code works with minor changes for an
x86-based target as well. The difference is that the phys_mem memory space
of an x86 target is not a direct child of the top level component. That means,
for all targets, the same code base can be used for the device and the Simics
machine script. Only the above code needs to be maintained in order to enable
device driver labs for VxWorks* and Linux* on all three target architectures.
So for this training example, the advantage of using Simics lies on the training
developers’ and maintainers’ side.

The students are mostly unaware of Simics, although the training can be
extended to show how Simics can help in device driver development and
debugging, such as, for example, using the device register view (see Figure 2) to
inspect the current device state.

“The students are mostly unaware of

Simics…”

Figure 2: The simics 4.8 register view showing the registers of the training
device
(Source: Wind River, 2013)

Networking Training
Networking labs have quite different requirements from the device driver
development labs. Here, the actual used target machines are of secondary
interest; what is more important are:

 ● Flexible network topologies
 ● Heterogeneity of nodes. That is, mixed endiannesses, different operating

systems.
 ● Inspection on each node of the network
 ● Fault injection like packet drop or packet corruption

Networking training sessions are also the best example of why shipping real
equipment is not a viable option. Consider a simple network that consists
of only four leaf nodes organized into two subnets that are connected over a
router (Figure 3).

“Networking training sessions are also

the best example of why shipping real

equipment is not a viable option.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 167

In this case the setup requires five machines, two switches or hubs, and six
Ethernet cables. This renders per-student lab setups impossible (imagine a
class of 10 or more students). A per-class setup is feasible, but still subject
to reliability issues. Taking the above requirements into account (especially
the flexible topologies) using real hardware is no option.

An alternative to this is to use simulated networking like vxsimnet as
offered by the VxWorks simulator. With it, creation of various topologies
is simple, but the problem with vxsimnet is that it would restrict the labs
to one OS and one endianness. Additionally, network analysis would be
performed on host TAP interfaces. That means any training related to
Frame Check Sequence (FCS) is not possible because FCSs are generally
unavailable when sniffing a real network.

Simics’ Python scripting interface allows implementing a configuration
file format and a parser for it that can create the topologies needed. The
configuration file has to be able to define the number of targets, the endianness
of a target, how targets are grouped into subnets, and how subnets are to be
connected.

Since the parser is written in a Python script, a generic script can be created
that starts the parser with a given configuration file (Code 5).

if not defined wru_config {
 interrupt-script “No network config provided!” -error
}

if (file-exists ($wru_config+”.py”)) == FALSE {
 interrupt-script “Network config ‘”+$wru_config+”’ not found!” -error
}
run-python-file ((sim->simics_base)+”/../wru_sysgen/createNetworkTopology.py”)
Code 5: Content of the generic createNetwork.simics script.
Source: Wind River, 2013

“A per-class setup is feasible, but still

subject to reliability issues.”

“The configuration file has to be able

to define the number of targets, the

endianness of a target, how targets are

grouped into subnets, and how subnets

are to be connected.”

Figure 3: a simple setup for a networking lab
(Source: Wind River, 2013)

RouterSwitch

Node 1

Node 2

Switch

Node 3

Node 4

Intel® Technology Journal | Volume 17, Issue 2, 2013

168 | Using Simics in Education

For example, the scripts shown in Code 6 and Code 7 generate the
topologies shown in Figure 5 and Figure 6, respectively. The script
in Code 6 resembles the topology shown in Figure 3, while the script
in Code 7 shows a more complex topology as well as connected
Wiresharks[1] and a real network connection. Note that to keep the
example code short, targets and routers that use the same architecture
and OS do actually use the same set of binaries. In actual labs, the routers
have different kernels or root file systems in order to properly execute
their router roles.

from wru_sysgen import *
pathToQSPARM=’/home/wruser/simics-4.8/simics-qsp-arm-4.8.1/targets/qsp-
arm/images/’
pathToQSPPPC=’/home/wruser/simics-4.8/simics-qsp-ppc-4.8.1/targets/qsp-
ppc/images/’

#vxWorksPPC, vxWorksARM, LinuxPPC, and LinuxARM are defined in
wru_sysgen

With this script in the Simics project, various network topologies can be
created by starting the generic script and setting the configuration file variable
to the configuration file for the various labs (Figure 4).

Figure 4: Launching simics using the topology generator and a configuration
file
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 169

#and point to the corresponding Simics machine scripts.
Setup arguments for targets (Script, and binaries required)
linuxFileList=[‘uImage’,’qsp.dtb’,’rootfs.ext2’]
for arch in [‘PPC’,’ARM’]:
 exec(‘vxWorks%sArgs=[vxWorks%s,pathToQSP%s+”vxWorks”]’%((ar
ch,)*3))
 exec(‘Linux%sArgs=[Linux%s]+[pathToQSP%s+i for i in
linuxFileList]’%((arch,)*3))
routerArgs=vxWorksPPCArgs

#define targets
T1 = target(*vxWorksPPCArgs)
T2 = target(*vxWorksARMArgs)
T3 = target(*LinuxPPCArgs)
T4 = target(*LinuxARMArgs)

#define networks and connected targets
NW1 = network(‘10.10.0.20’)
NW1.connect(T1)
NW1.connect(T2)
NW2 = network(‘11.11.0.20’)
NW2.connect(T3)

Figure 5: The generated network topology for the script shown in Code 6 as a graph, and as shown by
the target info and system editor views.
(Source: Wind River, 2013)

Target_2

Target_1

Target_0

Target_3

Router_4

11.11.0.20

11.11.0.21
11.11.0.22

10.10.0.22
10.10.0.21

10.10.0.20

Intel® Technology Journal | Volume 17, Issue 2, 2013

170 | Using Simics in Education

NW2.connect(T4)

#define a router
R1 = router(*routerArgs)

#plug networks into router
R1.plug(NW1)
R1.plug(NW2)

Code 6: A simple topology configuration script
Source: Wind River, 2013

T1 = target(*vxWorksPPCArgs) #target_0
T2 = target(*vxWorksARMArgs) #target_1
T3 = target(*LinuxARMArgs) #target_2
T4 = target(*LinuxPPCArgs) #target_3

NW1 = network(‘10.10.0.20’)
NW1.connect(T1,macAddress=’f6:9b:54:32:42:42’)
NW1.connect(T2)

NW2 = network(‘11.10.0.20’)
NW2.connect(T3,macAddress=’f6:9b:54:32:42:43’)
NW2.connect(T4,macAddress=’f6:9b:54:32:42:44’)

NW3 = network(‘12.10.0.20’)
NW3.connect_to_tap(‘TAP’)

R1 = router(*routerArgs) #router_4
R2 = router(*routerArgs)
R3 = router(*routerArgs)
R4 = router(*routerArgs)

R1.plug(NW1)
R1.plug(R2, ‘13.10.0.20’)
R1.plug(R3, ‘14.10.0.20’)

R4.plug(NW2)
R4.plug(R2, ‘15.10.0.20’)
R4.plug(R3, ‘16.10.0.20’)
R4.plug(NW3)

wireshark(‘13.10.0.20’,’255.255.255.0’)
wireshark(‘11.10.0.20’,’255.255.255.0’)
Code 7: A more complex topology configuration script (argument setup
omitted for spatial constraints and because it is identical to the simple script)
Source: Wind River, 2013

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 171

Simulating a network with a dozen nodes on a single simulation host
sounds like a big challenge for the host, but in fact, once all targets have
booted, most nodes are idle, meaning the idle nodes only add minimally
to the overall simulation effort. For example, on a two-core Intel® Core™
i7 CPU with 2.6 GHz and 2 GB of RAM with a Linux 64-bit host OS,
booting all eight machines in the network shown in Figure 6 takes 15
seconds. Afterwards simulation is able to progress by 4 virtual seconds per
wall clock second, because when sending packets through the system to

“Simulating a network with a dozen

nodes on a single simulation host sounds

like a big challenge for the host…”

Target_3

Target_2
Target_1

Target_0Router_7

Host

Router_6

Router_4

Router_5

Shark

11.10.0.22

11.10.0.21

11.10.0.20

15.10.0.20

15.10.0.21

13.10.0.21

13.10.0.20

10.10.0.22

10.10.0.21

10.10.0.20

14.10.0.20

14.10.0.2116.10.0.21
16.10.0.20

12.10.0.20

Shark

Figure 6: The generated network topology for the script shown in Code 7 as a graph, and as shown by
the target info and system editor views.
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

172 | Using Simics in Education

observe the behavior of routing protocols or firewalls, most of the machines
are idling.

Another noteworthy effect of using Simics is that it allows showing Ethernet
Frame Check Sequences (FSCs). The problem with real hardware is that
Software Ethernet sniffers (like Wireshark) are sitting on the software side of
the Ethernet card. FCS is usually offloaded to hardware and hence cannot be
captured, which means showing a “live” Ethernet frame in its entirety is not
possible. With Simics, sniffing at the simulated hardware side of the network
card is possible, and so the FCSs are observable. Figure 7 shows a packet
captured on the hardware side and Figure 8 shows the same capture at the
software side of the network card.

Figure 7: Ethernet frame captured on the virtual hardware
side using simics
(Source: Wind River, 2013)

Figure 8: Same ethernet frame as shown in Figure 7
captured on the software side.
(Source: Wind River, 2013)

Note that the frame captured on the software side is four bytes shorter, because
it lacks the real FCS. Also note that the capturing tool falsely interpreted the
final four bytes of the frame (which actually belong to the trailer) as the FCS,
which leads to a false check failure.

Combining the simple configuration format with the shown ability of sniffing
on the virtual hardware side and with the ability of doing packet modification
using Simics Ethernet probes, quick and reliable creation of any kind of
network is feasible. Inspection, injection, or modification of traffic at any
position in the network is also possible. This enables the construction of labs to
show routing and communication protocols in action, their reaction to broken
connections, and their reaction to packet loss or packet corruption in simple
and complex network topologies.

“…the capturing tool falsely interpreted

the final four bytes of the frame (which

actually belong to the trailer) as the

FCS, which leads to a false check

failure.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 173

In this training example, both the training developers and the students benefit
from using Simics, because it simplifies the training development but also
enables the use of complex and varying toplogies and inspection of complete
packets everywhere, which improves the learning experience.

Multi-Core Training Examples
A third class of training examples with a different requirement set is training
sessions for multi-core targets. These training sessions address topics embedded
software developers face when developing applications for modern systems, like
symmetric and asymmetric multi-processing, nonuniform memory layouts,
and how to best exploit the number of available cores. A machine used for such
a training session needs to fulfill the following requirements:

 ● It must provide multiple cores
 ● The number of active cores needs to be adjustable
 ● It must be able to operate in nonuniform memory architecture (NUMA)

mode (that is, offer at least core local RAM)

Any modern PC nowadays is a multi-core machine, so that is no real issue, but
problems arise when one wants to change the number of active cores. Limiting the
number of active cores is feasible, but with real hardware, the upper limit is clearly
defined by the number of available cores of the host machine. Some labs, however,
require showing some laws and rules in action (like Amdahl’s law) and for this,
freely adjusting the number of cores is necessary in order to show how performance
reaches some upper limit and a further increase of cores does not help at all.

With Simics, showing Amdahl’s law can be done by implementing a simple
application with a fixed sequential to parallelizable ratio. In the experiment, the
parallelizable part spawns 150 tasks that all execute a fixed length for-loop, while
the sequential part executed the same loop N*150 times for an N:1 sequential
to parallelizable ratio. The more cores the system offers the faster the application
will finish. Executing such an application on the QSP with 1 to 8 cores
generated the expected result as depicted in Figure 9 (the used OS does not
support more than 8 cores; from the point of view of the QSP, using up to 128
cores would have been feasible). This shows very good how quickly the speed up
reaches saturation, even though there are 150 tasks that could work in parallel.

To support NUMA, the QSP only needs to be tweaked a little. An additional
memory space was inserted between the CPU and the original phys_mem
memory space into which another memory space can be inserted parallel to the
original phys_mem into which whatever local memory (RAM, ROM, Flash)
can be added (Figure 10).

This construct allows attaching distinct and independent timing models to the
local memory spaces of the cpus (lmem) and the global memory space (phys_
mem), such that the timing models do not need to do any kind of address
analysis and can remain oblivious of the actual memory layout, so that their
implementation is as simple as shown in Code 8.

“…problems arise when one wants to

change the number of active cores.”

“This construct allows attaching distinct

and independent timing models to the

local memory spaces of the cpus (lmem)

and the global memory space…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

174 | Using Simics in Education

Figure 9: amdahl’s law as observed in a simics simulation.
(Source: Wind River, 2013)

1
1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

S
p

ee
d

 U
p

Number of Cores

Speed Up Depending on Number of Cores and
Serial to Parallelizable Ratio

2 3 4 5 6 7 8

1:1

2:1

3:1

Figure 10: Original and modified memory space hierarchy in the Quick Start
Platform to support nUma setups
(Source: Wind River, 2013)

Original

Modified

cpu[0]

RAM

Board

Devices

ph
ys

_m
em

cpu[1]

cpu[2]

cpu[3]

RAM

Board

Devices

cpu[0] mem[0]

Imem[0] local_ram[0]

local_ram[1]

local_ram[2]

local_ram[3]

Imem[1]

Imem[2]

Imem[3]

mem[1]

mem[2]

mem[3]

cpu[1]

cpu[2]

cpu[3]

Local
Timing
Model

Global
Timing
Model

ph
ys

_m
em

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 175

import pyobj

class memorySpaceTiming (pyobj.ConfObject):

 def _initialize(self):
 pyobj.ConfObject._initialize(self)

 class accessDelay(pyobj.SimpleAttribute(
 None,
 type=’i’,
 attr=simics.Sim_Attr_Required)):
 “””Delay for transactions”””
 pass

 class timing_model(pyobj.Interface):
 def operate(self,mem_space, map_list, mem_op):
 delayValue=self._up.accessDelay.val
 SIM_mem_op_ensure_future_visibility(mem_op)
 mem_op.reissue=0
 SIM_log_info(2, self._up.obj, 0,
 “Delaying mem op for %d cycles.”%(delayValue))
 return delayValue

Code 8: Timing model implemenation.
Source: Wind River, 2013

The Simics script that modifies the memory space hierarchy is shown in Code
9. Note that the timing models are not attached by default, but only when
calling the Python function enable_delays. This allows booting the OS much
quicker. The timing models are only attached when executing the applications
that make use of NUMA and that need to be analyzed.

add-directory “%script%”
run-command-file “%simics%/targets/qsp-ppc/qsp-vxworks.simics”

#load timing model definition
run-python-file “%script%/memspacetiming.py”

#A helper function to create a local ram
@def create_local_ram(prefix, index, size):
 img=SIM_create_object(‘image’,
 prefix+’.local_ram_img[%d]’%(index),
 [[‘size’,size]])
 ram=SIM_create_object(‘ram’,
 prefix+’.local_ram[%d]’%(index),
 [[‘image’,img]])
 return ram

“…timing models are only attached

when executing the applications that

make use of NUMA…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

176 | Using Simics in Education

#Create two timing models,
#one for the local memory access delays
@lDelayer=SIM_create_object(‘memorySpaceTiming’,
 simenv.system+’.ldelayer’,
 [[‘accessDelay’,5]])

#The other for the global memory access delays
@gDelayer=SIM_create_object(‘memorySpaceTiming’,
 simenv.system+’.gdelayer’,
 [[‘accessDelay’,25]])
@phys_mem=SIM_get_object(simenv.system+’.phys_mem’)

#modify memory space hierarchy
@for i in range(simenv.cpu_cores):
 cpu=SIM_get_object(simenv.system+’.cpu[%d]’%(i))
 ram=create_local_ram(simenv.system, i, 1024*1024)
 mem=SIM_create_object(‘memory-space’,
 simenv.system+’.mem[%d]’%(i),
 [[‘default_target’,[phys_mem,0,0,phys_mem]]])
 lmem=SIM_create_object(‘memory-space’,
 simenv.system+’.lmem[%d]’%(i),[])
 cpu.physical_memory=mem
 mem.map.append([0x40000000,
 lmem,
 0,
 0,
 ram.image.size,lmem])
 lmem.map.append([0x0, ram,0,0,ram.image.size])
 lmem.queue=cpu

#function to enable timing models
@def enable_delays():
 SIM_run_command(‘dstc-disable; dstc-enable’)
 phys_mem.timing_model=gDelayer
 for i in range(simenv.cpu_cores):
 lmem=SIM_get_object(simenv.system+’.lmem[%d]’%(i))
 lmem.timing_model=lDelayer
Code 9: The DML code for the training device.
Source: Wind River, 2013

Figure 11 shows the setup in action. Initially, the timing models were not
attached and hence steps and cycles are in sync (due to using a steps-per-cycle
ratio of one to one). Afterwards the delays and logging output from the timing
models were enabled, and then a check is performed that the next instruction
will execute memory accesses (r13 points to global RAM, while r14 points
to local RAM). Executing the instructions shows that the timing models are
active, and that afterwards steps and cycles are out of sync, because the global

“Executing the instructions shows that

the timing models are active…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

Using Simics in Education | 177

memory access lasted for 26 cycles (1 cycle execution + 25 cycles transaction
delay), and the local access only for 6 cycles.

This enables the creation of labs that can show how NUMA can speed up
applications, provided most of the data accesses of each core remain core local
and only few accesses need to go to the global RAM. A good example for an
algorithm that greatly benefits from NUMA is a parallel quick sort.

Another important aspect to show in multi-core scenarios is synchronization
mechanisms and problems. When using Simics, one has to be careful setting
the CPU switch time right, in order to show that. If the time quantum of
a processor is long enough to allow it to enter and exit the critical (but not
properly synchronized) code sections, no problem will occur. One has to make
sure that the quantum of a given CPU expires at least once right in the middle
of the critical code section, such that another CPU will execute and enter its
critical section as well. Figure 12 depicts that.

Due to this, labs that deal with synchronization need to be carefully designed.
Nevertheless, choosing the right synchronization problem and CPU switch
times makes it possible to show all major synchronization problems, ranging
from simple mutex/semaphore-based synchronizations up to labs within
perfectly valid uni-processor synchronizations (like using IRQ locks to
safeguard critical sections) fail as soon as the number of available cores goes
beyond one.

“This enables the creation of labs that

can show how NUMA can speed up

applications…”

Figure 11: main and local memory access with active
timing models.
(Source: Wind River, 2013)

Intel® Technology Journal | Volume 17, Issue 2, 2013

178 | Using Simics in Education

There is, however, the drawback that, with Simics, showing cache-coherence
protocols in action or cache coherency issues is not trivially possible, because,
by default, Simics abstracts from caching for the sake of simulation speed.
Then again, cache coherence is generally handled by hardware and is invisible
to the software running on the CPUs. Since the training sessions focus on
embedded software topics and tools, not being able to actually show cache
coherence is no major concern. It should be noted, however, that Simics allows
the implementation of cache models and their addition into the existing target
system. However, this would be too much effort for the above-mentioned training
example for showing something that is not of major interest to the students.

In summary, for multi-core training sessions, Simics allows a broad range of
multi-core labs on an off-the-shelf laptop. Not only does this reduce the amount
of equipment to ship to a single laptop per student, it also allows you to create
labs that could not be done, or only in a limited way, with real hardware.

Reference
[1] Combs, Gerald, et al. 2013. Wireshark. www.wireshark.org

Author Biography
Robert Guenzel holds a PhD in computer science from the Technical
University of Braunschweig. He joined Wind River in 2011. He is responsible
for Simics training development and supports Simics integration into other
training programs. Internet address: http://education.windriver.com

“…it also allows you to create labs that

could not be done, or only in a limited

way, with real hardware.”

In Reality,
Parallel Execution

Code Executed
on CPU 1

Critical

Code Executed
on CPU 2

CPU Switch Occurs.

CPU Switches Occurs.

With proper quantum, a CPU cannot exit critical
section before another CPU enters a critical section.

Expected synchronization problems can occur.

If quantum too long, both CPUs enter and exit
critical section within their quantum, no problems

can occur.
In simulation,
Sequential Execution,
Within a Cell.

Critical

Critical

Critical

Cri- tical

Criti- cal

Figure 12: Effect of chosen quantum on observable
synchronization problems.
(Source: Wind River, 2013)

180 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

As modern software systems become more complex, they increasingly contain
classes of faults that are not effectively detected by existing testing techniques.
For example, concurrency faults such as data races tend to be intermittent and
require precise execution interleavings or specific events to occur. A common
approach to test for data races involves repeatedly executing a program in the
hope of exercising an execution interleaving that causes races. Unfortunately,
occurrences of races do not always lead to erroneous outputs. As such, they
often elude traditional testing approaches that rely on output-based oracles
for fault detection. To effectively test for these elusive faults, engineers need
to be able to observe the occurrences of faults by precisely controlling various
execution events that can cause such faults, and properly monitoring outputs.

In this article, we introduce Sim-O/C, a framework that provides engineers
with the observability and controllability necessary to detect elusive faults. The
framework is based on the Simics* Virtual Platform but is equally applicable
on other virtual platforms and full system simulators. The framework allows
engineers to detect runtime violations as they occur. An engineer can choose
to let violations propagate to determine whether they can result in failures.
In addition, the framework allows engineers to control occurrences of
nondeterministic events including thread or process scheduling, system calls,
software signals, and hardware interrupts. We provide in-depth technical and
implementation details about this framework and then illustrate how the
framework can be used to detect intermittent concurrency faults that occur
between applications and interrupt handlers.

Introduction
The basic characteristics of modern computer systems are that they utilize
multiple CPUs, connect to a large array of peripheral devices, and sense their
surroundings through various sensors and actuators. Such complexity makes
software development challenging as developers must rely on concurrent
programming and various combinations of interrupts, system calls, and polling
to fully utilize processing power and to timely sense their environments. It is
therefore not surprising that software running on these systems can suffer from
classes of “elusive” faults including various forms of concurrency faults that are
difficult to detect, isolate, and correct.

Concurrency faults are difficult to detect because they occur intermittently.
To combat these faults, engineers require observability and controllability.
Observability is needed to detect when violations occur and assess their
implications for correctness. Existing techniques for testing for concurrency

“Concurrency faults are difficult to

detect because they occur intermittently.

To combat these faults, engineers require

observability and controllability.”

SIm-O/C: An ObSErVAblE And COnTrOllAblE TESTIng FrAmEwOrk
FOr EluSIVE FAulTS

Tingting Yu
university of nebraska-lincoln

Witawas Srisa-an
university of nebraska-lincoln

Gregg Rothermel
university of nebraska-lincoln

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 181

Intel® Technology Journal | Volume 17, Issue 2, 2013

faults often reveal faults by producing observable incorrect outputs. However,
the absence of observable incorrect outputs does not mean that there are no
concurrency faults in the program. For example, when a thread or process
wins a race but simply writes the same data value written by another thread
or process, there is no observable incorrect output despite the presence of
that race. However, the same race can reoccur later on in a case in which the
overwritten value is not the same as the previous value. In this case, erroneous
output can be observed. For engineers to effectively test for data races, they
must be able to observe the actual races as they occur and not rely solely on
the presence of incorrect outputs. This is a primary reason why there have been
many instances of concurrency faults that remain dormant during testing and
debugging periods and then appear during system deployment.[1][2]

In addition, when testing for concurrency faults, controllability is needed
to force a particular event under test (for example, a specific thread/process
interleaving, an interrupt, or software signal) to occur at a precise point in
execution so that engineers can observe that event’s interaction with other
system components. However, engineers often do not have control over
execution interleavings. Thus, existing testing techniques often require
engineers to repeatedly execute a program, in the hope that a particular
execution interleaving that can reveal faults will occur. This approach, however,
relies largely on chance. This problem becomes even more difficult in the
context of an application’s interaction with asynchronous external events. In
the example we present in the next section, engineers need to be able to force
an interrupt to occur at a particular location in a program. Unfortunately,
existing approaches for randomly forcing interrupts are not powerful enough to
support such a precise requirement. Even when random interrupts do expose
faults, they may miss faults that can occur due to other execution interleavings.

It is worth noting that to date, there have been many techniques proposed
for detecting thread-level concurrency faults with the aid of observability[3]
and controllability[4]. However, these approaches have rarely been applied to
scenarios in which concurrency faults occur due to asynchronous events (such
as interrupts and software signals) and interleavings at the process-level. It is
unclear whether these approaches can work in such scenarios for two reasons.
First, controlling these events requires fine-grained execution control; that is, it
must be possible to control execution at the machine code level or kernel level
and not at the user-mode application level, which is the granularity at which
many existing techniques operate. Second, occurrences of events like interrupts
are highly dependent on hardware states; that is, interrupts can occur only
when hardware components are in certain states. Existing techniques are often
not cognizant of hardware states.[5]

In this article, we present Sim-O/C, a virtual machine based framework
designed to tackle the challenges of testing for broad classes of elusive faults
such as concurrency faults. Particularly, Sim-O/C can achieve the levels of
observability and controllability needed to test systems by utilizing the virtual
platform’s abilities to interrupt execution without affecting the state of the

“For engineers to effectively test for

data races, they must be able to

observe the actual races as they occur

and not rely solely on the presence of

incorrect outputs.”

“In addition, when testing for

concurrency faults, controllability is

needed to force a particular event under

test (for example, a specific thread/

process interleaving, an interrupt, or

software signal) to occur at a precise

point in execution…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

182 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

virtualized system, to monitor function calls, variable values and system states,
and to manipulate memory and buses directly to force events such as interrupts
and traps to occur. As such, Sim-O/C is able to stop execution at a point of
interest and force a traditionally nondeterministic event to occur. Sim-O/C
then monitors the effects of the event on the system and determines whether
any anomalies result.

Many existing approaches for detecting concurrency faults are not widely used
because they require significant deployment effort. We have designed Sim-O/C
to overcome deployment obstacles by implementing it on a commercial virtual
platform, Simics.[6] We chose Simics for several reasons. First, similar to other
full-system simulators, Simics provides functional and behavioral characteristics
similar to those of target hardware systems, enabling software components to
be developed, verified, and tested as if they are executing on the actual systems.
Second, through a rich set of Simics APIs, software engineers have the ability
to unobtrusively observe and control various system behaviors without needing
the source code. Third, due to its powerful device modeling infrastructure,
Simics already plays a critical role in hardware/software co-design; therefore,
adding the proposed capabilities to Simics enables adoption without requiring
undue effort. Thus, we envision that Sim-O/C will allow several aspects of
product integration testing to be moved up to the co-design phase of system
development. Fourth, licensing of Simics is free for academic institutions,
making it a good platform for research.

The remainder of this article is organized as follows. The section “A Motivating
Example” provides an example that is used to explain the operation of Sim-
OC. This is followed by the section “Overview of Sim-O/C.” The section
“Implementation Details” describes the implementation of Sim-OC on Simics.
The section “Evaluation” reports the results of an evaluation in which Sim-OC
is used to detect concurrency faults due to interrupts and signals. “Further
Discussion” presents the ramifications of our results. The “Conclusion” section
discusses future work and concludes this article.

A Motivating Example
In early releases of version 2.6 of the Linux kernel, there is a particular data
race that occurs between the serial8250_start_tx routine and the UART
serial8250_interrupt interrupt service routine (ISR) in the UART driver
program.[7] This particular fault existed in the source code for over three years
before being eradicated. We provide the code fragments that illustrate the
error in Code 1.

static int serial8250_startup(struct uart_port *port){
1. up = (struct uart_8250_port *)port;
2. ...
/* Do a quick test to see if we receive an
 * interrupt when we enable the TX irq. */
3. serial_outp(up, UART_IER, UART_IER_THRI);

“…Sim-O/C is able to stop execution

at a point of interest and force a

traditionally nondeterministic event

to occur. Sim-O/C then monitors the

effects of the event on the system and

determines whether any anomalies

result.”

“We have designed Sim-O/C to

overcome deployment obstacles by

implementing it on a commercial

virtual platform, Simics.[6]”

“This particular fault existed in the

source code for over three years before

being eradicated.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 183

Intel® Technology Journal | Volume 17, Issue 2, 2013

4. lsr = serial_in(up, UART_LSR);
5. iir = serial_in(up, UART_IIR);
6. serial_outp(up, UART_IER, 0);
7. if (lsr & UART_LSR_TEMT && iir & UART_IIR_NO_INT) {
8. if (!(up->bugs & UART_BUG_TXEN)) {
9. up->bugs |= UART_BUG_TXEN;
10. }
11. }
12. ...
 /* Finally, enable interrupts. */
13 up->ier = UART_IER_RLSI | UART_IER_RDI;
14 serial_outp(up, UART_IER, up->ier);
15 ...
16.}

static void serial8250_start_tx(...){
17. serial_out(up, UART_IER, up->ier);
18. ...
19. if (up->bugs & UART_BUG_TXEN) {
20. ...
21. transmit_chars(up);
22. }
23.}

static irqreturn_t serial8250_interrupt(...){
24. ...
25. transmit_chars(up);
26. ...
27.}

static void transmit_chars(...){
28. struct circ_buf *xmit = &up->port.info->xmit;
29. ...
30. xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
31. ...
32.}

Code 1. Faulty code that can cause data races in the UART driver in Linux.
Source: University of Nebraska-Lincoln, 2013

Routine serial8250_startup is responsible for testing and initializing the UART
port and assigning the ISR. This routine is called before the UART port is ready
to transmit or receive data. Routine serial8250_start_tx is used to initialize data
transmission, and is called when data is ready to transmit via the UART port.
Routine serial8250_interrupt is the actual ISR, and is called to perform data
transmission when: (1) the data is ready to be transmitted; and (2) the interrupt
enable register (IER) is enabled by the serial8250_start_tx routine.

“…Faulty code that can cause data

races in the UART driver in Linux.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

184 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

Under normal operating conditions, the ISR is always responsible for
transmitting data. To ensure that an ISR is assigned correctly, serial8250_
startup issues an interrupt and monitors the response from the ISR (line 3–6
in Code 1). Several sources have shown that problems such as races with
other processors on the system or intermittent port problems can cause the
response from the ISR to get lost or cause a failure to correctly install the ISR,
respectively. When that happens, the port is registered as “buggy” (line 9) and
workaround code based on polling instead of using interrupts is used (lines
19–22). Unfortunately, the enabled interrupts (lines 13–14) are not disabled in
the workaround code region so by the time the workaround code is executed,
it is possible for both the ISR and the workaround code to transmit or receive
data through the same serial port at the same time by calling the routine
transmit_chars, and simultaneously read from or write to the shared variale
xmit->tail (line 30). As such, a race in this illustration occurs when:

1. the device driver program is preempted by the ISR after a shared memory
access before it can proceed to the next instruction;

2. the ISR manipulates the content of this shared memory.

Higashi et al.[8] introduce an approach to test for this fault by controlling
invocations of interrupts. In that work, they used an ARM-based processor
simulator and modified version of uCLinux with the same fault that could
run on that simulator. Their modifications included porting the code from
PPC to ARM and removal of irrelevant code to reduce the simulation time.
Their methodology involves invoking an interrupt at every memory read and
write operation. We recreated a similar testing system based on Sim-O/C with
two additional optimization techniques beyond those used in the Higashi
approach. In the first optimization technique, we apply static program analysis
to detect the resources that can be affected by the UART driver and the ISR.
With this optimization, we invoke interrupts only when these shared resources
are accessed, resulting in a smaller number of interrupts. Second, we also check
system states at runtime to ensure that it is possible to invoke interrupts when
those resources are accessed, resulting in more realistic interrupt invocations.
These two optimizations should significantly reduce the time required to
conduct testing.

Overview of Sim-O/C
Currently, Sim-O/C is implemented for applications running on x86/Linux
environments. The framework includes four major components, which interact
with Simics as user-developed tools:

 ● A configuration repository stores initialization scripts containing
information that includes execution breakpoints and variable locations that
must be observed.

 ● An execution observer is an external module that can be attached to Simics.
It monitors runtime information and then records it in a file, or directly
sends it to online test oracles to predict whether a fault occurs.

“…a race in this illustration occurs

when:

the device driver program is preempted

by the ISR after a shared memory

access before it can proceed to the next

instruction;

the ISR manipulates the content of this

shared memory.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 185

Intel® Technology Journal | Volume 17, Issue 2, 2013

 ● An execution controller is another external module that can be attached to
Simics. It invokes callback functions when events of interest occur (such as
interrupts and memory read/write operations).

 ● An oracle repository stores test oracle files in the form of property requirements.

To date, it is quite common for certain types of faults to be detected using code-
level instrumentation. Such faults include thread-level concurrency faults, memory
leaks, and buffer overflows. However, code-level instrumentation has been known
to introduce probe effects. Furthermore, faults that occur across applications in a
system can make code level instrumentation infeasible (for example, if only binary
code is available or instrumentation tools are not compatible with development
languages). Sim-O/C operates at the binary level so it is language independent
and does not rely on external tools to perform instrumentation. It also minimizes
probe effects as instrumentation is performed outside of virtual execution states.
Controllability is achieved by allowing engineers to initiate the desired events at
particular execution points during testing.

In addition, Sim-O/C is capable of detecting the following three classes of
faults that cannot be easily detected without the support of virtual platforms:

 ● concurrency faults between applications and hardware interrupts, including
both data races and deadlocks;

 ● concurrency faults caused by improper shared resource access among
multiple processes;

 ● concurrency faults caused by incorrect arrivals of software signals.

As such, the ultimate benefit of Sim-O/C is its ability to test for classes of
concurrency faults that cannot be effectively detected by existing approaches.
In the future, we envision that Sim-O/C can be used to test for other elusive
faults including temporal violations that occur due to interrupts, and improper
resource usage. For example, Sim-O/C can be used to generate complex interrupt
sequences to test for violations of expected worst-case interrupt latencies.

In the next section, we describe each component of Sim-O/C and illustrate
how Sim-O/C can be used to test for data races that occur due to improper
arrivals of hardware interrupts. This type of fault has been identified as one of
the most “nasty” faults to test for in embedded software.[9] When we conduct
testing for data races, the components under test include the main application,
device drivers, and the ISRs that are associated with the device drivers. The
focus of our illustration is testing for races that occur when the application
coupled with the device drivers interact with an ISR.

Implementation Details
Figure 1 depicts the overall architecture of the Sim-O/C framework. There are
four major components in the framework in addition to Simics itself. As stated
earlier, Simics provides APIs that can be accessed via Python scripts; thus, all
components except the test oracles are Python scripts.

“Sim-O/C operates at the binary level

so it is language independent and does

not rely on external tools to perform

instrumentation.”

“…the ultimate benefit of Sim-

O/C is its ability to test for classes

of concurrency faults that cannot

be effectively detected by existing

approaches.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

186 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

In the example we are considering (from the section “A Motivating Example”),
the program under test (PuT) includes an application that interacts with a
serial port and the UART driver. We refer to the interrupt service routine for
the tested UART port as the ISR.

Figure 1: Overview of the SimTester architecture.
(Source: university of nebraska-lincoln, 2013)

Test Configuration
The first component in our framework is the Configuration script, the content
of which includes information such as locations at which to set execution
breakpoints on the points of interests. We can identify such points through
static or dynamic analysis (for example, we can set breakpoints at instructions
that access shared resources).

To test for data races in our example, the Configuration script sets breakpoints
on the events of interest so that the Execution Observer and Execution
Controller modules can use the monitored runtime information. In this
example, the information generated by the Execution Observer includes:

 ● information on when functions of the PuT and ISR execute and when they
return, and

 ● information on when SVs are accessed by the PuT and written by the ISR.

Since it is too expensive to monitor each variable access, we choose to monitor
only variables shared between the PuT and the ISR. We use the precise shared
variable detection algorithm proposed by Kahlon et al.[10], but we are interested
only in shared variables that are read by the PuT and written by the ISR,
or written by both the PuT and the ISR. We label each shared variable as a
“definition” or “use” through our analysis.

“…the Configuration script sets

breakpoints on the events of interest

so that the Execution Observer and

Execution Controller modules can use

the monitored runtime information.”

Test
Oracles

Execution
Observer

Execution
Controller

Simics

Breakpoints•
• Events to Monitor

Configuration

Execution
Logs

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 187

Intel® Technology Journal | Volume 17, Issue 2, 2013

One of our configuration tasks is to set breakpoints in Simics to detect when
an ISR executes and returns, and when SVs are accessed. The BasicConfig
algorithm (Algorithm 1) describes the steps for setting breakpoints.

procedure BasicConfig()

1: begin

2: for each shared variable

3: set read/write breakpoint

4: endfor

5: set execution breakpoint on entry instruction of interrupt handler

6: set execution breakpoint on interrupt return instruction iretd

7: end

Algorithm 1

Execution Observer
The Execution Observer monitors and generates information that is used
by the Execution Controller and Test Oracles. The generated information
can either be recorded in a log file (to support offline analysis) or directly
taken from the observer (to support online analysis). For offline analysis, the
callback functions log events into a runtime trace. This runtime trace serves
two purposes. First, it provides information for the Execution Controller. The
Execution Controller can determine the locations at which events should occur
in the following test executions. Second, Test Oracles can use the log file to
determine whether a fault occurs. For online analysis, the Execution Observer
notifies the Execution Controller as to when or where to cause an event to
occur in the current run. As in the offline analysis, runtime information can be
used directly by the oracle components for dynamic fault detection.

An important feature of the Execution Observer is that it can ignore
irrelevant events. Typically, engineers are interested only in the program
under test and not other programs running in a system. When using the
raw callback information, the Execution Observer cannot distinguish
between different execution units such as processes or threads (for example,
a shared memory address specified in the BasicConfig that can be accessed
by other programs not under test.) In most cases, we can overcome this
ambiguity by using a process tracker provided by Simics. A process tracker
can distinguish each user-space process; as such, engineers are able to focus
on the program under test.

The process tracker is not operational when a program executes in kernel
mode, so the process tracker alone cannot help us test for faults occurring
between applications and kernel components such as the UART device driver
mentioned earlier. To overcome this problem, we created an algorithm

“The Execution Observer monitors and

generates information that is used by the

Execution Controller and Test Oracles.”

“An important feature of the Execution

Observer is that it can ignore irrelevant

events.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

188 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

(Algorithm 2) to isolate the PuT and ISR from other applications in the system or
other ISR invocations. Using a static analysis tool, we identify all function names in
the PuT and their entry addresses. By parsing the symbol tables, we can identify the
entry address to the ISR. Furthermore, we monitor the function return instruction
(ret in X86) to determine whether a function or the ISR has returned, and we
monitor the interrupt return instruction (iretd in X86) to determine whether the
PuT has recovered from the interrupt context.

At runtime, we keep a call stack named func_list. When a function or an ISR
from PuT is invoked, its <address, frame pointer, stack pointer> is added to
func_list (line 3). When a shared variable is accessed, we compare the current
frame pointer ebp with the frame pointer on top of func_list (line 24). This
mechanism allows us to ignore those shared variables that might be accessed by
a different ISR or a different program on the same ISR. If a ret instruction is
encountered, by comparing the current stack pointer esp with the stack pointer
on top of func_list (line 9), we can determine whether the current function or
the ISR has returned.

A function is popped from func_list if its ret instruction is reached. Program
counter pc is recorded twice to determine whether the PuT is actually
preempted between a shared variable access and its following instruction. The
first recording time occurs when a shared variable is accessed (line 26) in a non-
interrupt service routine context, and the second time occurs after an interrupt
returns (line 20). An interrupt return instruction iretd is recorded to indicate
termination of an interrupt context. Note that the mere presence of an iretd
does not imply that an interrupt will jump back to the PuT, because more than
one device can issue interrupts and call iretd instructions. To overcome this
problem, an iretd is logged only when its frame pointer is equal to the frame
pointer when a shared variable is accessed in the PuT (line 18).

procedure RaceObserver()

require: procedure BasicConfig()

1: switch (breakpoint)
2: case function addr:
3: func list.push({func addr, ebp, esp})
4: if func addr == ISR entry
5: log “ISR entry”
6: is_ISR = true
7: endif
8: case ret:
9: if esp == func_list.top[index esp]
10: if func list.top[index f unc] == ISR entry
11: is_ISR = false
12: log “ISR exit”
13: endif
14: func list.pop()
15: endif

“This mechanism allows us to ignore

those shared variables that might be

accessed by a different ISR or a different

program on the same ISR.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 189

Intel® Technology Journal | Volume 17, Issue 2, 2013

16: case iretd:
17: if ebp == ebp_switch
18: log “iretd”
19: /*log program counter in next instruction*/
20: next pc()
21: endif
22: case SV:
23: /*check if SV is accessed by the PuT*/
24: if ebp == func list.top[index ebp]
25: if is_ISR == false
26: log “PuT”, SV ,SVaccess, pc
27: /*save Reg[ebp] content*/
28: ebp_switch = ebp
29: else /*interrupt handler context*/
30: if SVaccess == write
31: log “ISR”, SV , SVaccess
32: endif
33: endif
34: endif
35: end

Algorithm 2

In summary, events logged for testing race conditions include: (1) read/write
accesses to shared variables (an SV access by the PuT); (2) entry to the ISR; (3)
a write to an SV by the ISR; (4) return from the ISR; and (5) context switches
from the ISR to the PuT. Code 2 illustrates a sample of trace information
recording these events for this example.

...
PuT, $xmit->tail$, read, pc1
ISR entry ISR, $xmit->tail$, write
ISR exit
IRETD
pc1+1
...
Code 2.

Source: University of Nebraska-Lincoln, 2013

Note that there is a race in the trace given in Code 2. By observing the
program counter when an SV is accessed by the PuT and the interrupt recovery
point, we can determine that an interrupt occurs right after xmit->tail is read
by the PuT. Later on, this race can result in a program failure when the PuT
reads the wrong value of xmit-tail.

Execution Controller
The third component in our framework is the Execution Controller. This
module specifies certain events that should be invoked at particular points

“Note that there is a race in the trace

given in Code 2.”

“…the Execution Controller. This

module specifies certain events that should

be invoked at particular points…”

Intel® Technology Journal | Volume 17, Issue 2, 2013

190 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

during executions of the PuT. First, the Execution Controller can artificially
create I/O interrupts simply by writing data to the I/O bus or memory
locations that have been mapped to hardware devices. Simics allows us to issue
an interrupt on a specific IRQ line from the simulator itself. The interrupt will
happen before the subsequent instruction. Second, the Execution Controller
can force the system to execute a particular exception handling routine
by artificially creating that exception, such as by configuring the system
environment into an error state. Third, the Execution Controller can force
the system to execute a particular path by specifically setting a desired branch
condition in a hardware register or a memory location. The logical address of
a global variable can be obtained by parsing the symbol table. Thus engineers
are able to artificially inject values into the memory address to set the value
of this variable. Note that in order to write to program variables, the logical
virtual address must be converted to a physical address. As for the hardware
register, the cpu.iface.int_register.write API is used to manually set the content
of a register. Finally, the Execution Controller can cause an interrupt and use
the interrupt handler to control kernel-level scheduling. This is an important
feature of the Execution Controller when events need to be precisely controlled
at the kernel level. For example, to test for concurrency faults among multiple
user processes, Sim-O/C first observes the correct execution of two processes
and identifies system calls that can potentially race with each other (for
example, two processes that both write to a file using the write system call).
Next, Sim-O/C controls the scheduling of the two processes and attempts to
switch the order of the system calls in the original execution. If such a switch
causes a failure, a concurrency fault is detected.

Note that existing approaches would likely use functions such as yield or sleep
to achieve some form of execution control in user-level applications. However,
such approaches are not precise, as these functions do not guarantee when
the suspended process will be executed again. In addition, they do not work
for kernel-level programs such as device drivers. Instead, we use the Device
Modeling Language (DML)[11] to achieve more precise execution control. Our
approach creates a dummy device for the platform running on Simics, and
installs its associated IRQ line in the ISA bus. In this way, whenever a process
is ready to be stopped or resumed, the interrupt of this device is invoked. The
associated interrupt handler serves as an event handler. The handler first checks
the state of the process (suspending, active, and so on) using the task_struct
data structure. Next, the handler controls the process scheduling using process
scheduling APIs (such as wake_up_process()). This type of controllability can
also be used to control software signals.

In the example that we are considering, when engineers enable the controller
module RaceController, a controlled interrupt is invoked immediately after a
shared variable access by the PuT.

Because our framework forces interrupts to occur, we would like to distinguish
between interrupts that occur naturally as part of program execution and forced

“…the Execution Controller can cause

an interrupt and use the interrupt

handler to control kernel-level

scheduling. This is an important feature

of the Execution Controller when events

need to be precisely controlled at the

kernel level.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 191

Intel® Technology Journal | Volume 17, Issue 2, 2013

interrupts issued by the Execution Controller. We refer to the former interrupts
as self-generated, and to the latter as controlled.

It is not realistic to invoke an interrupt at an arbitrary program point. The
interrupt enable register and possibly other control registers must be set to
enable interrupts. In the example we are considering, before invoking an
interrupt, the interrupt enable register IER of the UART must be set while
the interrupt identification register IIR must be cleared. Even if interrupts are
enabled, they can be temporarily disabled. The following routine is the routine
in RaceController used to determine whether it is possible to issue an interrupt.

procedure ISR enabled(int p)
/*p is the pin number for a certain interrupt*/
1: begin
2: if eflags[9] != 0 and ioapic.redirection[p] == 0
 and ioapic.pin raised[p] == LOW
3: return true
4: else
5: return false
6: endif
7: end
There are two general steps that our system takes prior to invoking a controlled
interrupt. First, the Execution Controller checks the status of the local
interrupt and global interrupt bits to see if interrupts are enabled. In an X86
architecture, the global interrupt bit is the ninth bit of the eflags register
(line 2 of ISR enabled). When this bit is set to 1, the global interrupt is
disabled, otherwise it is enabled. For local interrupts, Simics x86 targets use
the Advanced Programmable Interrupt Controller (APIC) as their interrupt
controllers. As such, our system checks whether the bit controlling the UART
device is masked or not. Our system also checks whether a self-generated
interrupt is about to be issued by examining the current pin status. If this is
true, the controlled interrupt will not be invoked.

Note that in the foregoing discussion we have assumed that interrupts are not
nested, but our algorithms do also support nested interrupts. Also note that in
our discussion we have considered only the presence of a single ISR, but our
algorithm can be generically applied to handle multiple ISRs.

Test Oracle
The fourth component in our framework is the Test Oracle. Test oracles can
be “online” or “offline”. Online test oracles detect violations at runtime and
issue error messages then. For example, Sim-O/C can be used to dynamically
monitor for the occurrences of deadlocks by maintaining a resource allocation
graph. Each time a shared resource is accessed by the PuT, Sim-O/C updates
the graph and checks whether there is a cycle in the graph. Offline test oracles
analyze runtime log files after program execution and report them then. Each
log file is compared against an oracle specification to detect a particular type of

“Test oracles can be “online” or “offline”.

Online test oracles detect violations at

runtime and issue error messages then.”

“Offline test oracles analyze runtime log

files after program execution and report

them then.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

192 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

anomalous execution behavior. For example, in the example discussed earlier,
the oracle can specify in which condition data races occur. The runtime trace
(Code 2) is used to compare against the specification.

Test Driver
In addition to the components illustrated in Figure 1, a test driver is also
needed to automate the testing process. Typically, engineers conduct testing by
running test programs on a system. A test driver is a program that automates
the process of running test programs in a suite, managing the runtime violation
detection and analyzing generated log files.

For example, to test for data races we need to provide two components to the
test script: the test input and conditions governing when to invoke interrupts
from within the system. In this case, a test case is used as the test input for
the PuT (which includes the application and any device driver running under
non-interrupt service routine context that is called by the application). Note
that test cases for the PuT can be generated based on various criteria. We
discuss the criteria we use in the evaluation section. Next, we need to describe
each interrupt condition (IC). We express an IC as a tuple: < loc, pin >. The
first element, loc, specifies a code location at which to invoke an interrupt.
The second element, pin, specifies an Interrupt Request (IRQ) line number at
which to invoke the interrupt. This is needed because typically, an interrupt
service routine can be associated with multiple IRQ lines. ICs are used only
when the controllability module is enabled.

Our system invokes only one controlled interrupt per test run. This is done to
avoid fault masking effects, which may occur in cases where multiple interrupts
fire and cause a failure that would be evident in the presence of a single interrupt
to be “masked” by the presence of the second.[14] Thus, our system needs to first
check a flag to determine whether a controlled interrupt has already been invoked
in the current run. If it has, the test system does not monitor any further events
in this run. Once it has been determined that there has not been any invocation
of a controlled interrupt in this run, the system then checks to see whether the
last accessed SV has already been tested in prior runs. If it has not, the system
enables the control register for UART and then calls the simple interrupt API.

Note that, given the above approach, with the controller module disabled, the
PuT runs |tc| times during a testing process, where |tc| is the number of test cases.

However, with the controller module enabled, there can be multiple runs of
each test case. This is because each test case execution may encounter different
numbers of SVs. Therefore, the number of runs depends on the number of SVs
that must be tested, and is given by the equation

|tc| × (|int| + 1)

where |tc| is the number of test cases and |int| is the number of controlled
interrupts issued. We also need to run the PuT one additional time for each
test case to determine whether all SVs have been accessed.

“A test driver is a program that

automates the process of running

test programs in a suite, managing

the runtime violation detection and

analyzing generated log files.”

“Our system invokes only one controlled

interrupt per test run. This is done to

avoid fault masking effects…”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 193

Intel® Technology Journal | Volume 17, Issue 2, 2013

Evaluation
To evaluate Sim-O/C for race detection related to interrupts, we applied it to
the UART device driver on a preemptive kernel version of Fedora Core 2.6.15.
The driver includes two files, serial core.c and 8250.c, containing 1896 and
1445 lines of non-comment code, respectively. The main application transmits
character strings to and receives character strings from the console via the
UART port. In this article we apply our testing process only to the UART
driver; however, the same process is also applicable to other types of device
drivers.

Our approach requires the use of existing test cases, so we generated test cases
for the system based on a code-coverage-based test adequacy criterion. After
SVs were identified (see the “Test Configuration” section), we generated a set
of test cases that cover the feasible SVs (SVs for which there exists a possible
execution of the program which executes them) in the PuT. This process
produced 12 test cases.

To better assess the cost and effectiveness of our approach, we considered both the
approach and two alternative baseline approaches. In the discussion that follows,
we refer to our approach as the “conditional controllability approach,” because
it involves issuing controlled interrupts under certain conditions. The second
approach that we considered, “no controllability,” involves testing the program
without any controlled interrupts; this is the approach that test engineers normally
use. The third approach that we consider, “random controllability,” involves issuing
controlled interrupts at random program locations after shared variable accesses
and without checking interrupt conditions.

We measured execution times for the foregoing approaches by embedding a
timer in the Simics module. The reported times are the actual times spent by
Simics to execute the program.

Testing for Race Conditions
We begin by considering the target program as given, and evaluate the
effectiveness and efficiency of our race condition testing approach on that
program. We summarize the results in Table 1.

Conditional None Random

Test runs 352 6,000 288

Interrupts 96 16,500 1,044

Time (sec) 77.91 74.08 75.17
Race detected Yes No No

Table 1: Summary of results
(Source: university of nebraska-lincoln, 2013)

We first applied conditional controllability together with observability. Under
this approach, across the 12 test cases utilized, 84 controlled interrupts were

“To evaluate Sim-O/C for race detection

related to interrupts, we applied it to the

UART device driver on a preemptive

kernel version of Fedora Core 2.6.15.”

“To better assess the cost and effectiveness

of our approach, we considered both the

approach and two alternative baseline

approaches.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

194 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

applied, and for each test case, one extra run was needed to determine whether
all shared variables had been accessed. Thus, 96 test runs were required to finish
testing the target program with an average execution time of 77.91 seconds per
test run. Including self-generated interrupts, the number of interrupts generated
for the target program was 352. In the course of applying the approach, we
detected a race in function uart_write_room of /linux/drivers/serial/serial_core.c,
which we later determined had been corrected in subsequent versions of the
system. By running the system with observability turned off, we determined that
this fault can be detected only with observability enabled; in other words, it is
a fault that did not propagate to output on our particular test inputs, but may
propagate under a different test input.

We next tested our target program with no controllability. In this case, the only
interrupts that occur are self-generated interrupts. Because runs of each given
test can conceivably differ, we ran each test on the program 500 times. The total
number of interrupts observed was 16,500. Over the 6000 total test runs, average
execution time was 74.08 seconds per test, only 3.83 seconds less than with
controllability added. None of these test runs detected the race condition detected
by our first approach, however, either with observability enabled or disabled.

Finally, we tested our target program using the random controllability approach.
For each test case, we ran the target program three times more than the number
of runs performed under the conditional controllability approach, on each run
generating an interrupt at a randomly selected program location. The total
number of test runs was 288 and the number of interrupts generated was 1044.
In this case the average execution time per test case was 75.17 seconds, only
2.74 seconds less than with controllability added. Again, the race was not
detected, either with observability enabled or disabled.

One important characteristic of our technique is that checking is performed
before issuing a controlled interrupt. When a shared variable is accessed in
the main program, the controllability module first checks to see whether it
is possible to issue an interrupt, and if not, it proceeds to the next possible
location. This approach can save test runs, but at the cost of checking.
To quantify the tradeoffs involved, we also applied our conditional
controllability approach without the checking step enabled. Recall that with
checking enabled, 96 test runs were needed to issue controlled interrupts, with
an average execution time of 77.91 seconds per test. With checking disabled,
on the other hand, 1428 test runs were needed to issue controlled interrupts,
with an average execution time of 75.66 seconds per test. Clearly, the checking
approach saves time overall.

A second characteristic of our technique is that interrupts are issued only after
shared memory accesses, and this can be much less expensive than issuing
interrupts after each memory access, which is the approach used by Higashi
et al.[8] For our target program, there are 94,941 data accesses made in the
course of running the 12 test cases. If an interrupt were issued after each data
access, we would need 82.6 days to finish testing the target program.

“In the course of applying the approach,

we detected a race in function uart_

write_room of /linux/drivers/serial/

serial_core.c, which we later determined

had been corrected in subsequent

versions of the system.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 195

Intel® Technology Journal | Volume 17, Issue 2, 2013

Fault Detection Effectiveness
While the results of the foregoing study are encouraging, the numbers of
naturally occurring faults found in the target program was low, rendering
comparisons of the fault detection effectiveness of our approach less
meaningful. To further investigate fault detection effectiveness we followed a
process often utilized in the software testing research community[12]; namely,
the use of seeded faults.

In this case, we injected 12 potential race condition faults into the target
program. To do this, we removed statements corresponding to critical section
protection (for example, spin lock, spin lock irq). Of the 12 potential faults thus
created, further examination revealed that seven of them could not possibly be
triggered on the system on its given hardware platform, so we removed those.
This left us with five potentially detectable race condition faults.

Given the faults thus seeded, we ran our test cases on the faulty systems using
conditional and random controllability, and in the case of race detection, with
observability enabled and disabled. For the race condition detection approach,
conditional controllability detected two of the five faults. One of these faults was
detected both with and without observability. The same fault was also detected
with random controllability, but only with observability enabled because in this
case the fault does not propagate to output. This occurred because interrupts
issued by conditional controllability visited more unprotected shared variables
that can cause incorrect output than random controllability did, and these shared
variables are not visited by random controllability.

The second fault revealed in our race detection trial was revealed not through
observability, but rather, through output, for both conditional controllability
and random controllability. The reason this occurred is because the fault was
not actually caused by our defined race condition, but rather, by another type of
violation known as an “atomicity violation,” which we did not specify but can
easily detect. In particular, in this case, a read-write SV pair in the main program
is supposed to be atomic, but the ISR read this SV before it was updated in
the main program. This outcome shows that, while our approach does not
specifically target other types of faults, it may catch them as byproducts.

We also inspected the three potential race condition faults that were not
detected by any technique. We determined that the reason for their omission
was that the interrupt handler in each of the versions does not share variables
with the main program, so they are not races. This does not mean that the code
regions involved do not need to be protected, because other ISRs may share
memory locations, or programmers may intentionally cause the regions to
execute without interruption.

Further Discussion
Our observer module considers one type of definition of a race condition. In
practice, testers can adopt different definitions because there is not a single

“To further investigate fault detection

effectiveness we followed a process often

utilized in the software testing research

community; namely, the use of seeded

faults.”

“…while our approach does not

specifically target other types of faults, it

may catch them as byproducts.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

196 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

general definition for the class of race conditions that occur between an ISR
and a PuT. According to our definition, we consider the case in which the
PuT first reads from or writes to an SV, and the ISR modifies this SV during
the next access to it. However, our definition does not capture the case in
which the ISR reads from the SV. As noted above, for the four faulty versions
on which the ISR does not modify the SV, we still found one fault with
controllability enabled. This fault is related to an atomicity violation, as a
code region in the main program is supposed to execute atomically, such as,
for example, before a shared variable is updated in the main program, and an
interrupt occurs and the wrong data is read by the ISR.

Our approach injects data into device ports and forces an interrupt handler to
execute one path. The data we inject is the same as the test input given to the
program. For example, if an application sends the string “hello” to the UART
console passed by the UART transmitter buffer, a controllability module would
inject “world” into the UART transmitter buffer to force an interrupt to occur
after a certain access. It is also possible to have multiple paths by which shared
variables can exist in interrupt handlers. Testers can extend our method by
forcing interrupt handlers to execute different paths, which may increase the
probability of revealing faults. However, no faults are left undetected due to
missing shared variables or spin locks in the other paths of the ISR in our target
program. It is also possible to force an interrupt handler to execute only the paths
that have definition-use relationships with the main program. This may further
reduce the number of controlled interrupts and test runs. To do this, the value
schedule approach proposed by Chen et al.[13] could be adapted.

To force an interrupt to occur, our controllability module issues a new
interrupt. However, races and deadlocks can occur relative to the interrupt
generated by the target program itself. For example, suppose an interrupt is
requested by device driver code, but is not immediately processed for some
reason (for example, due to the occurrence of a device port delay). The
interrupt handler associated with this interrupt may be executed later within
a spin lock pair or after a shared variable access, and thus a race condition or
a deadlock may occur. Our controllability module can be further extended to
deal with such cases. For example, when an interrupt is triggered, the module
can delay this interrupt by masking its interrupt enable register and issuing the
interrupt after a certain event occurs (for example, when a shared variable is
accessed or a spin lock is acquired). If there is no such event, the interrupt is
issued on exiting the PuT.

In practice, when testing software components (such as device drivers and
interrupt handlers), the first task that a test engineer must accomplish is to gain
confidence that the software component is developed correctly. In our study,
the analysis involves a test program, the interrupt handler that interacts with
the device driver, and the device driver code. The key point here is that the
tester focuses on a specific component and how it interacts with the rest of the
components. If the focus changes to a different component, the same analysis
can be applied to test the new component. As such, the proposed approach is

“Testers can extend our method by

forcing interrupt handlers to execute

different paths, which may increase the

probability of revealing faults.”

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 197

Intel® Technology Journal | Volume 17, Issue 2, 2013

not designed to test the entire system at once. Instead, it is more suitable for
component testing.

In our current work, the test generation process was performed manually,
which is currently the norm in practice. Our study considers a test input to
include input values and interrupt scheduling. However, there is no reason
the approach could not also utilize input values created using existing test case
generation approaches (such as dynamic symbolic execution[13].) A problem
with such approaches by themselves is that they generate large numbers of test
cases with no methodology for judging system correctness beyond looking
for crashes. Our approach provides more powerful, automated oracles, and
thus should ultimately facilitate the use of larger numbers of automatically
generated test cases.

Conclusion
We have introduced Sim-O/C, a framework that provides test engineers with
the ability to precisely control execution events and observe runtime context at
critical code locations. The framework is built on a commercial virtual platform
that is commonly used as part of the hardware/software co-design process.

The main benefit of using virtual platforms for testing is the ability to interrupt
execution without affecting the states of the virtualized system. Moreover,
precise process scheduling can be implemented by installing a dummy device,
which is a significant benefit of using virtual platform. Furthermore, we can
monitor function calls, variable values, and system states, as well as manipulate
memory and buses directly to make typically nondeterministic execution
events more deterministic.

References
[1] Apache Software Foundation. Datarace on org.apache.

https://issues.apache.org/bugzilla/show_bug.cgi?id=37458.

[2] Launchpad11. Canonical Ltd. Launchpad: data-races-
implementation sql crash. https://bugs.launchpad.net/f-4d-
cb/+bug/516622

[3] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley.
2010. “PACER: Proportional Detection of Data Races.”
In Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Toronto,
Ontario, Canada, 2010, pp. 255−268.

[4] Koushik Sen. “Race Directed Random Testing of Concurrent
Programs.” In Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation, Tucson,
AZ, 2008, pp. 11−21.

“Our approach provides more

powerful, automated oracles, and thus

should ultimately facilitate the use

of larger numbers of automatically

generated test cases.”

“We have introduced Sim-O/C, a

framework that provides test engineers

with the ability to precisely control

execution events and observe runtime

context at critical code locations.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

198 | Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults

[5] John Regehr. “Random Testing of Interrupt-driven Software.”
In Proceedings of the 5th ACM International Conference on
Embedded Software, Jersey City, NJ, 2005, pp. 290−298.

[6] Jakob Engblom, Daniel Aarno, and Bengt Werner. “Full-System
Simulation from Embedded to High-Performance Systems.”
Processor and System-on-Chip Simulation, pages 25−45, 2010

[7] I. Jackson, “IRQ handling race and spurious IIR read in 8250.c.”
https://lkml.org/lkml/2009/3/12/379.

[8] Makoto Higashi, Tetsuo Yamamoto, Yasuhiro Hayase, Takashi Ishio,
and Katsuro Inoue. “An Effective Method to Control Interrupt
Handler for Data Race Detection.” In Proceedings of the 5th
Workshop on Automation of Software Test, Capetown, South
Africa, 2010, pp. 79−86.

[9] EETIMES. “Five top causes of nasty bugs.” http://www.eetimes.com/
design/embedded/4008917/Five-top-causes-of-nasty-embedded-
software-bugs

[10] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti
Gupta. “Fast and Accurate Static Data-race Detection for
Concurrent Programs.” In Proceedings of the 19th International
Conference on Computer Aided Verification, Berlin, Germany,
2007, pp. 226−239.

[11] Jakob Engblom. “Virtutech Device Modeling Language.” Simics
White-Paper, 2009

[12] J. H. Andrews, L. C. Briand, and Y. Labiche. “Is Mutation an
Appropriate Tool for Testing Experiments?” In Proceedings of the
27th International Conference on Software Engineering, St. Louis,
MO, 2005, pp. 402−411.

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE:
Unassisted and Automatic Generation of High-coverage Tests for
Complex Systems Programs.” In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
Berkeley, CA, 2008, pp. 209−224.

[14] D.J. Agans. “Debugging: The Nine Indispensable Rules for
Finding Even the Most Elusive Software and Hardware Problems.”
AMACOM, 2002.

Author Biographies
Tingting Yu received her MS in Computer Science from University of
Nebraska-Lincoln in 2010, and a BE in Software Engineering from Sichuan
University in 2008. She is currently pursuing her PhD at the University of

Sim-O/C: An Observable and Controllable Testing Framework for Elusive Faults | 199

Intel® Technology Journal | Volume 17, Issue 2, 2013

Nebraska-Lincoln. Her research interests include software testing with an
emphasis on testing embedded systems and concurrent systems.

Witawas Srisa-an received his MS and PhD in Computer Science from Illinois
Institute of Technology. He joined University of Nebraska-Lincoln (UNL) in
2002 and is currently an Associate Professor in the Department of Computer
Science and Engineering. Prior to joining UNL, he was a researcher at Iowa
State University. His research interests include programming languages,
operating systems, virtual machines, and cyber security. His research projects
have been supported by NSF, AFOSR, Microsoft, and DARPA.

Gregg Rothermel received his PhD in computer science from Clemson
University, an MS in computer science from SUNY Albany, and a BA in
philosophy from Reed College.

He is currently Professor and Jensen Chair of Software Engineering in the
Department of Computer Science and Engineering at University of Nebraska-
Lincoln. His research interests include software engineering and program
analysis, with emphases on the application of program analysis techniques
to problems in software maintenance and testing, and on empirical studies.
Previous positions include Vice President, Quality Assurance and Quality
Control, Palette Systems, Incorporated.

	00_Intel_ITJ60_FM0001
	01_Intel_ITJ60_CH0001
	02_Intel_ITJ60_CH0002
	03_Intel_ITJ60_CH0003
	04_Intel_ITJ60_CH0004
	05_Intel_ITJ60_CH0005
	06_Intel_ITJ60_CH0006
	07_Intel_ITJ60_CH0007
	08_Intel_ITJ60_CH0008
	09_Intel_ITJ60_CH0009
	10_Intel_ITJ60_CH0010
	11_Intel_ITJ60_CH0011

